SlideShare ist ein Scribd-Unternehmen logo
1 von 16
Downloaden Sie, um offline zu lesen
Working Paper for Industry Studies Association 2011 Annual Conference

Pittsburgh, PA, USA

                                                        WORKING PAPER:

           Preliminary Site Survey Data for Biopharmaceutical Manufacturing Regulatory Economics



                                                      CURRENT AUTHORS:

                       Domike, R.D.1,2; Macher, J.T.1,3; Pande, R.1; Barone, P.W.1; Springs, S.L.1
1: M.I.T. Center for Biomedical Innovation, M.I.T., USA
2: School of Business, University of Prince Edward Island, Canada
3: McDonough School of Business, Georgetown University, USA

                                                             ABSTRACT:

              Efforts to understand and quantify trade-offs and economics relevant to the regulation of

              biopharmaceutical manufacturing sites from the perspective of the US FDA are underway.

              Preliminary results from a site survey that includes fifteen sites and thirty-one products

              manufactured in North America, Europe, and Asia are presented. These preliminary results

              suggest that sites expect more types of drivers or influencers regarding their quality

              activities, with particularly increased expectations of the role of new technology, cost

              reduction, and the pursuit of new markets. Also reported are the site perceptions of the

              presence of variation between inspections completed at their facilities. With the product-

              specific data, logistic regression suggests that the presence of a self-reported quality

              deviation is statistically related to whether the product was previously produced elsewhere at

              similar scale, use of advanced analytical approaches, regular manufacturing, use of

              mammalian cell culture, and whether the site considers the process relatively complex.

              Ongoing efforts and research objectives of the full project are described, with particular

              focus on incorporating US FDA inspection data.


                                                               Page 1 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics


1 Project Background and Preliminary Work Completed to Date 

1.1 Background 
        The use of biopharmaceutical products has increased dramatically over the past twenty years and is expected to 
continue  to  increase  in  volume  and  importance  in  years  to  come.    Current  worldwide  market  is  approximately  $100 
billion and expected to double by 2020.  Compared to small molecule pharmaceuticals, biopharmaceuticals represent 
approximately 7.5% of marketed products, but 32% of pipeline research programs.  Biopharmaceuticals are currently in 
use  or  development  to  help  humans  fight  diseases  such  as  cancer,  viral  infections,  diabetes,  hepatitis  and  multiple 
sclerosis.    Biopharmaceuticals  are  common  in  high  importance  situations:  in  cases  of  life‐saving  or  end‐stage 
applications, biopharmaceuticals are administered with nearly twice the frequency of small molecule pharmaceuticals. 

        Biopharmaceuticals  are  pharmaceuticals  manufactured  by  biotechnology  methods,  involving  live  organisms  or 
their active components.  Types of biopharmaceuticals include recombinant proteins, (monoclonal) antibodies, vaccines, 
and  blood/plasma‐derived  products.    The  biological  nature  and  criticality  of  the  products  result  in  complex 
manufacturing, quality assurance, and supply chain management. 

        The U.S. Food and Drug Administration (FDA) is tasked with ensuring public safety and health in the production 
of  biopharmaceuticals  consumed  within  the  United  States.  Federal  statutes  mandate  that  firms  manufacturing 
biopharmaceutical products for human administration operate under standards termed “current Good Manufacturing 
Practices”  (cGMPs),  which  require  that  all  drug  products  and  drug  components  be  in  conformance  with  guidelines 
related  to  safety  and  have  the  identity,  strength,  quality  and  purity  that  they  purport  or  are  represented  to  possess. 
Beyond manufacturing establishment inspection, the FDA is also tasked with the responsibility of recalling defective or 
potentially harmful FDA‐regulated products, which can entail either removing them from the market or correcting the 
underlying  problems.  The  responsibility  of  these  activities  falls  under  the  Center  for  Drug  Evaluation  and  Research 
(CDER)  of  the  FDA.  CDER  faces  a  significant  challenge  in  fulfilling  their  regulatory  mission,  given  the  increasing 
complexity of biopharmaceutical manufacturing and the increasingly global nature of biopharmaceutical production.  

        CDER  is  faced  with  the  difficult  tasks  of  inspecting  all  manufacturing  establishments  that  produce 
biopharmaceutical products for U.S. consumption at least once every two years, as well as monitoring and alerting the 
public  of  any  product‐related problems  that  exist.  While  some effort  is  made  in focusing  investigational  resources  on 
those establishments that are considered most critical to public health, CDER must make inspection decisions across a 
range of establishments—from raw materials to intermediate products, fill and finish services, and final products.  


                                                             Page 2 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

        The scope of these myriad activities is against a backdrop of an increasingly complex regulatory environment. 
Over the past decade, the sheer number and unique geographic locations of biopharmaceutical manufacturing facilities 
requiring  inspection  have  increased  substantially.  Many  new  biopharmaceutical  manufacturing  sites  have  been 
established—many  in  China  and  India.  New  sites  in  China  and  India  represent  greater  than  40%  of  FDA‐registered 
foreign  pharmaceutical  locations—making  inspection  and  oversight  increasingly  costly  and  cumbersome  (Woo, 
Wolfgang  and  Batista  2008).  The  net  effect  of  these  two  factors  has  increased  the  complexity  with  which  CDER 
structures its cGMP inspection and recall programs, given the limited resources (in both dollars and people) available.  

1.2 Full Project Intent 
        The full intent of this research project seeks to examine the effect of globalization on regulatory compliance for 
biopharmaceutical product manufacturing, the behavior of manufacturing firms in this environment, and the impact of 
FDA policy on biopharmaceutical manufacturing regulatory performance.   

        A  central  motivation  for  this  research  is  the  increasing  complexity  and  globalization  of  biopharmaceutical 
manufacturing.  This  combination  has  increased  the  policy  challenges  for  effective  safety  regulation  by  the  FDA,  and 
enhanced the potential for manufacturers to locate in environments where regulation may be less onerous. While the 
research will be largely empirical, it is grounded in theoretical work on optimal regulation, and will have implications for 
improving regulation and policy.  

        Most prior economic analyses of the regulatory process are based on principal‐agent models that incorporate 
asymmetric information assumptions between the regulator and the firm, whereby the regulator attempts to optimize 
its use of limited resources to provide oversight of the firms. This central tenant of asymmetric information has led to 
research on the design of optimal regulatory mechanisms in an attempt to better align regulator incentives with those 
of firms they regulate (e.g., Armstrong and Sappington, 2007; Baron, 1989; and Laffont and Martimort, 2002).  

        Additional  research  in  the  modeling  of  regulation  examines  whether  regulators  act  rationally  toward  or  are 
influenced  by  various  interest  groups.  This  general  theory  of  “regulatory  capture”  treats  the  regulator  as  a  single, 
monolithic  and  homogenous  entity  (Beard,  Kaserman  and  Mayo,  2003;  Becker,  1983;  Laffont  and  Tirole  1991;  Olson, 
1995;  Spiller,  1990;  Weingart  and  Moran,  1983).  While  the  existing  literature  on  regulatory  design  and  modeling  has 
advanced understanding of the regulatory process, the actual implementation of suggested schemes is rare (e.g., Blank 
and  Mayo,  2007).  Some  proposed  reasons  for  this  outcome  include  the  costs  associated  with  making  changes  in  an 
existing regulatory interaction; assumptions that information asymmetry is static (however in practice, regulators may 



                                                           Page 3 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

undertake activities to close the information gap); the lack of “real” data in regulatory modeling; and assumptions that 
the regulator acts as a homogenous entity (e.g., Macher, Mayo and Nickerson, 2009).  

        The  FDA  is  aware  of  the  existing  challenges  and  trade‐offs  associated  with  monitoring  the  safety  of  drug 
products  consumed  within  the  U.S.  Towards  framing  a  coordinated  solution  to  these  challenges  and  trade‐offs,  the 
agency has actively pursued a risk‐based approach to manufacturing establishment inspection (U.S. FDA, 2004), and an 
active  reporting  and  monitoring  system  for  recalls.  Explicit  inputs  to  the  FDA  risk‐based  facility  inspection  selection 
include  the  types  of  products  manufactured  (e.g.,  prescription  (Rx)  versus  over‐the‐counter  (OTC)  drug  products, 
therapeutic  classes,  approved  versus  unapproved  drug  products);  the  control  and/or  contamination  potential  of  the 
manufacturing environment (e.g., facility size, facility type, number of drug products, sterility requirements, etc.); and 
cost (e.g. domestic versus international locations). More practical outcomes of the risk‐based approach include which 
manufacturing establishments to inspect and when, as well as how much time and how many resources to dedicate to 
each inspection. 

        Additionally, the FDA has recently allowed a comprehensive review of their inspection patterns and outcomes 
on pharmaceutical manufacturing facilities worldwide (Macher, Mayo and Nickerson, 2009). The compiled data covers 
in  excess  of  10,000  inspections  at  2,400  manufacturing  facilities  from  1990‐2003.  These  data  provide  insight  into  the 
determinants  of  inspection  frequency  and  inspection  outcomes.  The  empirical  analyses  uncover  several  interesting 
findings  in  FDA  inspection  patterns  and  outcomes.  For  instance,  substantial  regulator  heterogeneity  exists  in  the 
propensity of FDA investigators to find manufacturing establishments in violation of regulatory standards which, in part, 
are  found  to  depend  on  the  amount  and  type  of  training  investigators  receive  and  the  frequency  with  which 
investigators  participate  in  inspections.  Another  finding  examines  inspection  patterns  at  international  facilities. 
Moreover,  foreign  manufacturing  establishments,  in  comparison  to  domestic  (U.S.‐based)  manufacturing 
establishments experience: 1) lower frequencies of inspection; 2) greater rates of citations of mild noncompliance; and 
3) comparable rates of citations of significant noncompliance.  

        This full research project’s intent is to build on the learning from pharmaceutical manufacturing and focus on 
the regulatory economics of biopharmaceutical manufacturing.  Data will be collected from FDA databases on 
inspections and product non‐compliance.  Additionally, a survey of biopharmaceutical manufacturing sites will be 
completed to understand the perceptions and activities of the firms.  Results will hopefully have the potential to aid 
CDER and FDA in better designing and refining regulatory approaches toward foreign manufacturing establishments is 
seen as beneficial. Moreover, with calls for increased harmonization between and among different drug agencies (e.g., 


                                                            Page 4 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

EU’s EMEA, Japan, Brazil, etc.), leadership by the FDA in this area will also likely have positive impact on health 
regulators worldwide (Vogel, 2002). Finally, biopharmaceutical manufacturing may represent a special (and important) 
case for consideration, given the complexity, limited analytical tools for ensuring quality, and risk associated with 
manufacturing globally. 

