SlideShare ist ein Scribd-Unternehmen logo
1 von 59
Downloaden Sie, um offline zu lesen
1
! Influence Lines for Beams
! Influence Lines for Floor Girders
! Influence Lines for Trusses
! Maximum Influence at a Point Due to a Series
of Concentrated Loads
! Absolute Maximum Shear and Moment
INFLUENCE LINES FOR STATICALLY
DETERMINATE STRUCTURES
2
Influence Line
Unit moving load
A
B
3
Example 6-1
Construct the influence line for
a) reaction at A and B
b) shear at point C
c) bending moment at point C
d) shear before and after support B
e) moment at point B
of the beam in the figure below.
B
A
C
4 m 4 m 4 m
4
SOLUTION
• Reaction at A
+ ΣMB = 0: ,0)8(1)8( =−+− xAy xAy
8
1
1−=
1
4 m
8 m 12 m
-0.5
0.5
Ay
x
A
C
4 m8 m
Ay By
1
x
0
4
8
12
x
1
0.5
0
-0.5
Ay
5
A
C
4 m
Ay By
8 m
• Reaction at B
+ ΣMA = 0: ,01)8( =− xBy xBy
8
1
=
1
x
4 m 8 m 12 m
By
x
1.5
1
0.5
0
4
8
12
x
0
0.5
1
1.5
By
6
• Shear at C
A
C
4 m
Ay By
1
x
4 m 4 m
40 <≤ x 124 ≤< x
01
8
1
1 =−−− CVx
xVC
8
1
−=
ΣFy = 0:+
0
8
1
1 =−− CVx
xVC
8
1
1−=
ΣFy = 0:+
VC
MC
VC
MC
xAy
8
1
1−=
A
Cx
4 m
124 ≤< x
A
C
1
x
4 m
40 ≤≤ x
xAy
8
1
1−=
7
0
4-
4+
8
12
x VC
0
-0.5
0.5
0
-0.5
xVC
8
1
−=
xVC
8
1
1−=
4 m 8 m 12 m
VC
x
-0.5
0.5
-0.5
xVC
8
1
−=
xVC
8
1
1−=
A
C
4 m
Ay By
1
x
4 m 4 m
40 <≤ x 124 ≤< x
8
• Bending moment at C
A
C
4 m
Ay By
1
x
4 m 4 m
40 <≤ x 124 ≤< x
VC
MC
0)4)(
8
1
1()4(1 =−−−+ xxMC
xMC
2
1
=
VC
MC
0)4)(
8
1
1( =−− xMC
+ ΣMC = 0:
+ ΣMC = 0:
xAy
8
1
1−=
A
Cx
4 m
124 ≤< x
A
C
1
x
4 m
40 ≤≤ x
xAy
8
1
1−=
xMC
2
1
4 −=
9
0
4
8
12
x MC
0
2
0
-2
xMC
2
1
4 −=
xMC
2
1
=
4 m
8 m 12 m
MC
x
2
-2
A
C
4 m
Ay By
1
x
4 m 4 m
40 <≤ x 124 ≤< x
xMC
2
1
=
xMC
2
1
4 −=
10
Or using equilibrium conditions:
• Reaction at A
+ ΣMB = 0: ,0)8(1)8( =−+− xAy xAy
8
1
1−=
1
4 m
8 m 12 m
-0.5
0.5
Ay
x
A
C
4 m8 m
Ay By
1
x
11
A
C
4 m
Ay By
8 m
• Reaction at B
1
x
4 m 8 m 12 m
By
x
1.5
1
0.5
1
4 m
8 m 12 m
-0.5
0.5
Ay
x
01=−+ yy BA
yy AB −=1
ΣFy = 0:+
yy AB −=1
12
• Shear at C
A
C
4 m
Ay By
1
x
4 m 4 m
40 <≤ x 124 ≤< x
01 =−− Cy VA
1−= yC AV
ΣFy = 0:+
0=− Cy VA
yC AV =
ΣFy = 0:+
VC
MC
xAy
8
1
1−=
A
Cx
4 m
124 ≤< x
VC
MC
A
C
1
x
4 m
40 ≤≤ x
xAy
8
1
1−=
13
yC AV =1−= yC AV
1
4 m
8 m 12 m
-0.5
0.5
Ay
x
-0.5
VC
8 m 12 m
x
4 m
0.5
-0.5
B
A
C
4 m 4 m 4 m
14
• Bending moment at C
A
C
4 m
Ay By
1
x
4 m 4 m
40 <≤ x 124 ≤< x
0)4(1)4( =+−+ Cy MxA
)4(4 xAM yC −−=
+ ΣMC = 0:
VC
MC
xAy
8
1
1−=
A
Cx
4 m
124 ≤< x
VC
MC
A
C
1
x
4 m
40 ≤≤ x
xAy
8
1
1−=
0)4( =+− Cy MA+ ΣMC = 0:
yC AM 4=
15
yC AM 4=)4(4 xAM yC −−=
2
1
4 m
8 m 12 m
-0.5
0.5
Ay