1.3 Preliminary Work Completed to Date 
To date, a comprehensive survey on topics related to site characteristics, quality approaches, quality activities, perception of 
relative consistency of regulators, product‐level process details, and product‐level compliance performance has been 
developed, tested, and deployed.  The firm survey is being administered as a secure web‐based questionnaire and full 
deployment was initiated in March, 2011. The individuals selected for inclusion as survey respondents have been 
manufacturing plant managers or their representatives and, once the required information is readily available, requires 
30‐60 minutes to complete. In the first six weeks of the survey being deployed, fifteen (15) sites representing thirty‐one 
(31) commercially manufactured products have completed the survey and it is the data from these preliminary results 
that are presented and discussed in this working paper.  



2 Preliminary Results and Discussion 

2.1 Site‐Level Results 
The following characteristics summarize the fifteen (15) biopharmaceutical manufacturing sites that are including in this 
preliminary results and discussion: 

       Geographic location: Five each are from Asia, Europe, North America 
       Market(s) served: The market(s) served as a function of manufacturing site location are presented in Table 1 and of 
        the five Asian biopharmaceutical manufacturing sites surveyed to date, only one provides product outside of Asia 
       Age of site: Five sites are ten years of age or less and the sample average age is twelve years 
       Contract manufacturing: Six sites do less than 20% of their production volume for others and five do greater than 80% 
        of their production volume for others as contract manufacturers 
       Batch capacity: Four sites have less than 1,000 liters of batch capacity and seven have between 1,000 and 5,000 liters 
       Perfusion capacity:  Six sites have no perfusion capacity and six have 100 to 1,000 liters of perfusion capacity 




                                                          Page 5 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

Table 1: Market(s) served with biopharmaceutical product based on physical location of manufacturing site 


                                                Manufacturing Site Location
                                           North         Europe         Asia (n=5)
                                           America (n=5) (n=5)
                           USA                       100%         80%          20%
    Market(s) Served




                           Europe                      80%      100%           20%
                           Canada                      60%        60%           0%
                           Japan                       60%        60%          20%
                           Asia                        60%        40%          80%
                           Middle East                 60%        40%           0%
                           South America               40%        40%           0%
                                                                                       

Three site‐level intentions of the survey of biopharmaceutical manufacturing sites that can be discussed with the preliminary 
survey data include: 

                            What, in practice, drives quality efforts at the sites both experienced in the past and expected in the future? 
                            To what extent are the sites undertaking common quality activities to increase the effectiveness of their quality 
                             assurance and control? 
                            What perspectives do the sites have of the regulators in terms of relative consistency between inspections? 

Preliminary answers to these three questions are described in the following sub‐sections using the data available to date from 
the survey of biopharmaceutical manufacturing sites.  A number of other questions related to site location will be considered 
once more survey data and FDA inspection data is collected – these are discussed in a later section of this working paper and 
described as ongoing efforts. 

2.1.1                        Quality Drivers and Activities 

2.1.1.1 Quality drivers past and anticipated future 
As part of the survey of biopharmaceutical manufacturing sites, each site was asked to identify significant sources, or drivers, 
for changes in quality efforts and activities at their site.  The respondents indicated whether the quality drivers had been 
experienced by the site in the past, are anticipated drivers for the site in the future, both, or neither past nor future.  The 
preliminary results from the survey of the sites are presented in Figure 1 ordered from left to right in descending order of 
fraction of sites identifying the type of driver as one that has historically been experienced.  Of particular note, albeit based 
on preliminary data, are the following: 


                                                                               Page 6 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

       Changes around quality approach and activities driven by the regulator, although not necessarily due to site non‐
        compliance, was the most frequently experienced driver 
       Drivers potentially directly related to profitability of the product (cost reduction and pursuit of new markets) have 
        been very infrequently experienced 
       A number of drivers of quality approach and activities are expected to be experienced by more than twice the 
        number of sites that have experienced them to date, specifically the introduction of new technology, cost reduction, 
        and pursuit of new markets – perhaps based on a hope for more efficient and profitable future or based on current 
        economic climate 
       The number of types of quality drivers expected to be experienced per site is significantly higher than the number of 
        types of quality drivers historically experienced per site, increasing from an average of 39% to 62% (excluding the 
        “Other” category) suggesting that, in the future, sites will have more drivers of change in quality approach and 
        activities – these different drivers could have different outcome priorities (e.g. cost reduction and anticipated 
        regulatory change) and therefore involve trade‐off decisions for the sites 




                                                          Page 7 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics


    90%
    80%
    70%
    60%
    50%
    40%
    30%
    20%
    10%
    0%
                                                                                      Non‐compliance
                                     Equipment
             Change from Regulator




                                                                                                                                             New Technology




                                                                                                                                                                                                        Other
                                                  Raw Material




                                                                                                                      Management Objective
                                                                                                       Scale‐up
                                                                 Production Process




                                                                                                                                                              Cost Reduction


                                                                                                                                                                               Pursuit of New Markets
                                             Past Drivers Experienced                                             Expected Future Drivers
                                                                                                                                                                                                                 

Figure 1: Experienced and expected drivers of quality activities and resources (preliminary data: number of respondents 
ranges within 7 and 11) 

2.1.1.2 Site‐Level Quality Activities 
Three quality efforts and activities about which the biopharmaceutical manufacturing sites were surveyed are presented in 
Table 2 for each of the sites that provided sufficient detail for analysis in this area of the survey.  The three metrics associated 
with quality effort and activity shown are: 

         Fraction of total technical personnel at the site that are part of the quality control (QC) and quality assurance (QA) 
          divisions of the site – this quantity was calculated from number of personnel in each division and is color‐coded from 
          red (0%) to green (100%) 
         Site‐reported extent of using multi‐disciplinary (including engineering, technical support, etc.) internal quality teams 
          with color‐coding from red (1 = low use) to green (5 = high use) 
         Number of third party inspections (as practice for inspections from regulators) conducted in the past five years with 
          color‐coding from red (0) to green (10) 




                                                                                                                      Page 8 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

These three metrics are presented alongside a relevant quality performance outcome of reported deviation at the 
commercial scale for any of the products produced at the site (where reported) within the past five years with color‐coding of 
red for deviation reported and green for reporting that no deviations were encountered.  The one site that ranks high in 
quality activity intensity for both internal and external efforts is also the one site reporting that no deviations were 
encountered.  Sites having strong focus on either internal or external activities, but not both, were amongst those reporting 
deviations.  Conclusions beyond these observations may be possible in the ongoing work as details of regulatory performance 
will be collected and a larger data set from the survey will be available. 

Table 2: Intensity of quality activities and associated presence of reported deviation in commercial product with color‐
coding from red (low intensity, negative outcome) to green (high intensity, positive outcome) 




                                                                                                         

2.1.2   Perception of Interaction with Regulatory Bodies 
As noted previously, recent quantitative analysis of FDA inspection data of the manufacture of small molecule 
pharmaceuticals identified the presence of statistically significant differences in inspection outcomes for different FDA 
inspectors (Macher, Mayo and Nickerson, 2009).  A similar analysis for biopharmaceutical manufacture using FDA inspection 
data is intended to be completed as part of the ongoing work of this research project.  As part of the preliminary 
biopharmaceutical manufacturing site survey results, a histogram of site‐reported perception of significant variation between 
inspections completed by the FDA compared to the EMA as well as significant variation between inspections by the same 
agency is presented in Figure 2.  Only sites familiar with inspections by both agencies provided responses.  In this preliminary 
data, respondents were more likely to perceive variation within a given agency than between the FDA and EMA.  The logic for 
this may be that the responses are framed relative to expectations, such that variation from a single agency appears more 
obvious than variation between agencies and is therefore more likely to be recalled. 


                                                           Page 9 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics


    6


    5


    4


    3


    2


    1


    0
             Strongly         Somewhat         Neither Agree  Somewhat Agree Strongly Agree
             Disagree          Disagree        Nor Disagree
                               FDA ‐ EMA       Within FDA       Within EMA
                                                                                                     

Figure 2: Site perceptions of whether significant variation exists across inspections based on experience 

2.2 Product‐Specific Results 
The following characteristics summarize the thirty‐one (31) biopharmaceutical products that are including in this preliminary 
results and discussion: 

           Geographic location: Fifteen of the products are produced at sites in North America, ten in Europe, and six in Asia 
           Processing: Twenty two of the products were produced by mammalian cell culture, nine by microbial fermentation 
           Prior production: Three of the products were reported as being produced previously elsewhere at a similar scale 
           Complexity: Fourteen of the products were site‐reported as significantly complex 
           Role of Quality by Design (QbD) and continuous improvement (CI) initiatives: Four of the products were site‐reported 
            as being significantly impacted by one or both of these initiatives 
           Advanced analysis: Eight of the products were site‐reported as being significantly impacted by novel process 
            analytical technology, management information systems, and/or multivariate data analysis 
           Regularly manufactured: Eighteen of the products were site‐reported as being regularly produced at that site 

Correlations of significance between these characteristics for the products in the preliminary survey data are presented in 
Table 3.  Positive correlation values between two variables indicate a likelihood of both having the same binomial direction.  

                                                              Page 10 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

For example, based on the preliminary site‐reported survey data, products manufactured at the sites in Asia are most likely to 
be characterized as not mammalian cell culture processes (therefore microbial fermentation), experienced significant input 
from QbD and/or CI initiatives, utilized advanced analysis, and reported critical issues in commercial‐scale manufacturing 
within the past five years. 

Table 3: Correlation matrix for site‐reported product‐level quality compliance outcomes (shown in gray boxes) and product 
characteristics.  Correlations significant at a 0.05 level are bold and correlations found to be significant at a 0.10 level are 
italicized. 

                                                  Critical                                     Advanced
                          Quality     Quality     Quality   Mammalian Process      Prior Major  Analysis   Regularly    Produced
                        Issue(s) in Issue(s) in Issue(s) in Cell Culture Described Role of QbD   Used     Manufactured Elsewhere Produced in
                       Development Commercial Commercial     Process as Complex       or CI    Previously  at this Site Previously  Asia
    Quality Issue(s)             1      0.33                     0.43
    in Development
    Quality Issue(s)         0.33           1         0.51
    in Commercial
    Critical Quality                     0.51            1                             0.35                                            0.54
    Issue(s) in
    Commercial
    Mammalian Cell           0.43                                   1                                                                 -0.41
    Culture Process
    Process                                                                     1
    Described as
    Complex
    Prior Major Role                                 0.35                                  1                                           0.79
    of QbD or CI
    Advanced                                                                                          1                                0.46
    Analysis Used
    Previously
    Regularly                                                                                                      1
    Manufactured at
    Produced                                                                                                                   1
    Elsewhere
    Produced in Asia                                  0.54      -0.41                   0.79       0.46                                   1 

2.2.1       Preliminary results from logistic regression 
Direct logistic regression was performed using PASW Statistics Version 18 software to assess the impact of a number of 
factors on the likelihood that a product has had a reported quality defect at commercial scale within the past five years.  Five 
independent variables were found to be significant at the 0.10 level and the resulting model was statistically significant at the 
0.019 level  with χ2 (5, N=31) = 13.572.  The model as a whole explained between 35.5% (Cox and Snell R squared) and 47.3% 
(Nagelkerke R squared) of the variance in reported quality defect of a given product, and correctly classified 74.2% of cases.  
The strongest predictor of a reported quality defect was whether the product had been produced previously at a similar scale 
at another site, recording an odds ratio of 0.016 as shown in the “Exp(B)” column of Table 4, indicating that products with a 
reported quality defect were 0.016 times as likely to report previous production elsewhere at a similar scale than products 


                                                                  Page 11 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

without a reported quality defect, controlling for all other factors in the model.  The variables shown in Table 3 that are not 
shown in Table 4 were included in the logistic regression analysis but were not found to be statistically significant. 

Table 4: Logistic regression model independent variables of significance level of at least 0.10.  Row highlighting is shown to 
improve readability of the table, but has no further meaning. 

                                                                                                                95% C.I.for EXP(B)
               Variables in the Equation              B        S.E.     Wald        df       Sig.     Exp(B)
                                                                                                                 Lower     Upper
    Produced Elsewhere Previously at Similar Scale   -4.127     2.055      4.036         1     .045      .016       .000      .904
    Advanced Analysis Used Previously                 2.986     1.492      4.006         1     .045    19.810      1.064   368.886
    Regularly Manufactured at this Site              -1.930     1.044      3.416         1     .065      .145       .019     1.124
    Mammalian Cell Culture Process                    1.614      .913      3.123         1     .077     5.021       .839    30.065
    Process Described as Complex                      1.760     1.002      3.085         1     .079     5.813       .816    41.440
                                                                                                                                      

The logic of relation between presence of a reported commercial scale defect within the past five years for a product and the 
independent variables used in the logistic regression could take on multiple descriptions, as summarized in Table 5.  It is 
hopeful that ongoing work in this research project will provide further detail into the potential logics. 




                                                          Page 12 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

Table 5: Potential logics of independent variables as being a cause or an effect of quality defect(s) 

     Independent Variable    Direction of Relationship with        Potential Logic of Quality Defect       Potential Logic of Quality Defect
                               Presence of Quality Defect        Depending on Independent Variable          Causing Independent Variable

    Produced Elsewhere      Occurrence of independent           Products produced elsewhere              More robust products more likely to
    Previously at Similar   variable correlated with            previously more likely to have more      be considered for transfer between
    Scale                   decrease in likelihood of           total lots produced, therefore greater   sites
                            reported defect                     process understanding, thereby
                                                                reducing likelihood of defects

    Advanced Analysis       Occurrence of independent           Use of advanced analysis techniques      Process(es) that have had quality
    Technique(s) Used       variable correlated with increase   involves greater level and frequency     defects may be more likely
                            in likelihood of reported defect    of inspection, thereby increasing the    candidates for further and advanced
                                                                likelihood of detecting defect(s)        analysis technique(s)

    Regularly               Occurrence of independent           Regularly manufactured products          Process(es) that have had quality
    Manufactured at this    variable correlated with            may have well established quality        defects may have to be
    Site                    decrease in likelihood of           analytical techniques that increase      manufactured more regularly to
                            reported defect                     the likelihood of detecting defect(s)    compensate for rejected lots

    Mammalian Cell          Occurrence of independent           The mammalian cell culture process       More complex products may be
    Culture Process         variable correlated with increase   is generally considered to be more       more likely candidates for cell
                            in likelihood of reported defect    complex than microbial fermentation      culture than microbial fermentation
                                                                                                         (Molowa and Mazanet, 2003)

    Manufacturing           Occurrence of independent           Complex process(es) more likely to       Process(es) that have had quality
    Process(es) Reported    variable correlated with increase   be difficult to operate, monitor, and    defects are apparently less well
    as Complex              in likelihood of reported defect    control, thereby increasing likelihood   understood than others and
                                                                of defects                               therefore considered more complex
                                                                                                                                                


3 Ongoing Efforts 
As noted previously, the intent of this research is to incorporate data from both the FDA and biomanufacturing firms.  
Ongoing efforts are being made on both of these fronts to obtain the data and connect the data on site‐specific and 
product‐specific  bases  between  the  sources.    The  FDA  databases  contain  very  detailed  information  on  a  variety  of 
dimensions.  For  instance,  the  Registration  and  Listing  (R&L)  database  contains  detailed  manufacturing  establishment 
information, including the number and types of registered and listed drug products; establishment function(s), location, 
and  ownership  characteristics;  drug  product  therapeutic  area,  dosage  form,  and  release  profile  characteristics.  The 
Inspections  database  provides  detailed  data  on  cGMP  inspection  outcomes,  including  the  date  and  length  of 
inspections;  manufacturing  facility  characteristics;  FDA  characteristics  (e.g.,  district  involved,  investigator(s)  involved, 


                                                                Page 13 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

etc); and inspection outcomes. The Recalls database provides detailed data on product recalls, including date and length 
of  recall;  root  causes  related  to  recalls,  products  involved  in  recalls,  and  manufacturing  establishments/firms 
responsible for recalls. 

By bringing together these data sources, the research is focused on questions along the following lines of inquiry:  

               How  do  biopharmaceutical  manufacturing  facility  characteristics  (e.g.  location,  experience),  FDA 
                inspection  policy  (e.g.  frequency,  extent),  and  the  increasing  role  of  globalization  impact  U.S.  public 
                health and safety as measured by regulatory outcomes? 
                    o Does manufacturing firm experience with a given country or internationally have any effect on 
                        regulatory  compliance?  Frequency  and/or  intensity  of  inspection  by  the  FDA?  Product  recall 
                        frequencies?  
                    o Do  country  economic  characteristics  and  country  institutional‐level  factors  affect  inspection 
                        and/or product recall performance? 
               How do timing of FDA inspections and outcomes of prior inspections impact firm behavior around the 
                importance of product quality and manufacturing innovation?  
                    o Do  shifts  in  regulatory  policy  approaches  change  inspection  and/or  recall  performance  of 
                        biopharmaceutical firms?  
                    o Are establishments that are in poor standing with the FDA in terms of compliance less likely to 
                        pursue manufacturing innovations? 
               At a summary level, how do the FDA strategies for ensuring biopharmaceutical product safety compare 
                in design and performance to those of other countries? 
                    o To  what  extent  is  the  FDA  or  other  regulators  intelligently  employing  their  limited  inspection 
                        resources (e.g. use of stratified sampling and/or multi‐objective optimization)? 
                    o Do  demonstrated  best  practices  in  biopharmaceutical  inspections  exist  and  to  what  extent  are 
                        these practices relevant to the FDA? 
        In this way, this research will attempt to specifically address how the FDA can best achieve required compliance 
by  biopharmaceutical  suppliers  and  manufacturers  given  the  known  resource  and  information  limitations  associated 
with inspections. This involves defining and evaluating options to structure inspection and recall programs that minimize 
safety risks to U.S. consumers. Comparison of these options and strategies practiced by regulators in other countries to 
the US FDA will provide insight into potential strategic improvement opportunities that would reduce the likelihood of 
biopharmaceutical product quality problems.  

                                                          Page 14 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics


4 References 
Armstrong, M., and D. Sappington. "Recent Developments in the Theory of Regulation." In Handbook of Industrial 
    Organization, by M Armstrong and R. Porter. Elsevier, 2007. 

Baron, D. "Design of Regulatory Mechanisms and Institutions." In Handbook of Industrial Organization, Vol. II, by R. 
    Schmalensee and R. Willig. North Holland, 1989. 

Beard, T., D. Kaserman, and J. Mayo. "A Graphical Exposition of the Economic Theory of Regulation." Economic Inquiry 41 
    (October 2003): 592‐606. 

Becker, G. "A Theory of Competition among Pressure Groups for Political Influence." Quarterly Journal of Economics 98 
    (August 1983): 371‐400. 

Blank, L., and J. Mayo. "Endogeneous Regulatory Constraints and the Emergence of Hybrid Regulation." Georgetown 
    University Working Paper. 2007. 

Feinstein, J. "Detection Controlled Estimation." Journal of Law and Economics 33, no. 1 (April 1990): 233‐276. 

Feinstein, J. "The Safety Regulation of U.S. Nuclear Power Plants: Violations, Inspections, and Abnormal Occurences." The 
    Journal of Political Economy 97 (February 1989): 115‐154. 

Fremeth, A. and G.L.F. Holburn. “Information Asymmetries and Regulatory Decision Costs: An Analysis of Electric Utility Rate 
    Changes 1980‐2000.” Journal of Law, Economics and Organization (2010 – Forthcoming). 

Laffont, J., and D. Martimort. The Theory of Incentives: The Principal‐Agent Model. Princeton, NJ: Princeton University Press, 
    2002. 

Laffont, J., and J. Tirole. "The Politics of Government Decision‐making: A Theory of Regulatory Capture." Quarterly Journal of 
    Economics 106, no. 4 (November 1991): 1089‐1127. 

Macher, J., J. Mayo, and J. Nickerson. "Exploring the Information Asymmetry Gap: Evidence from FDA Regulation." Journal of 
    Law and Economics, 2009: (under second review). 

Molowa, D., and R. Mazanet.  “The state of biopharmaceutical manufacturing.” Biotechnology Annual Review 9 (2003): 285‐
302. 

Olson, M. "Regulatory Agency Discretion among Competing Industries: Inside the FDA." Journal of Law, Economics and 
    Organization 11 (October 1995): 379‐405. 

Spiller, P. "Politicians, Interest Groups and Regulators: A Multiple‐Principals Agency Theory of Regulation, or ‘Let Them be 
    Bribed'." Journal of Law and Economics 33 (April 1990): 65‐102. 


                                                         Page 15 of 16 
 
WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics

U.S. FDA. About the Center for Drug Evaluation and Research. 
    http://www.fda.gov/AboutFDA/CentersOffices/CDER/default.htm. 

U.S. FDA. Risk‐Based Method for Prioritizing CGMP Inspections of Pharmaceutical Manufacturing Sites—A Pilot Risk Ranking 
    Model. FDA Mimeo, 2004, 1‐18. 

Vogel, D. "The Globalization of Pharmaceutical Regulation." Governance 11, no. 1 (2002): 1‐22. 

Weingart, B., and M. Moran. "Bureaucratic Discretion or Congressional Control? Regulatory Policymaking by the Federal 
    Trade Commission." Journal of Political Economy 91, no. 5 (October 1983): 765‐800. 

Woo, J., S. Wolfgang, and H. Batista. "The Effect of Globalization of Drug Manufacturing, Production, and Sourcing and 
Challenges for American Drug Safety." Clinical Pharmacology & Therapeutics 83, no. 3 (2008): 494–497. 