x
4 m
8 m 12 m
MC
x
-2
B
A
C
4 m 4 m 4 m
16
• Shear before support B
A
C
4 m
Ay By
1
4 m 4 m
x
1
4 m
8 m 12 m
-0.5
0.5
Ay
x
-0.5
VB
- = AyVB
- = Ay-1
1
Ay
8 m
VB
-
MB
x
Ay
8 m
VB
-
MB
VB-
x
-1.0-0.5
17
• Shear after support B
A
C
4 m
Ay By
1
4 m 4 m
x
1
4 m
8 m 12 m
-0.5
0.5
Ay
x
VB+
x
1
VB
+ = 0
4 m
VB
+
MB
1
VB
+ = 1
4 m
VB
+
MB
18
• Moment at support B
A
C
4 m
Ay By
1
4 m 4 m
x
1
4 m
8 m 12 m
-0.5
0.5
Ay
x
-4
MB
x
1
MB = 8Ay-(8-x) MB = 8Ay
1
Ay
8 m
VB
-
MB
x
Ay
8 m
VB
-
MB
19
P = 1
'x
• Reaction
Influence Line for Beam
C
A B
P = 1
Ay By
δy = 1 'yδ
LL
s
y
B
1
==
δ
C
A B
L
0)0()(1)1( ' =+− yyy BA δ
'yyA δ=
20
δy = 1
'yδC
A B
P = 1
Ay ByLL
s
y
A
1
==
δ
C
A B
L
P = 1
'x
'yyB δ=
0)1()(1)0( ' =+− yyy BA δ
21
L
A
B
a
- Pinned Support
RA
RA
x
1
L
b
b
CA B
22
A B
A B
a b
L
RA
RA
x
1 1
- Fixed Support
23
• Shear
CA B
P = 1
a b
L
L
sB
1
=
δy=1
δyL
δyR
'yδ
A B
VC
VC
P = 1
Ay By
δy=1
L
sA
1
=
0)0()(1)()()0( ' =+−++ yyyRCyLCy BVVA δδδ
')( yyRyLCV δδδ =+
'yCV δ=
BA ssslopes =:
24
L
A B
a
VC
VC
VC
x
1
b
L
-a
L
1
-1
Slope at A = Slope at B
- Pinned Support
b
CA B
L
sSlope B
1
=
L
sSlope A
1
=
25
A B
a b
L
A B
VB
VB
VB
x
1 1
- Fixed Support
26
1=+= BA θθφ
• Bending Moment
a b
L
a
h
A =θ
'yδ
b
h
B =θ
1
A B
MC
MC
P = 1
Ay By
h
CA B
P = 1
0)0()(1)()()0( ' =++++ yyBCACy BMMA δθθ
')( yBACM δθθ =+
'yCM δ=
1)( =+
b
h
a
h
)(
,1
)(
ba
ab
h
ab
bah
+
==
+
27
a
L
A B
Hinge
MC
MC
ba
φC = θA + θB = 1
MC
x
ab
a+b
- Pinned Support
b
CA B
L
b
A =θ
L
a
A =θ
28
A B
a b
L
A B
MC
MC
MB
x
1
-b
- Fixed Support
29
• General Shear
x
VBL
-1
x
VC
-1/4
3/4
1
x
VD
-2/4
2/4
1
-3/4
x
VE
1/4
1
A
C D E B F G H
L
L/4 L/4 L/4 L/4 L/4 L/4 L/4
30
x
VBL
-1
x
VG
1
x
VF
1
x
VBR
1
A
C D E B F G H
L
L/4 L/4 L/4 L/4 L/4 L/4 L/4
31
• General Bending Moment
θA = 3/4 θB = 1/4
φ = sA + sB = 1
θA = 1/2 θB = 1/2
φ = sA + sB = 1
θA = 1/4 θB = 3/4
φ = θA + θB = 1
x
MC 3L/16
x
MD
4L/16
x
ME 3L/16
A
C D E B F G H
L
L/4 L/4 L/4 L/4 L/4 L/4 L/4
32
x
MB
3L/4
1
x
MG
L/4
1
x
MF
2L/4
1
A
C D E B F G H
L
L/4 L/4 L/4 L/4 L/4 L/4 L/4
33
Example 6-2
Construct the influence line for
- the reaction at A, C and E
- the shear at D
- the moment at D
- shear before and after support C
- moment at point C
A B C D E
2 m 2 m 2 m 4 m
Hinge
34
A
C D E
2 m 2 m 2 m 4 m
B
RA
x
1
RA
SOLUTION
35
A
C D E
2 m 2 m 2 m 4 m
B
RC
RC
x
1
8/6
4/6
36
A B C D
E
2 m 2 m 2 m 4 m
RE
RE
x
-2/6
2/6
1
37
A B C D E
2 m 2 m 2 m 4 m
VD
VD
VD
x
1
2/6
-1
1
• sE = sC
sE = 1/6
sC = 1/6
=
-2/6
=
4/6
38
Or using equilibrium conditions:
VD = 1 -RE
1
VD
x
2/6
-2/6
4/6
RE
VD
MD
4 m
1
x
VD = -RE
RE
VD
MD
4 m
RE
x
-2/6
1
2/6
A B C D E
2 m 2 m 2 m 4 m
Hinge
39
A B C
D
E
2 m 2 m 2 m 4 m
4
-1.33
MD
x
(2)(4)/6 = 1.33
φD = θC+θE = 1
θC = 4/6
2
2/6 = θE
MD MD
40
Or using equilibrium conditions:
MD = -(4-x)+4RE
1
RE
VD
MD
4 m
1
x
MD = 4RE
RE
VD
MD
4 m
RE
x
-2/6
1
2/6
MD
x
-8/6
8/6
A B C D E
2 m 2 m 2 m 4 m
Hinge
41
A
B
C
D
E
2 m 2 m 2 m 4 m
VCL
VCL
VCL
x
-1-1
42
A B C D E
2 m 2 m 2 m 4 m
Or using equilibrium conditions:
1
RA
x
1
VCL = RA - 1
VCL
x
-1-1
VCL = RA
RA
1
VCL
MB
RA VCL
MB
43
A
B
C
D
E
2 m 2 m 2 m 4 m
VCR
x
VCR
VCR
1
0.333
0.667
44
A B C D E
2 m 2 m 2 m 4 m
Or using equilibrium conditions:
1
VCR
x
0.333
1
0.667
RE
x
-2/6 = -0.333
1
2/6=0.33
VCR = -RE
RE
VCR
MC
VCR = 1 -RE
RE
VCR
MC
1
45
A B C D E
2 m 2 m 2 m 4 m
MC MC
MC
x
1
-2
46
A B C D E
2 m 2 m 2 m 4 m
MC
x
1
-2
Or using equilibrium conditions:
1
RE
x
-2/6 = -0.333
1
2/6=0.33
MC = 6RE
RE
VCR
MC
6 m
'6 xRM AC −=
6 m
'x
RE
VCR
MC
1
47
Example 6-3
Construct the influence line for
- the reaction at A and C
- shear at D, E and F
- the moment at D, E and F
Hinge
A B CD E F
2 m 2 m 2 m 2 m2 m 2 m
48
SOLUTION
RA
RA
x
1 1
-1
0.5
-0.5
2 m 2 m 2 m 2 m
A
B CD E
2 m 2 m
F
49
2 m 2 m 2 m 2 m
A B
CD E
2 m 2 m
F
RC x
RC
1
0.5
1.5
2
50
2 m 2 m 2 m 2 m
A B CD E
2 m 2 m
F
VD
VD
VD
x
-1
0.5
-0.5
1 1
=
=
51
A B CD E
2 m 2 m 2 m 2 m2 m 2 m
F
VE
VE
VE
x
1
-0.5
-1
0.5
-0.5
=
=
52
2 m 2 m 2 m 2 m
A B CD E
2 m 2 m
F
VF
VF
VF
x
1
=
=
53
2 m 2 m 2 m 2 m
A B CD E
2 m 2 m
F
MD
MD
MD
x
-2
θD = 1
-1
1
2
54
2 m 2 m 2 m 2 m
A B CD E
2 m 2 m
F
φE = 1
ME
ME
ME
x
θC = 0.5θB = 0.5
(2)(2)/4 = 1
-2
-1
55
2 m 2 m 2 m 2 m
A B CD E
2 m 2 m
F
ME
ME
MF
x
θF = 1
-2
56
Example 6-4
Determine the maximum reaction at support B, the maximum shear at point C and
the maximum positive moment that can be developed
at point C on the beam shown due to
- a single concentrate live load of 8000 N
- a uniform live load of 3000 N/m
- a beam weight (dead load) of 1000 N/m
4 m 4 m 4 m
A BC
57
0.5(12)(1.5) = 9
SOLUTION
RB
x
1
1.5
0.5
= 48000 N = 48 kN
(RB)max + (8000)(1.5)= (1000)(9) + (3000)(9)
8000 N
1000 N/m
3000 N/m
4 m 4 m 4 m
A
BC
58
0.5(4)(-0.5) = -1
0.5(4)(0.5) = 1
0.5(4)(-0.5) = -1
= (1000)(-2+1)
4 m 4 m 4 m
A
BC
VC
x
0.5
-0.5
1000 N/m
(VC)max + (8000)(-0.5)
= -11000 N = 11 kN
+ (3000)(-2)
-0.5
3000 N/m 3000 N/m
8000 N
59
8000 N 3000 N/m
1000 N/m
(1/2)(4)(2) = 4
+(1/2)(8)(2) = 8
4 m 4 m 4 m
A
BC
3000 N/m
(MC)max positive = (8000)(2)
= 44000 N•m = 44 kN•m
+ (8-4)(1000)+ (3000)(8)
MC
x
2
-2