                                                        Page 16 of 16 
 

Weitere ähnliche Inhalte

Was ist angesagt?

MentLife, Drug Discovery, Development & Trends, nov 6 2013
MentLife, Drug Discovery, Development & Trends, nov 6 2013MentLife, Drug Discovery, Development & Trends, nov 6 2013
MentLife, Drug Discovery, Development & Trends, nov 6 2013MentLife
 
RyMat Drug Development Training Module
RyMat Drug Development Training ModuleRyMat Drug Development Training Module
RyMat Drug Development Training ModuleStuart Silverman
 
R&D Productivity and Costs in Today's Health Care Arena - Pat Audet
R&D Productivity and Costs in Today's Health Care Arena - Pat AudetR&D Productivity and Costs in Today's Health Care Arena - Pat Audet
R&D Productivity and Costs in Today's Health Care Arena - Pat AudetTTC, llc
 
UCB Domainex Combinatorial Domain Hunting MEK kinase
UCB Domainex Combinatorial Domain Hunting MEK kinaseUCB Domainex Combinatorial Domain Hunting MEK kinase
UCB Domainex Combinatorial Domain Hunting MEK kinasepfallon
 
2014 Profile: Biopharmaceutical Research Industry
2014 Profile: Biopharmaceutical Research Industry2014 Profile: Biopharmaceutical Research Industry
2014 Profile: Biopharmaceutical Research IndustryPhRMA
 
What is-a-hormone-leptin-1992
What is-a-hormone-leptin-1992What is-a-hormone-leptin-1992
What is-a-hormone-leptin-1992fpills
 
Leading Molecules to Market - An overview on licensing
 Leading Molecules to Market - An overview on licensing Leading Molecules to Market - An overview on licensing
Leading Molecules to Market - An overview on licensingBananaIP Counsels
 
Biopharmaceutical Industry Profile 2013
Biopharmaceutical Industry Profile 2013Biopharmaceutical Industry Profile 2013
Biopharmaceutical Industry Profile 2013PhRMA
 
BioProcess International Keynote
BioProcess International KeynoteBioProcess International Keynote
BioProcess International Keynotevandenboom
 
Availability of essential medicines in Hungary (2017)
 Availability of essential medicines in Hungary (2017) Availability of essential medicines in Hungary (2017)
Availability of essential medicines in Hungary (2017)Arete-Zoe, LLC
 
Accelerating Generic Approvals by Dr Anthony Crasto
Accelerating Generic Approvals by Dr Anthony CrastoAccelerating Generic Approvals by Dr Anthony Crasto
Accelerating Generic Approvals by Dr Anthony CrastoAnthony Melvin Crasto Ph.D
 
Paradigm Change in Biomanufacturing
Paradigm Change in Biomanufacturing Paradigm Change in Biomanufacturing
Paradigm Change in Biomanufacturing PnuVax
 
Re-Engineering Early Phase Cancer Drug Development: Decreasing the Time from ...
Re-Engineering Early Phase Cancer Drug Development: Decreasing the Time from ...Re-Engineering Early Phase Cancer Drug Development: Decreasing the Time from ...
Re-Engineering Early Phase Cancer Drug Development: Decreasing the Time from ...mconghuyen
 
Bchb 566 class1 overview 040116
Bchb 566 class1 overview 040116Bchb 566 class1 overview 040116
Bchb 566 class1 overview 040116Stephen Sullivan
 
Annual State of Clinical Development Costs
Annual State of Clinical Development CostsAnnual State of Clinical Development Costs
Annual State of Clinical Development CostsTTC, llc
 
Overcoming challenges in Drug Development
Overcoming challenges in Drug DevelopmentOvercoming challenges in Drug Development
Overcoming challenges in Drug DevelopmentCharles Oo
 
Pharmaceutical product development and its associated quality system 01
Pharmaceutical product development and its associated quality system 01Pharmaceutical product development and its associated quality system 01
Pharmaceutical product development and its associated quality system 01Abdirizak Mohammed
 

Was ist angesagt? (20)

Cost Of Biopharm 2007
Cost Of Biopharm 2007Cost Of Biopharm 2007
Cost Of Biopharm 2007
 
MentLife, Drug Discovery, Development & Trends, nov 6 2013
MentLife, Drug Discovery, Development & Trends, nov 6 2013MentLife, Drug Discovery, Development & Trends, nov 6 2013
MentLife, Drug Discovery, Development & Trends, nov 6 2013
 
RyMat Drug Development Training Module
RyMat Drug Development Training ModuleRyMat Drug Development Training Module
RyMat Drug Development Training Module
 
R&D Productivity and Costs in Today's Health Care Arena - Pat Audet
R&D Productivity and Costs in Today's Health Care Arena - Pat AudetR&D Productivity and Costs in Today's Health Care Arena - Pat Audet
R&D Productivity and Costs in Today's Health Care Arena - Pat Audet
 
UCB Domainex Combinatorial Domain Hunting MEK kinase
UCB Domainex Combinatorial Domain Hunting MEK kinaseUCB Domainex Combinatorial Domain Hunting MEK kinase
UCB Domainex Combinatorial Domain Hunting MEK kinase
 
2014 Profile: Biopharmaceutical Research Industry
2014 Profile: Biopharmaceutical Research Industry2014 Profile: Biopharmaceutical Research Industry
2014 Profile: Biopharmaceutical Research Industry
 
What is-a-hormone-leptin-1992
What is-a-hormone-leptin-1992What is-a-hormone-leptin-1992
What is-a-hormone-leptin-1992
 
Leading Molecules to Market - An overview on licensing
 Leading Molecules to Market - An overview on licensing Leading Molecules to Market - An overview on licensing
Leading Molecules to Market - An overview on licensing
 
Biopharmaceutical Industry Profile 2013
Biopharmaceutical Industry Profile 2013Biopharmaceutical Industry Profile 2013
Biopharmaceutical Industry Profile 2013
 
Master Thesis Abstract
Master Thesis AbstractMaster Thesis Abstract
Master Thesis Abstract
 
BioProcess International Keynote
BioProcess International KeynoteBioProcess International Keynote
BioProcess International Keynote
 
Availability of essential medicines in Hungary (2017)
 Availability of essential medicines in Hungary (2017) Availability of essential medicines in Hungary (2017)
Availability of essential medicines in Hungary (2017)
 
Accelerating Generic Approvals by Dr Anthony Crasto
Accelerating Generic Approvals by Dr Anthony CrastoAccelerating Generic Approvals by Dr Anthony Crasto
Accelerating Generic Approvals by Dr Anthony Crasto
 
Paradigm Change in Biomanufacturing
Paradigm Change in Biomanufacturing Paradigm Change in Biomanufacturing
Paradigm Change in Biomanufacturing
 
What are Supergenerics
What are SupergenericsWhat are Supergenerics
What are Supergenerics
 
Re-Engineering Early Phase Cancer Drug Development: Decreasing the Time from ...
Re-Engineering Early Phase Cancer Drug Development: Decreasing the Time from ...Re-Engineering Early Phase Cancer Drug Development: Decreasing the Time from ...
Re-Engineering Early Phase Cancer Drug Development: Decreasing the Time from ...
 
Bchb 566 class1 overview 040116
Bchb 566 class1 overview 040116Bchb 566 class1 overview 040116
Bchb 566 class1 overview 040116
 
Annual State of Clinical Development Costs
Annual State of Clinical Development CostsAnnual State of Clinical Development Costs
Annual State of Clinical Development Costs
 
Overcoming challenges in Drug Development
Overcoming challenges in Drug DevelopmentOvercoming challenges in Drug Development
Overcoming challenges in Drug Development
 
Pharmaceutical product development and its associated quality system 01
Pharmaceutical product development and its associated quality system 01Pharmaceutical product development and its associated quality system 01
Pharmaceutical product development and its associated quality system 01
 

Ähnlich wie Preliminary site survey data for biopharmaceutical manufacturing regulatory economics

The Clinical Trials Business
The Clinical Trials BusinessThe Clinical Trials Business
The Clinical Trials BusinessReportLinker.com
 
Significance of Analytics in Biosimilars
Significance of Analytics in BiosimilarsSignificance of Analytics in Biosimilars
Significance of Analytics in BiosimilarsEMMAIntl
 
Science As A Business
Science As A BusinessScience As A Business
Science As A BusinessChris Waller
 
Role of bioinformatics and pharmacogenomics in drug discovery
Role of bioinformatics and pharmacogenomics in drug discoveryRole of bioinformatics and pharmacogenomics in drug discovery
Role of bioinformatics and pharmacogenomics in drug discoveryArindam Chakraborty
 
Drug Discovery Today v9p976
Drug Discovery Today v9p976Drug Discovery Today v9p976
Drug Discovery Today v9p976Michael Weiner
 
Translational Data Science_clean
Translational Data Science_cleanTranslational Data Science_clean
Translational Data Science_cleanChris Waller
 
McK Q Genomics 22125
McK Q Genomics 22125McK Q Genomics 22125
McK Q Genomics 22125Craig Tanio
 
Strategic alternatives
Strategic alternativesStrategic alternatives
Strategic alternativesesharma_86
 
The Innovation Gap in Pharmaceutical Drug Discovery and New Models for R&D Su...
The Innovation Gap in Pharmaceutical Drug Discovery and New Models for R&D Su...The Innovation Gap in Pharmaceutical Drug Discovery and New Models for R&D Su...
The Innovation Gap in Pharmaceutical Drug Discovery and New Models for R&D Su...Michael Hu
 
BioEntrepreneurship: The Business of Biotech
BioEntrepreneurship: The Business of BiotechBioEntrepreneurship: The Business of Biotech
BioEntrepreneurship: The Business of BiotechMaRS Discovery District
 
Tw 1108035 stof_clintrials_rev_v1
Tw 1108035 stof_clintrials_rev_v1Tw 1108035 stof_clintrials_rev_v1
Tw 1108035 stof_clintrials_rev_v1Helen Street
 
Measuring the Relationship between Innovative Drugs and AE_2015
Measuring the Relationship between Innovative Drugs and AE_2015Measuring the Relationship between Innovative Drugs and AE_2015
Measuring the Relationship between Innovative Drugs and AE_2015Jonathan Bryan
 
The U.S. Biopharmaceutical Industry (2014): Perspectives on Future Growth and...
The U.S. Biopharmaceutical Industry (2014): Perspectives on Future Growth and...The U.S. Biopharmaceutical Industry (2014): Perspectives on Future Growth and...
The U.S. Biopharmaceutical Industry (2014): Perspectives on Future Growth and...PhRMA
 
New Product Planning and Medical Affairs
New Product Planning and Medical AffairsNew Product Planning and Medical Affairs
New Product Planning and Medical AffairsAnthony Russell
 