Weitere ähnliche Inhalte

Was ist angesagt?

6 stress on trusses
6 stress on trusses6 stress on trusses
6 stress on trusses
aero103
 
Stress&strain part 2
Stress&strain part 2Stress&strain part 2
Stress&strain part 2
AHMED SABER
 

Was ist angesagt? (18)

Deflection and member deformation
Deflection and member deformationDeflection and member deformation
Deflection and member deformation
 
Chapter 07 in som
Chapter 07 in som Chapter 07 in som
Chapter 07 in som
 
Shi20396 ch18
Shi20396 ch18Shi20396 ch18
Shi20396 ch18
 
SFD & BMD
SFD & BMDSFD & BMD
SFD & BMD
 
6 stress on trusses
6 stress on trusses6 stress on trusses
6 stress on trusses
 
H.w. #7
H.w. #7H.w. #7
H.w. #7
 
Ch08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformationsCh08 10 combined loads &amp; transformations
Ch08 10 combined loads &amp; transformations
 
Ch06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shearCh06 07 pure bending &amp; transverse shear
Ch06 07 pure bending &amp; transverse shear
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Truss examples
Truss examplesTruss examples
Truss examples
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Analisa struktur metode slope deflection
Analisa struktur metode slope deflectionAnalisa struktur metode slope deflection
Analisa struktur metode slope deflection
 
Truss exercise
Truss exerciseTruss exercise
Truss exercise
 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)
 
Ejercicio viga
Ejercicio vigaEjercicio viga
Ejercicio viga
 
Stress&strain part 2
Stress&strain part 2Stress&strain part 2
Stress&strain part 2
 
One way
One wayOne way
One way
 
09 review
09 review09 review
09 review
 

Andere mochten auch (20)

Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)
 
Marshal mix design
Marshal mix designMarshal mix design
Marshal mix design
 
Environmental engg. pavel
Environmental engg. pavelEnvironmental engg. pavel
Environmental engg. pavel
 
Serially subject wise question
Serially subject wise questionSerially subject wise question
Serially subject wise question
 
Load reduction factor_ǿ
Load reduction factor_ǿLoad reduction factor_ǿ
Load reduction factor_ǿ
 
Active tab
Active tabActive tab
Active tab
 
Construction engineering formula sheet
Construction engineering formula sheetConstruction engineering formula sheet
Construction engineering formula sheet
 
Slope stability
Slope stabilitySlope stability
Slope stability
 
Document given by hassan
Document given by hassanDocument given by hassan
Document given by hassan
 
Suggestion for govt. job recruitment exam
Suggestion for govt. job recruitment examSuggestion for govt. job recruitment exam
Suggestion for govt. job recruitment exam
 
Civil ques
Civil quesCivil ques
Civil ques
 
Suggestion done by me
Suggestion done by meSuggestion done by me
Suggestion done by me
 
Settlement
SettlementSettlement
Settlement
 
Ad exam
Ad examAd exam
Ad exam
 
Borrow pit-volumes
Borrow pit-volumesBorrow pit-volumes
Borrow pit-volumes
 
Construction engineering formula sheet
Construction engineering formula sheetConstruction engineering formula sheet
Construction engineering formula sheet
 
Portal and cantilever method
Portal and cantilever methodPortal and cantilever method
Portal and cantilever method
 
Structural engineering ii
Structural engineering iiStructural engineering ii
Structural engineering ii
 
Document1
Document1Document1
Document1
 
PART TIME WORK FROM HOME FOR STUDENTS
PART TIME WORK FROM HOME FOR STUDENTSPART TIME WORK FROM HOME FOR STUDENTS
PART TIME WORK FROM HOME FOR STUDENTS
 

Ähnlich wie Influence linebeams (ce 311)

Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2
Jesthiger Cohil
 
02 influenceline inde_3
02 influenceline inde_302 influenceline inde_3
02 influenceline inde_3
Khaja Mohiddin
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
DannyCoronel5
 
Solution shigley's
Solution shigley'sSolution shigley's
Solution shigley's
Alemu Abera
 
Shigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th editionShigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th edition
Luis Eduin
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 

Ähnlich wie Influence linebeams (ce 311) (20)

Ejercicio dos
Ejercicio dosEjercicio dos
Ejercicio dos
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2
 
02 influenceline inde_3
02 influenceline inde_302 influenceline inde_3
02 influenceline inde_3
 
تحليل انشائي2
تحليل انشائي2تحليل انشائي2
تحليل انشائي2
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
 
Ch11s
Ch11sCh11s
Ch11s
 
RCC BMD
RCC BMDRCC BMD
RCC BMD
 
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection methodAnalysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection method
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHODANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
 
Solution shigley's
Solution shigley'sSolution shigley's
Solution shigley's
 
Shigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th editionShigley 13830681 solution mechanical engineering design shigley 7th edition
Shigley 13830681 solution mechanical engineering design shigley 7th edition
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Examen n7
Examen n7Examen n7
Examen n7
 

Mehr von Prionath Roy

Pile capacity equations
Pile capacity equationsPile capacity equations
Pile capacity equations
Prionath Roy
 
Civil engineering suggestions for wasa
Civil engineering suggestions for wasaCivil engineering suggestions for wasa
Civil engineering suggestions for wasa
Prionath Roy
 
Civil engineering suggestions for upcoming examination
Civil engineering suggestions for upcoming examinationCivil engineering suggestions for upcoming examination
Civil engineering suggestions for upcoming examination
Prionath Roy
 
Bearing capaciy equations
Bearing capaciy equationsBearing capaciy equations
Bearing capaciy equations
Prionath Roy
 
সেনাবাহিনী
সেনাবাহিনীসেনাবাহিনী
সেনাবাহিনী
Prionath Roy
 
~$Aring capaciy equations
~$Aring capaciy equations~$Aring capaciy equations
~$Aring capaciy equations
Prionath Roy
 
Why cod is greater than bod
Why cod is greater than bodWhy cod is greater than bod
Why cod is greater than bod
Prionath Roy
 
Titas question of mist
Titas question of mistTitas question of mist
Titas question of mist
Prionath Roy
 