Boyce cshals-2012-linked-sp ls-final
Boyce cshals-2012-linked-sp ls-finalBoyce cshals-2012-linked-sp ls-final
Boyce cshals-2012-linked-sp ls-finalRichard Boyce, PhD
 
Myelin repair open science summit 07.31.10 v2
Myelin repair   open science summit 07.31.10 v2Myelin repair   open science summit 07.31.10 v2
Myelin repair open science summit 07.31.10 v2Open Science Summit
 
Determinants of New Molecular Entity Approval by United States Food & Drug Ad...
Determinants of New Molecular Entity Approval by United States Food & Drug Ad...Determinants of New Molecular Entity Approval by United States Food & Drug Ad...
Determinants of New Molecular Entity Approval by United States Food & Drug Ad...inventionjournals
 
Biopharmaceutical Manufacturing in India, China and South Korea - Regulatory ...
Biopharmaceutical Manufacturing in India, China and South Korea - Regulatory ...Biopharmaceutical Manufacturing in India, China and South Korea - Regulatory ...
Biopharmaceutical Manufacturing in India, China and South Korea - Regulatory ...ReportsnReports
 
Pharmaceutical Quality - The Office of
Pharmaceutical Quality -  The Office ofPharmaceutical Quality -  The Office of
Pharmaceutical Quality - The Office ofAjaz Hussain
 

Ähnlich wie Preliminary site survey data for biopharmaceutical manufacturing regulatory economics (20)

The Clinical Trials Business
The Clinical Trials BusinessThe Clinical Trials Business
The Clinical Trials Business
 
Significance of Analytics in Biosimilars
Significance of Analytics in BiosimilarsSignificance of Analytics in Biosimilars
Significance of Analytics in Biosimilars
 
Science As A Business
Science As A BusinessScience As A Business
Science As A Business
 
Role of bioinformatics and pharmacogenomics in drug discovery
Role of bioinformatics and pharmacogenomics in drug discoveryRole of bioinformatics and pharmacogenomics in drug discovery
Role of bioinformatics and pharmacogenomics in drug discovery
 
Nanopa4
Nanopa4Nanopa4
Nanopa4
 
Drug Discovery Today v9p976
Drug Discovery Today v9p976Drug Discovery Today v9p976
Drug Discovery Today v9p976
 
Translational Data Science_clean
Translational Data Science_cleanTranslational Data Science_clean
Translational Data Science_clean
 
McK Q Genomics 22125
McK Q Genomics 22125McK Q Genomics 22125
McK Q Genomics 22125
 
Strategic alternatives
Strategic alternativesStrategic alternatives
Strategic alternatives
 
The Innovation Gap in Pharmaceutical Drug Discovery and New Models for R&D Su...
The Innovation Gap in Pharmaceutical Drug Discovery and New Models for R&D Su...The Innovation Gap in Pharmaceutical Drug Discovery and New Models for R&D Su...
The Innovation Gap in Pharmaceutical Drug Discovery and New Models for R&D Su...
 
BioEntrepreneurship: The Business of Biotech
BioEntrepreneurship: The Business of BiotechBioEntrepreneurship: The Business of Biotech
BioEntrepreneurship: The Business of Biotech
 
Tw 1108035 stof_clintrials_rev_v1
Tw 1108035 stof_clintrials_rev_v1Tw 1108035 stof_clintrials_rev_v1
Tw 1108035 stof_clintrials_rev_v1
 
Measuring the Relationship between Innovative Drugs and AE_2015
Measuring the Relationship between Innovative Drugs and AE_2015Measuring the Relationship between Innovative Drugs and AE_2015
Measuring the Relationship between Innovative Drugs and AE_2015
 
The U.S. Biopharmaceutical Industry (2014): Perspectives on Future Growth and...
The U.S. Biopharmaceutical Industry (2014): Perspectives on Future Growth and...The U.S. Biopharmaceutical Industry (2014): Perspectives on Future Growth and...
The U.S. Biopharmaceutical Industry (2014): Perspectives on Future Growth and...
 
New Product Planning and Medical Affairs
New Product Planning and Medical AffairsNew Product Planning and Medical Affairs
New Product Planning and Medical Affairs
 
Boyce cshals-2012-linked-sp ls-final
Boyce cshals-2012-linked-sp ls-finalBoyce cshals-2012-linked-sp ls-final
Boyce cshals-2012-linked-sp ls-final
 
Myelin repair open science summit 07.31.10 v2
Myelin repair   open science summit 07.31.10 v2Myelin repair   open science summit 07.31.10 v2
Myelin repair open science summit 07.31.10 v2
 
Determinants of New Molecular Entity Approval by United States Food & Drug Ad...
Determinants of New Molecular Entity Approval by United States Food & Drug Ad...Determinants of New Molecular Entity Approval by United States Food & Drug Ad...
Determinants of New Molecular Entity Approval by United States Food & Drug Ad...
 
Biopharmaceutical Manufacturing in India, China and South Korea - Regulatory ...
Biopharmaceutical Manufacturing in India, China and South Korea - Regulatory ...Biopharmaceutical Manufacturing in India, China and South Korea - Regulatory ...
Biopharmaceutical Manufacturing in India, China and South Korea - Regulatory ...
 
Pharmaceutical Quality - The Office of
Pharmaceutical Quality -  The Office ofPharmaceutical Quality -  The Office of
Pharmaceutical Quality - The Office of
 

Mehr von National Institute of Biologics

Defining your-target-product-profile in-vitro-diagnostic-products
Defining your-target-product-profile in-vitro-diagnostic-productsDefining your-target-product-profile in-vitro-diagnostic-products
Defining your-target-product-profile in-vitro-diagnostic-productsNational Institute of Biologics
 
Accelerating development and approval of targeted cancer therapies
Accelerating development and approval of targeted cancer therapiesAccelerating development and approval of targeted cancer therapies
Accelerating development and approval of targeted cancer therapiesNational Institute of Biologics
 
Canonical structures for the hypervariable regions of immunoglobulins
Canonical structures for the hypervariable regions of immunoglobulinsCanonical structures for the hypervariable regions of immunoglobulins
Canonical structures for the hypervariable regions of immunoglobulinsNational Institute of Biologics
 
Development trends for human monoclonal antibody therapeutics
Development trends for human monoclonal antibody therapeuticsDevelopment trends for human monoclonal antibody therapeutics
Development trends for human monoclonal antibody therapeuticsNational Institute of Biologics
 
Therapeutic fc fusion proteins and peptides as successful alternatives to ant...
Therapeutic fc fusion proteins and peptides as successful alternatives to ant...Therapeutic fc fusion proteins and peptides as successful alternatives to ant...
Therapeutic fc fusion proteins and peptides as successful alternatives to ant...National Institute of Biologics
 
Fc fusion proteins and fc rn - structural insights for longer-lasting and mor...
Fc fusion proteins and fc rn - structural insights for longer-lasting and mor...Fc fusion proteins and fc rn - structural insights for longer-lasting and mor...
Fc fusion proteins and fc rn - structural insights for longer-lasting and mor...National Institute of Biologics
 
Therapeutic antibodies for autoimmunity and inflammation
Therapeutic antibodies for autoimmunity and inflammationTherapeutic antibodies for autoimmunity and inflammation
Therapeutic antibodies for autoimmunity and inflammationNational Institute of Biologics
 
Introduction to current and future protein therapeutics - a protein engineeri...
Introduction to current and future protein therapeutics - a protein engineeri...Introduction to current and future protein therapeutics - a protein engineeri...
Introduction to current and future protein therapeutics - a protein engineeri...National Institute of Biologics
 
Pharmaceutical monoclonal antibodies production - guidelines to cell engine...
Pharmaceutical monoclonal antibodies   production - guidelines to cell engine...Pharmaceutical monoclonal antibodies   production - guidelines to cell engine...
Pharmaceutical monoclonal antibodies production - guidelines to cell engine...National Institute of Biologics
 
Intended use of reference products & who international standards or reference...
Intended use of reference products & who international standards or reference...Intended use of reference products & who international standards or reference...
Intended use of reference products & who international standards or reference...National Institute of Biologics
 
Evaluation of similar biotherapeutic products (SBP's) scientific principles ...
Evaluation of similar biotherapeutic products (SBP's)   scientific principles ...Evaluation of similar biotherapeutic products (SBP's)   scientific principles ...
Evaluation of similar biotherapeutic products (SBP's) scientific principles ...National Institute of Biologics
 

Mehr von National Institute of Biologics (20)

Waters protein therapeutics application proctocols
Waters protein therapeutics application proctocolsWaters protein therapeutics application proctocols
Waters protein therapeutics application proctocols
 
Potential aggregation prone regions in biotherapeutics
Potential aggregation prone regions in biotherapeuticsPotential aggregation prone regions in biotherapeutics
Potential aggregation prone regions in biotherapeutics
 
How the biologics landscape is evolving
How the biologics landscape is evolvingHow the biologics landscape is evolving
How the biologics landscape is evolving
 
Evaluation of antibody drugs quality safety
Evaluation of antibody drugs quality safetyEvaluation of antibody drugs quality safety
Evaluation of antibody drugs quality safety
 
Approved m abs_feb_2015
Approved m abs_feb_2015Approved m abs_feb_2015
Approved m abs_feb_2015
 
Translating next generation sequencing to practice
Translating next generation sequencing to practiceTranslating next generation sequencing to practice
Translating next generation sequencing to practice
 
From biomarkers to diagnostics –the road to success
From biomarkers to diagnostics –the road to successFrom biomarkers to diagnostics –the road to success
From biomarkers to diagnostics –the road to success
 
Defining your-target-product-profile in-vitro-diagnostic-products
Defining your-target-product-profile in-vitro-diagnostic-productsDefining your-target-product-profile in-vitro-diagnostic-products
Defining your-target-product-profile in-vitro-diagnostic-products
 
Accelerating development and approval of targeted cancer therapies
Accelerating development and approval of targeted cancer therapiesAccelerating development and approval of targeted cancer therapies
Accelerating development and approval of targeted cancer therapies
 
Canonical structures for the hypervariable regions of immunoglobulins
Canonical structures for the hypervariable regions of immunoglobulinsCanonical structures for the hypervariable regions of immunoglobulins
Canonical structures for the hypervariable regions of immunoglobulins
 
Canonical correlation
Canonical correlationCanonical correlation
Canonical correlation
 
Development trends for human monoclonal antibody therapeutics
Development trends for human monoclonal antibody therapeuticsDevelopment trends for human monoclonal antibody therapeutics
Development trends for human monoclonal antibody therapeutics
 
Therapeutic fc fusion proteins and peptides as successful alternatives to ant...
Therapeutic fc fusion proteins and peptides as successful alternatives to ant...Therapeutic fc fusion proteins and peptides as successful alternatives to ant...
Therapeutic fc fusion proteins and peptides as successful alternatives to ant...
 
Fc fusion proteins and fc rn - structural insights for longer-lasting and mor...
Fc fusion proteins and fc rn - structural insights for longer-lasting and mor...Fc fusion proteins and fc rn - structural insights for longer-lasting and mor...
Fc fusion proteins and fc rn - structural insights for longer-lasting and mor...
 
Therapeutic antibodies for autoimmunity and inflammation
Therapeutic antibodies for autoimmunity and inflammationTherapeutic antibodies for autoimmunity and inflammation
Therapeutic antibodies for autoimmunity and inflammation
 
Introduction to current and future protein therapeutics - a protein engineeri...
Introduction to current and future protein therapeutics - a protein engineeri...Introduction to current and future protein therapeutics - a protein engineeri...
Introduction to current and future protein therapeutics - a protein engineeri...
 
Pharmaceutical monoclonal antibodies production - guidelines to cell engine...
Pharmaceutical monoclonal antibodies   production - guidelines to cell engine...Pharmaceutical monoclonal antibodies   production - guidelines to cell engine...
Pharmaceutical monoclonal antibodies production - guidelines to cell engine...
 
Intended use of reference products & who international standards or reference...
Intended use of reference products & who international standards or reference...Intended use of reference products & who international standards or reference...
Intended use of reference products & who international standards or reference...
 
How dissimilarly similar are biosimilars
How dissimilarly similar are biosimilarsHow dissimilarly similar are biosimilars
How dissimilarly similar are biosimilars
 
Evaluation of similar biotherapeutic products (SBP's) scientific principles ...
Evaluation of similar biotherapeutic products (SBP's)   scientific principles ...Evaluation of similar biotherapeutic products (SBP's)   scientific principles ...
Evaluation of similar biotherapeutic products (SBP's) scientific principles ...
 

Kürzlich hochgeladen

Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Dipal Arora
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...hotbabesbook
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...vidya singh
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...astropune
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Dipal Arora
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeCall Girls Delhi
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...aartirawatdelhi
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableDipal Arora
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...narwatsonia7
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 

Kürzlich hochgeladen (20)

Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
 

Preliminary site survey data for biopharmaceutical manufacturing regulatory economics