Rcc suggestion for up coming govt recruitment
Rcc suggestion for up coming govt recruitmentRcc suggestion for up coming govt recruitment
Rcc suggestion for up coming govt recruitment
Prionath Roy
 
Rcc suggestion for up coming govt recruitment
Rcc suggestion for up coming govt recruitmentRcc suggestion for up coming govt recruitment
Rcc suggestion for up coming govt recruitment
Prionath Roy
 
Water resource engineering question for gov
Water resource engineering question for govWater resource engineering question for gov
Water resource engineering question for gov
Prionath Roy
 
Titas question of mist
Titas question of mistTitas question of mist
Titas question of mist
Prionath Roy
 
Titas gas transmission and distribution company ltd
Titas gas transmission and distribution company ltdTitas gas transmission and distribution company ltd
Titas gas transmission and distribution company ltd
Prionath Roy
 

Mehr von Prionath Roy (15)

Pile capacity equations
Pile capacity equationsPile capacity equations
Pile capacity equations
 
Civil engineering suggestions for wasa
Civil engineering suggestions for wasaCivil engineering suggestions for wasa
Civil engineering suggestions for wasa
 
Civil engineering suggestions for upcoming examination
Civil engineering suggestions for upcoming examinationCivil engineering suggestions for upcoming examination
Civil engineering suggestions for upcoming examination
 
Bearing capaciy equations
Bearing capaciy equationsBearing capaciy equations
Bearing capaciy equations
 
Ad exam
Ad examAd exam
Ad exam
 
Active tab
Active tabActive tab
Active tab
 
সেনাবাহিনী
সেনাবাহিনীসেনাবাহিনী
সেনাবাহিনী
 
~$Aring capaciy equations
~$Aring capaciy equations~$Aring capaciy equations
~$Aring capaciy equations
 
Why cod is greater than bod
Why cod is greater than bodWhy cod is greater than bod
Why cod is greater than bod
 
Titas question of mist
Titas question of mistTitas question of mist
Titas question of mist
 
Rcc suggestion for up coming govt recruitment
Rcc suggestion for up coming govt recruitmentRcc suggestion for up coming govt recruitment
Rcc suggestion for up coming govt recruitment
 
Rcc suggestion for up coming govt recruitment
Rcc suggestion for up coming govt recruitmentRcc suggestion for up coming govt recruitment
Rcc suggestion for up coming govt recruitment
 
Water resource engineering question for gov
Water resource engineering question for govWater resource engineering question for gov
Water resource engineering question for gov
 
Titas question of mist
Titas question of mistTitas question of mist
Titas question of mist
 
Titas gas transmission and distribution company ltd
Titas gas transmission and distribution company ltdTitas gas transmission and distribution company ltd
Titas gas transmission and distribution company ltd
 

Influence linebeams (ce 311)