  • 1. Working Paper for Industry Studies Association 2011 Annual Conference Pittsburgh, PA, USA WORKING PAPER: Preliminary Site Survey Data for Biopharmaceutical Manufacturing Regulatory Economics CURRENT AUTHORS: Domike, R.D.1,2; Macher, J.T.1,3; Pande, R.1; Barone, P.W.1; Springs, S.L.1 1: M.I.T. Center for Biomedical Innovation, M.I.T., USA 2: School of Business, University of Prince Edward Island, Canada 3: McDonough School of Business, Georgetown University, USA ABSTRACT: Efforts to understand and quantify trade-offs and economics relevant to the regulation of biopharmaceutical manufacturing sites from the perspective of the US FDA are underway. Preliminary results from a site survey that includes fifteen sites and thirty-one products manufactured in North America, Europe, and Asia are presented. These preliminary results suggest that sites expect more types of drivers or influencers regarding their quality activities, with particularly increased expectations of the role of new technology, cost reduction, and the pursuit of new markets. Also reported are the site perceptions of the presence of variation between inspections completed at their facilities. With the product- specific data, logistic regression suggests that the presence of a self-reported quality deviation is statistically related to whether the product was previously produced elsewhere at similar scale, use of advanced analytical approaches, regular manufacturing, use of mammalian cell culture, and whether the site considers the process relatively complex. Ongoing efforts and research objectives of the full project are described, with particular focus on incorporating US FDA inspection data. Page 1 of 16   
  • 2. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics 1 Project Background and Preliminary Work Completed to Date  1.1 Background  The use of biopharmaceutical products has increased dramatically over the past twenty years and is expected to  continue  to  increase  in  volume  and  importance  in  years  to  come.    Current  worldwide  market  is  approximately  $100  billion and expected to double by 2020.  Compared to small molecule pharmaceuticals, biopharmaceuticals represent  approximately 7.5% of marketed products, but 32% of pipeline research programs.  Biopharmaceuticals are currently in  use  or  development  to  help  humans  fight  diseases  such  as  cancer,  viral  infections,  diabetes,  hepatitis  and  multiple  sclerosis.    Biopharmaceuticals  are  common  in  high  importance  situations:  in  cases  of  life‐saving  or  end‐stage  applications, biopharmaceuticals are administered with nearly twice the frequency of small molecule pharmaceuticals.  Biopharmaceuticals  are  pharmaceuticals  manufactured  by  biotechnology  methods,  involving  live  organisms  or  their active components.  Types of biopharmaceuticals include recombinant proteins, (monoclonal) antibodies, vaccines,  and  blood/plasma‐derived  products.    The  biological  nature  and  criticality  of  the  products  result  in  complex  manufacturing, quality assurance, and supply chain management.  The U.S. Food and Drug Administration (FDA) is tasked with ensuring public safety and health in the production  of  biopharmaceuticals  consumed  within  the  United  States.  Federal  statutes  mandate  that  firms  manufacturing  biopharmaceutical products for human administration operate under standards termed “current Good Manufacturing  Practices”  (cGMPs),  which  require  that  all  drug  products  and  drug  components  be  in  conformance  with  guidelines  related  to  safety  and  have  the  identity,  strength,  quality  and  purity  that  they  purport  or  are  represented  to  possess.  Beyond manufacturing establishment inspection, the FDA is also tasked with the responsibility of recalling defective or  potentially harmful FDA‐regulated products, which can entail either removing them from the market or correcting the  underlying  problems.  The  responsibility  of  these  activities  falls  under  the  Center  for  Drug  Evaluation  and  Research  (CDER)  of  the  FDA.  CDER  faces  a  significant  challenge  in  fulfilling  their  regulatory  mission,  given  the  increasing  complexity of biopharmaceutical manufacturing and the increasingly global nature of biopharmaceutical production.   CDER  is  faced  with  the  difficult  tasks  of  inspecting  all  manufacturing  establishments  that  produce  biopharmaceutical products for U.S. consumption at least once every two years, as well as monitoring and alerting the  public  of  any  product‐related problems  that  exist.  While  some effort  is  made  in focusing  investigational  resources  on  those establishments that are considered most critical to public health, CDER must make inspection decisions across a  range of establishments—from raw materials to intermediate products, fill and finish services, and final products.   Page 2 of 16   
  • 3. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics The scope of these myriad activities is against a backdrop of an increasingly complex regulatory environment.  Over the past decade, the sheer number and unique geographic locations of biopharmaceutical manufacturing facilities  requiring  inspection  have  increased  substantially.  Many  new  biopharmaceutical  manufacturing  sites  have  been  established—many  in  China  and  India.  New  sites  in  China  and  India  represent  greater  than  40%  of  FDA‐registered  foreign  pharmaceutical  locations—making  inspection  and  oversight  increasingly  costly  and  cumbersome  (Woo,  Wolfgang  and  Batista  2008).  The  net  effect  of  these  two  factors  has  increased  the  complexity  with  which  CDER  structures its cGMP inspection and recall programs, given the limited resources (in both dollars and people) available.   1.2 Full Project Intent  The full intent of this research project seeks to examine the effect of globalization on regulatory compliance for  biopharmaceutical product manufacturing, the behavior of manufacturing firms in this environment, and the impact of  FDA policy on biopharmaceutical manufacturing regulatory performance.    A  central  motivation  for  this  research  is  the  increasing  complexity  and  globalization  of  biopharmaceutical  manufacturing.  This  combination  has  increased  the  policy  challenges  for  effective  safety  regulation  by  the  FDA,  and  enhanced the potential for manufacturers to locate in environments where regulation may be less onerous. While the  research will be largely empirical, it is grounded in theoretical work on optimal regulation, and will have implications for  improving regulation and policy.   Most prior economic analyses of the regulatory process are based on principal‐agent models that incorporate  asymmetric information assumptions between the regulator and the firm, whereby the regulator attempts to optimize  its use of limited resources to provide oversight of the firms. This central tenant of asymmetric information has led to  research on the design of optimal regulatory mechanisms in an attempt to better align regulator incentives with those  of firms they regulate (e.g., Armstrong and Sappington, 2007; Baron, 1989; and Laffont and Martimort, 2002).   Additional  research  in  the  modeling  of  regulation  examines  whether  regulators  act  rationally  toward  or  are  influenced  by  various  interest  groups.  This  general  theory  of  “regulatory  capture”  treats  the  regulator  as  a  single,  monolithic  and  homogenous  entity  (Beard,  Kaserman  and  Mayo,  2003;  Becker,  1983;  Laffont  and  Tirole  1991;  Olson,  1995;  Spiller,  1990;  Weingart  and  Moran,  1983).  While  the  existing  literature  on  regulatory  design  and  modeling  has  advanced understanding of the regulatory process, the actual implementation of suggested schemes is rare (e.g., Blank  and  Mayo,  2007).  Some  proposed  reasons  for  this  outcome  include  the  costs  associated  with  making  changes  in  an  existing regulatory interaction; assumptions that information asymmetry is static (however in practice, regulators may  Page 3 of 16   
  • 4. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics undertake activities to close the information gap); the lack of “real” data in regulatory modeling; and assumptions that  the regulator acts as a homogenous entity (e.g., Macher, Mayo and Nickerson, 2009).   The  FDA  is  aware  of  the  existing  challenges  and  trade‐offs  associated  with  monitoring  the  safety  of  drug  products  consumed  within  the  U.S.  Towards  framing  a  coordinated  solution  to  these  challenges  and  trade‐offs,  the  agency has actively pursued a risk‐based approach to manufacturing establishment inspection (U.S. FDA, 2004), and an  active  reporting  and  monitoring  system  for  recalls.  Explicit  inputs  to  the  FDA  risk‐based  facility  inspection  selection  include  the  types  of  products  manufactured  (e.g.,  prescription  (Rx)  versus  over‐the‐counter  (OTC)  drug  products,  therapeutic  classes,  approved  versus  unapproved  drug  products);  the  control  and/or  contamination  potential  of  the  manufacturing environment (e.g., facility size, facility type, number of drug products, sterility requirements, etc.); and  cost (e.g. domestic versus international locations). More practical outcomes of the risk‐based approach include which  manufacturing establishments to inspect and when, as well as how much time and how many resources to dedicate to  each inspection.  Additionally, the FDA has recently allowed a comprehensive review of their inspection patterns and outcomes  on pharmaceutical manufacturing facilities worldwide (Macher, Mayo and Nickerson, 2009). The compiled data covers  in  excess  of  10,000  inspections  at  2,400  manufacturing  facilities  from  1990‐2003.  These  data  provide  insight  into  the  determinants  of  inspection  frequency  and  inspection  outcomes.  The  empirical  analyses  uncover  several  interesting  findings  in  FDA  inspection  patterns  and  outcomes.  For  instance,  substantial  regulator  heterogeneity  exists  in  the  propensity of FDA investigators to find manufacturing establishments in violation of regulatory standards which, in part,  are  found  to  depend  on  the  amount  and  type  of  training  investigators  receive  and  the  frequency  with  which  investigators  participate  in  inspections.  Another  finding  examines  inspection  patterns  at  international  facilities.  Moreover,  foreign  manufacturing  establishments,  in  comparison  to  domestic  (U.S.‐based)  manufacturing  establishments experience: 1) lower frequencies of inspection; 2) greater rates of citations of mild noncompliance; and  3) comparable rates of citations of significant noncompliance.   This full research project’s intent is to build on the learning from pharmaceutical manufacturing and focus on  the regulatory economics of biopharmaceutical manufacturing.  Data will be collected from FDA databases on  inspections and product non‐compliance.  Additionally, a survey of biopharmaceutical manufacturing sites will be  completed to understand the perceptions and activities of the firms.  Results will hopefully have the potential to aid  CDER and FDA in better designing and refining regulatory approaches toward foreign manufacturing establishments is  seen as beneficial. Moreover, with calls for increased harmonization between and among different drug agencies (e.g.,  Page 4 of 16   
  • 5. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics EU’s EMEA, Japan, Brazil, etc.), leadership by the FDA in this area will also likely have positive impact on health  regulators worldwide (Vogel, 2002). Finally, biopharmaceutical manufacturing may represent a special (and important)  case for consideration, given the complexity, limited analytical tools for ensuring quality, and risk associated with  manufacturing globally.  1.3 Preliminary Work Completed to Date  To date, a comprehensive survey on topics related to site characteristics, quality approaches, quality activities, perception of  relative consistency of regulators, product‐level process details, and product‐level compliance performance has been  developed, tested, and deployed.  The firm survey is being administered as a secure web‐based questionnaire and full  deployment was initiated in March, 2011. The individuals selected for inclusion as survey respondents have been  manufacturing plant managers or their representatives and, once the required information is readily available, requires  30‐60 minutes to complete. In the first six weeks of the survey being deployed, fifteen (15) sites representing thirty‐one  (31) commercially manufactured products have completed the survey and it is the data from these preliminary results  that are presented and discussed in this working paper.   2 Preliminary Results and Discussion  2.1 Site‐Level Results  The following characteristics summarize the fifteen (15) biopharmaceutical manufacturing sites that are including in this  preliminary results and discussion:   Geographic location: Five each are from Asia, Europe, North America   Market(s) served: The market(s) served as a function of manufacturing site location are presented in Table 1 and of  the five Asian biopharmaceutical manufacturing sites surveyed to date, only one provides product outside of Asia   Age of site: Five sites are ten years of age or less and the sample average age is twelve years   Contract manufacturing: Six sites do less than 20% of their production volume for others and five do greater than 80%  of their production volume for others as contract manufacturers   Batch capacity: Four sites have less than 1,000 liters of batch capacity and seven have between 1,000 and 5,000 liters   Perfusion capacity:  Six sites have no perfusion capacity and six have 100 to 1,000 liters of perfusion capacity  Page 5 of 16   
  • 6. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics Table 1: Market(s) served with biopharmaceutical product based on physical location of manufacturing site  Manufacturing Site Location North  Europe  Asia (n=5) America (n=5) (n=5) USA 100% 80% 20% Market(s) Served Europe 80% 100% 20% Canada 60% 60% 0% Japan 60% 60% 20% Asia 60% 40% 80% Middle East 60% 40% 0% South America 40% 40% 0%   Three site‐level intentions of the survey of biopharmaceutical manufacturing sites that can be discussed with the preliminary  survey data include:   What, in practice, drives quality efforts at the sites both experienced in the past and expected in the future?   To what extent are the sites undertaking common quality activities to increase the effectiveness of their quality  assurance and control?   What perspectives do the sites have of the regulators in terms of relative consistency between inspections?  Preliminary answers to these three questions are described in the following sub‐sections using the data available to date from  the survey of biopharmaceutical manufacturing sites.  A number of other questions related to site location will be considered  once more survey data and FDA inspection data is collected – these are discussed in a later section of this working paper and  described as ongoing efforts.  2.1.1 Quality Drivers and Activities  2.1.1.1 Quality drivers past and anticipated future  As part of the survey of biopharmaceutical manufacturing sites, each site was asked to identify significant sources, or drivers,  for changes in quality efforts and activities at their site.  The respondents indicated whether the quality drivers had been  experienced by the site in the past, are anticipated drivers for the site in the future, both, or neither past nor future.  The  preliminary results from the survey of the sites are presented in Figure 1 ordered from left to right in descending order of  fraction of sites identifying the type of driver as one that has historically been experienced.  Of particular note, albeit based  on preliminary data, are the following:  Page 6 of 16   
  • 7. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics  Changes around quality approach and activities driven by the regulator, although not necessarily due to site non‐ compliance, was the most frequently experienced driver   Drivers potentially directly related to profitability of the product (cost reduction and pursuit of new markets) have  been very infrequently experienced   A number of drivers of quality approach and activities are expected to be experienced by more than twice the  number of sites that have experienced them to date, specifically the introduction of new technology, cost reduction,  and pursuit of new markets – perhaps based on a hope for more efficient and profitable future or based on current  economic climate   The number of types of quality drivers expected to be experienced per site is significantly higher than the number of  types of quality drivers historically experienced per site, increasing from an average of 39% to 62% (excluding the  “Other” category) suggesting that, in the future, sites will have more drivers of change in quality approach and  activities – these different drivers could have different outcome priorities (e.g. cost reduction and anticipated  regulatory change) and therefore involve trade‐off decisions for the sites  Page 7 of 16   