  • 1. 1 ! Influence Lines for Beams ! Influence Lines for Floor Girders ! Influence Lines for Trusses ! Maximum Influence at a Point Due to a Series of Concentrated Loads ! Absolute Maximum Shear and Moment INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES
  • 3. 3 Example 6-1 Construct the influence line for a) reaction at A and B b) shear at point C c) bending moment at point C d) shear before and after support B e) moment at point B of the beam in the figure below. B A C 4 m 4 m 4 m
  • 4. 4 SOLUTION • Reaction at A + ΣMB = 0: ,0)8(1)8( =−+− xAy xAy 8 1 1−= 1 4 m 8 m 12 m -0.5 0.5 Ay x A C 4 m8 m Ay By 1 x 0 4 8 12 x 1 0.5 0 -0.5 Ay
  • 5. 5 A C 4 m Ay By 8 m • Reaction at B + ΣMA = 0: ,01)8( =− xBy xBy 8 1 = 1 x 4 m 8 m 12 m By x 1.5 1 0.5 0 4 8 12 x 0 0.5 1 1.5 By
  • 6. 6 • Shear at C A C 4 m Ay By 1 x 4 m 4 m 40 <≤ x 124 ≤< x 01 8 1 1 =−−− CVx xVC 8 1 −= ΣFy = 0:+ 0 8 1 1 =−− CVx xVC 8 1 1−= ΣFy = 0:+ VC MC VC MC xAy 8 1 1−= A Cx 4 m 124 ≤< x A C 1 x 4 m 40 ≤≤ x xAy 8 1 1−=
  • 7. 7 0 4- 4+ 8 12 x VC 0 -0.5 0.5 0 -0.5 xVC 8 1 −= xVC 8 1 1−= 4 m 8 m 12 m VC x -0.5 0.5 -0.5 xVC 8 1 −= xVC 8 1 1−= A C 4 m Ay By 1 x 4 m 4 m 40 <≤ x 124 ≤< x
  • 8. 8 • Bending moment at C A C 4 m Ay By 1 x 4 m 4 m 40 <≤ x 124 ≤< x VC MC 0)4)( 8 1 1()4(1 =−−−+ xxMC xMC 2 1 = VC MC 0)4)( 8 1 1( =−− xMC + ΣMC = 0: + ΣMC = 0: xAy 8 1 1−= A Cx 4 m 124 ≤< x A C 1 x 4 m 40 ≤≤ x xAy 8 1 1−= xMC 2 1 4 −=
  • 9. 9 0 4 8 12 x MC 0 2 0 -2 xMC 2 1 4 −= xMC 2 1 = 4 m 8 m 12 m MC x 2 -2 A C 4 m Ay By 1 x 4 m 4 m 40 <≤ x 124 ≤< x xMC 2 1 = xMC 2 1 4 −=
  • 10. 10 Or using equilibrium conditions: • Reaction at A + ΣMB = 0: ,0)8(1)8( =−+− xAy xAy 8 1 1−= 1 4 m 8 m 12 m -0.5 0.5 Ay x A C 4 m8 m Ay By 1 x
  • 11. 11 A C 4 m Ay By 8 m • Reaction at B 1 x 4 m 8 m 12 m By x 1.5 1 0.5 1 4 m 8 m 12 m -0.5 0.5 Ay x 01=−+ yy BA yy AB −=1 ΣFy = 0:+ yy AB −=1
  • 12. 12 • Shear at C A C 4 m Ay By 1 x 4 m 4 m 40 <≤ x 124 ≤< x 01 =−− Cy VA 1−= yC AV ΣFy = 0:+ 0=− Cy VA yC AV = ΣFy = 0:+ VC MC xAy 8 1 1−= A Cx 4 m 124 ≤< x VC MC A C 1 x 4 m 40 ≤≤ x xAy 8 1 1−=
  • 13. 13 yC AV =1−= yC AV 1 4 m 8 m 12 m -0.5 0.5 Ay x -0.5 VC 8 m 12 m x 4 m 0.5 -0.5 B A C 4 m 4 m 4 m
  • 14. 14 • Bending moment at C A C 4 m Ay By 1 x 4 m 4 m 40 <≤ x 124 ≤< x 0)4(1)4( =+−+ Cy MxA )4(4 xAM yC −−= + ΣMC = 0: VC MC xAy 8 1 1−= A Cx 4 m 124 ≤< x VC MC A C 1 x 4 m 40 ≤≤ x xAy 8 1 1−= 0)4( =+− Cy MA+ ΣMC = 0: yC AM 4=
  • 15. 15 yC AM 4=)4(4 xAM yC −−= 2 1 4 m 8 m 12 m -0.5 0.5 Ay x 4 m 8 m 12 m MC x -2 B A C 4 m 4 m 4 m
  • 16. 16 • Shear before support B A C 4 m Ay By 1 4 m 4 m x 1 4 m 8 m 12 m -0.5 0.5 Ay x -0.5 VB - = AyVB - = Ay-1 1 Ay 8 m VB - MB x Ay 8 m VB - MB VB- x -1.0-0.5