  • 8. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Non‐compliance Equipment Change from Regulator New Technology Other Raw Material Management Objective Scale‐up Production Process Cost Reduction Pursuit of New Markets Past Drivers Experienced Expected Future Drivers   Figure 1: Experienced and expected drivers of quality activities and resources (preliminary data: number of respondents  ranges within 7 and 11)  2.1.1.2 Site‐Level Quality Activities  Three quality efforts and activities about which the biopharmaceutical manufacturing sites were surveyed are presented in  Table 2 for each of the sites that provided sufficient detail for analysis in this area of the survey.  The three metrics associated  with quality effort and activity shown are:   Fraction of total technical personnel at the site that are part of the quality control (QC) and quality assurance (QA)  divisions of the site – this quantity was calculated from number of personnel in each division and is color‐coded from  red (0%) to green (100%)   Site‐reported extent of using multi‐disciplinary (including engineering, technical support, etc.) internal quality teams  with color‐coding from red (1 = low use) to green (5 = high use)   Number of third party inspections (as practice for inspections from regulators) conducted in the past five years with  color‐coding from red (0) to green (10)  Page 8 of 16   
  • 9. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics These three metrics are presented alongside a relevant quality performance outcome of reported deviation at the  commercial scale for any of the products produced at the site (where reported) within the past five years with color‐coding of  red for deviation reported and green for reporting that no deviations were encountered.  The one site that ranks high in  quality activity intensity for both internal and external efforts is also the one site reporting that no deviations were  encountered.  Sites having strong focus on either internal or external activities, but not both, were amongst those reporting  deviations.  Conclusions beyond these observations may be possible in the ongoing work as details of regulatory performance  will be collected and a larger data set from the survey will be available.  Table 2: Intensity of quality activities and associated presence of reported deviation in commercial product with color‐ coding from red (low intensity, negative outcome) to green (high intensity, positive outcome)    2.1.2 Perception of Interaction with Regulatory Bodies  As noted previously, recent quantitative analysis of FDA inspection data of the manufacture of small molecule  pharmaceuticals identified the presence of statistically significant differences in inspection outcomes for different FDA  inspectors (Macher, Mayo and Nickerson, 2009).  A similar analysis for biopharmaceutical manufacture using FDA inspection  data is intended to be completed as part of the ongoing work of this research project.  As part of the preliminary  biopharmaceutical manufacturing site survey results, a histogram of site‐reported perception of significant variation between  inspections completed by the FDA compared to the EMA as well as significant variation between inspections by the same  agency is presented in Figure 2.  Only sites familiar with inspections by both agencies provided responses.  In this preliminary  data, respondents were more likely to perceive variation within a given agency than between the FDA and EMA.  The logic for  this may be that the responses are framed relative to expectations, such that variation from a single agency appears more  obvious than variation between agencies and is therefore more likely to be recalled.  Page 9 of 16   
  • 10. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics 6 5 4 3 2 1 0 Strongly  Somewhat  Neither Agree  Somewhat Agree Strongly Agree Disagree Disagree Nor Disagree FDA ‐ EMA Within FDA Within EMA   Figure 2: Site perceptions of whether significant variation exists across inspections based on experience  2.2 Product‐Specific Results  The following characteristics summarize the thirty‐one (31) biopharmaceutical products that are including in this preliminary  results and discussion:   Geographic location: Fifteen of the products are produced at sites in North America, ten in Europe, and six in Asia   Processing: Twenty two of the products were produced by mammalian cell culture, nine by microbial fermentation   Prior production: Three of the products were reported as being produced previously elsewhere at a similar scale   Complexity: Fourteen of the products were site‐reported as significantly complex   Role of Quality by Design (QbD) and continuous improvement (CI) initiatives: Four of the products were site‐reported  as being significantly impacted by one or both of these initiatives   Advanced analysis: Eight of the products were site‐reported as being significantly impacted by novel process  analytical technology, management information systems, and/or multivariate data analysis   Regularly manufactured: Eighteen of the products were site‐reported as being regularly produced at that site  Correlations of significance between these characteristics for the products in the preliminary survey data are presented in  Table 3.  Positive correlation values between two variables indicate a likelihood of both having the same binomial direction.   Page 10 of 16   
  • 11. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics For example, based on the preliminary site‐reported survey data, products manufactured at the sites in Asia are most likely to  be characterized as not mammalian cell culture processes (therefore microbial fermentation), experienced significant input  from QbD and/or CI initiatives, utilized advanced analysis, and reported critical issues in commercial‐scale manufacturing  within the past five years.  Table 3: Correlation matrix for site‐reported product‐level quality compliance outcomes (shown in gray boxes) and product  characteristics.  Correlations significant at a 0.05 level are bold and correlations found to be significant at a 0.10 level are  italicized.  Critical Advanced Quality Quality Quality Mammalian Process Prior Major Analysis Regularly Produced Issue(s) in Issue(s) in Issue(s) in Cell Culture Described Role of QbD Used Manufactured Elsewhere Produced in Development Commercial Commercial Process as Complex or CI Previously at this Site Previously Asia Quality Issue(s) 1 0.33 0.43 in Development Quality Issue(s) 0.33 1 0.51 in Commercial Critical Quality 0.51 1 0.35 0.54 Issue(s) in Commercial Mammalian Cell 0.43 1 -0.41 Culture Process Process 1 Described as Complex Prior Major Role 0.35 1 0.79 of QbD or CI Advanced 1 0.46 Analysis Used Previously Regularly 1 Manufactured at Produced 1 Elsewhere Produced in Asia 0.54 -0.41 0.79 0.46 1  2.2.1 Preliminary results from logistic regression  Direct logistic regression was performed using PASW Statistics Version 18 software to assess the impact of a number of  factors on the likelihood that a product has had a reported quality defect at commercial scale within the past five years.  Five  independent variables were found to be significant at the 0.10 level and the resulting model was statistically significant at the  0.019 level  with χ2 (5, N=31) = 13.572.  The model as a whole explained between 35.5% (Cox and Snell R squared) and 47.3%  (Nagelkerke R squared) of the variance in reported quality defect of a given product, and correctly classified 74.2% of cases.   The strongest predictor of a reported quality defect was whether the product had been produced previously at a similar scale  at another site, recording an odds ratio of 0.016 as shown in the “Exp(B)” column of Table 4, indicating that products with a  reported quality defect were 0.016 times as likely to report previous production elsewhere at a similar scale than products  Page 11 of 16   
  • 12. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics without a reported quality defect, controlling for all other factors in the model.  The variables shown in Table 3 that are not  shown in Table 4 were included in the logistic regression analysis but were not found to be statistically significant.  Table 4: Logistic regression model independent variables of significance level of at least 0.10.  Row highlighting is shown to  improve readability of the table, but has no further meaning.  95% C.I.for EXP(B) Variables in the Equation B S.E. Wald df Sig. Exp(B) Lower Upper Produced Elsewhere Previously at Similar Scale -4.127 2.055 4.036 1 .045 .016 .000 .904 Advanced Analysis Used Previously 2.986 1.492 4.006 1 .045 19.810 1.064 368.886 Regularly Manufactured at this Site -1.930 1.044 3.416 1 .065 .145 .019 1.124 Mammalian Cell Culture Process 1.614 .913 3.123 1 .077 5.021 .839 30.065 Process Described as Complex 1.760 1.002 3.085 1 .079 5.813 .816 41.440   The logic of relation between presence of a reported commercial scale defect within the past five years for a product and the  independent variables used in the logistic regression could take on multiple descriptions, as summarized in Table 5.  It is  hopeful that ongoing work in this research project will provide further detail into the potential logics.  Page 12 of 16   
  • 13. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics Table 5: Potential logics of independent variables as being a cause or an effect of quality defect(s)  Independent Variable Direction of Relationship with Potential Logic of Quality Defect Potential Logic of Quality Defect Presence of Quality Defect Depending on Independent Variable Causing Independent Variable Produced Elsewhere Occurrence of independent Products produced elsewhere More robust products more likely to Previously at Similar variable correlated with previously more likely to have more be considered for transfer between Scale decrease in likelihood of total lots produced, therefore greater sites reported defect process understanding, thereby reducing likelihood of defects Advanced Analysis Occurrence of independent Use of advanced analysis techniques Process(es) that have had quality Technique(s) Used variable correlated with increase involves greater level and frequency defects may be more likely in likelihood of reported defect of inspection, thereby increasing the candidates for further and advanced likelihood of detecting defect(s) analysis technique(s) Regularly Occurrence of independent Regularly manufactured products Process(es) that have had quality Manufactured at this variable correlated with may have well established quality defects may have to be Site decrease in likelihood of analytical techniques that increase manufactured more regularly to reported defect the likelihood of detecting defect(s) compensate for rejected lots Mammalian Cell Occurrence of independent The mammalian cell culture process More complex products may be Culture Process variable correlated with increase is generally considered to be more more likely candidates for cell in likelihood of reported defect complex than microbial fermentation culture than microbial fermentation (Molowa and Mazanet, 2003) Manufacturing Occurrence of independent Complex process(es) more likely to Process(es) that have had quality Process(es) Reported variable correlated with increase be difficult to operate, monitor, and defects are apparently less well as Complex in likelihood of reported defect control, thereby increasing likelihood understood than others and of defects therefore considered more complex   3 Ongoing Efforts  As noted previously, the intent of this research is to incorporate data from both the FDA and biomanufacturing firms.   Ongoing efforts are being made on both of these fronts to obtain the data and connect the data on site‐specific and  product‐specific  bases  between  the  sources.    The  FDA  databases  contain  very  detailed  information  on  a  variety  of  dimensions.  For  instance,  the  Registration  and  Listing  (R&L)  database  contains  detailed  manufacturing  establishment  information, including the number and types of registered and listed drug products; establishment function(s), location,  and  ownership  characteristics;  drug  product  therapeutic  area,  dosage  form,  and  release  profile  characteristics.  The  Inspections  database  provides  detailed  data  on  cGMP  inspection  outcomes,  including  the  date  and  length  of  inspections;  manufacturing  facility  characteristics;  FDA  characteristics  (e.g.,  district  involved,  investigator(s)  involved,  Page 13 of 16   
  • 14. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics etc); and inspection outcomes. The Recalls database provides detailed data on product recalls, including date and length  of  recall;  root  causes  related  to  recalls,  products  involved  in  recalls,  and  manufacturing  establishments/firms  responsible for recalls.  By bringing together these data sources, the research is focused on questions along the following lines of inquiry:    How  do  biopharmaceutical  manufacturing  facility  characteristics  (e.g.  location,  experience),  FDA  inspection  policy  (e.g.  frequency,  extent),  and  the  increasing  role  of  globalization  impact  U.S.  public  health and safety as measured by regulatory outcomes?  o Does manufacturing firm experience with a given country or internationally have any effect on  regulatory  compliance?  Frequency  and/or  intensity  of  inspection  by  the  FDA?  Product  recall  frequencies?   o Do  country  economic  characteristics  and  country  institutional‐level  factors  affect  inspection  and/or product recall performance?   How do timing of FDA inspections and outcomes of prior inspections impact firm behavior around the  importance of product quality and manufacturing innovation?   o Do  shifts  in  regulatory  policy  approaches  change  inspection  and/or  recall  performance  of  biopharmaceutical firms?   o Are establishments that are in poor standing with the FDA in terms of compliance less likely to  pursue manufacturing innovations?   At a summary level, how do the FDA strategies for ensuring biopharmaceutical product safety compare  in design and performance to those of other countries?  o To  what  extent  is  the  FDA  or  other  regulators  intelligently  employing  their  limited  inspection  resources (e.g. use of stratified sampling and/or multi‐objective optimization)?  o Do  demonstrated  best  practices  in  biopharmaceutical  inspections  exist  and  to  what  extent  are  these practices relevant to the FDA?  In this way, this research will attempt to specifically address how the FDA can best achieve required compliance  by  biopharmaceutical  suppliers  and  manufacturers  given  the  known  resource  and  information  limitations  associated  with inspections. This involves defining and evaluating options to structure inspection and recall programs that minimize  safety risks to U.S. consumers. Comparison of these options and strategies practiced by regulators in other countries to  the US FDA will provide insight into potential strategic improvement opportunities that would reduce the likelihood of  biopharmaceutical product quality problems.   Page 14 of 16   
  • 15. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics 4 References  Armstrong, M., and D. Sappington. "Recent Developments in the Theory of Regulation." In Handbook of Industrial  Organization, by M Armstrong and R. Porter. Elsevier, 2007.  Baron, D. "Design of Regulatory Mechanisms and Institutions." In Handbook of Industrial Organization, Vol. II, by R.  Schmalensee and R. Willig. North Holland, 1989.  Beard, T., D. Kaserman, and J. Mayo. "A Graphical Exposition of the Economic Theory of Regulation." Economic Inquiry 41  (October 2003): 592‐606.  Becker, G. "A Theory of Competition among Pressure Groups for Political Influence." Quarterly Journal of Economics 98  (August 1983): 371‐400.  Blank, L., and J. Mayo. "Endogeneous Regulatory Constraints and the Emergence of Hybrid Regulation." Georgetown  University Working Paper. 2007.  Feinstein, J. "Detection Controlled Estimation." Journal of Law and Economics 33, no. 1 (April 1990): 233‐276.  Feinstein, J. "The Safety Regulation of U.S. Nuclear Power Plants: Violations, Inspections, and Abnormal Occurences." The  Journal of Political Economy 97 (February 1989): 115‐154.  Fremeth, A. and G.L.F. Holburn. “Information Asymmetries and Regulatory Decision Costs: An Analysis of Electric Utility Rate  Changes 1980‐2000.” Journal of Law, Economics and Organization (2010 – Forthcoming).  Laffont, J., and D. Martimort. The Theory of Incentives: The Principal‐Agent Model. Princeton, NJ: Princeton University Press,  2002.  Laffont, J., and J. Tirole. "The Politics of Government Decision‐making: A Theory of Regulatory Capture." Quarterly Journal of  Economics 106, no. 4 (November 1991): 1089‐1127.  Macher, J., J. Mayo, and J. Nickerson. "Exploring the Information Asymmetry Gap: Evidence from FDA Regulation." Journal of  Law and Economics, 2009: (under second review).  Molowa, D., and R. Mazanet.  “The state of biopharmaceutical manufacturing.” Biotechnology Annual Review 9 (2003): 285‐ 302.  Olson, M. "Regulatory Agency Discretion among Competing Industries: Inside the FDA." Journal of Law, Economics and  Organization 11 (October 1995): 379‐405.  Spiller, P. "Politicians, Interest Groups and Regulators: A Multiple‐Principals Agency Theory of Regulation, or ‘Let Them be  Bribed'." Journal of Law and Economics 33 (April 1990): 65‐102.  Page 15 of 16   
  • 16. WORKING PAPER: Preliminary Survey Data for Biopharmaceutical Manufacturing Regulatory Economics U.S. FDA. About the Center for Drug Evaluation and Research.  http://www.fda.gov/AboutFDA/CentersOffices/CDER/default.htm.  U.S. FDA. Risk‐Based Method for Prioritizing CGMP Inspections of Pharmaceutical Manufacturing Sites—A Pilot Risk Ranking  Model. FDA Mimeo, 2004, 1‐18.  Vogel, D. "The Globalization of Pharmaceutical Regulation." Governance 11, no. 1 (2002): 1‐22.  Weingart, B., and M. Moran. "Bureaucratic Discretion or Congressional Control? Regulatory Policymaking by the Federal  Trade Commission." Journal of Political Economy 91, no. 5 (October 1983): 765‐800.  Woo, J., S. Wolfgang, and H. Batista. "The Effect of Globalization of Drug Manufacturing, Production, and Sourcing and  Challenges for American Drug Safety." Clinical Pharmacology & Therapeutics 83, no. 3 (2008): 494–497.  Page 16 of 16