  • 17. 17 • Shear after support B A C 4 m Ay By 1 4 m 4 m x 1 4 m 8 m 12 m -0.5 0.5 Ay x VB+ x 1 VB + = 0 4 m VB + MB 1 VB + = 1 4 m VB + MB
  • 18. 18 • Moment at support B A C 4 m Ay By 1 4 m 4 m x 1 4 m 8 m 12 m -0.5 0.5 Ay x -4 MB x 1 MB = 8Ay-(8-x) MB = 8Ay 1 Ay 8 m VB - MB x Ay 8 m VB - MB
  • 19. 19 P = 1 'x • Reaction Influence Line for Beam C A B P = 1 Ay By δy = 1 'yδ LL s y B 1 == δ C A B L 0)0()(1)1( ' =+− yyy BA δ 'yyA δ=
  • 20. 20 δy = 1 'yδC A B P = 1 Ay ByLL s y A 1 == δ C A B L P = 1 'x 'yyB δ= 0)1()(1)0( ' =+− yyy BA δ
  • 22. 22 A B A B a b L RA RA x 1 1 - Fixed Support
  • 23. 23 • Shear CA B P = 1 a b L L sB 1 = δy=1 δyL δyR 'yδ A B VC VC P = 1 Ay By δy=1 L sA 1 = 0)0()(1)()()0( ' =+−++ yyyRCyLCy BVVA δδδ ')( yyRyLCV δδδ =+ 'yCV δ= BA ssslopes =:
  • 24. 24 L A B a VC VC VC x 1 b L -a L 1 -1 Slope at A = Slope at B - Pinned Support b CA B L sSlope B 1 = L sSlope A 1 =
  • 25. 25 A B a b L A B VB VB VB x 1 1 - Fixed Support
  • 26. 26 1=+= BA θθφ • Bending Moment a b L a h A =θ 'yδ b h B =θ 1 A B MC MC P = 1 Ay By h CA B P = 1 0)0()(1)()()0( ' =++++ yyBCACy BMMA δθθ ')( yBACM δθθ =+ 'yCM δ= 1)( =+ b h a h )( ,1 )( ba ab h ab bah + == +
  • 27. 27 a L A B Hinge MC MC ba φC = θA + θB = 1 MC x ab a+b - Pinned Support b CA B L b A =θ L a A =θ
  • 28. 28 A B a b L A B MC MC MB x 1 -b - Fixed Support
  • 30. 30 x VBL -1 x VG 1 x VF 1 x VBR 1 A C D E B F G H L L/4 L/4 L/4 L/4 L/4 L/4 L/4
  • 31. 31 • General Bending Moment θA = 3/4 θB = 1/4 φ = sA + sB = 1 θA = 1/2 θB = 1/2 φ = sA + sB = 1 θA = 1/4 θB = 3/4 φ = θA + θB = 1 x MC 3L/16 x MD 4L/16 x ME 3L/16 A C D E B F G H L L/4 L/4 L/4 L/4 L/4 L/4 L/4
  • 32. 32 x MB 3L/4 1 x MG L/4 1 x MF 2L/4 1 A C D E B F G H L L/4 L/4 L/4 L/4 L/4 L/4 L/4
  • 33. 33 Example 6-2 Construct the influence line for - the reaction at A, C and E - the shear at D - the moment at D - shear before and after support C - moment at point C A B C D E 2 m 2 m 2 m 4 m Hinge
  • 34. 34 A C D E 2 m 2 m 2 m 4 m B RA x 1 RA SOLUTION
  • 35. 35 A C D E 2 m 2 m 2 m 4 m B RC RC x 1 8/6 4/6
  • 36. 36 A B C D E 2 m 2 m 2 m 4 m RE RE x -2/6 2/6 1
  • 37. 37 A B C D E 2 m 2 m 2 m 4 m VD VD VD x 1 2/6 -1 1 • sE = sC sE = 1/6 sC = 1/6 = -2/6 = 4/6
  • 38. 38 Or using equilibrium conditions: VD = 1 -RE 1 VD x 2/6 -2/6 4/6 RE VD MD 4 m 1 x VD = -RE RE VD MD 4 m RE x -2/6 1 2/6 A B C D E 2 m 2 m 2 m 4 m Hinge
  • 39. 39 A B C D E 2 m 2 m 2 m 4 m 4 -1.33 MD x (2)(4)/6 = 1.33 φD = θC+θE = 1 θC = 4/6 2 2/6 = θE MD MD
  • 40. 40 Or using equilibrium conditions: MD = -(4-x)+4RE 1 RE VD MD 4 m 1 x MD = 4RE RE VD MD 4 m RE x -2/6 1 2/6 MD x -8/6 8/6 A B C D E 2 m 2 m 2 m 4 m Hinge
  • 41. 41 A B C D E 2 m 2 m 2 m 4 m VCL VCL VCL x -1-1
  • 42. 42 A B C D E 2 m 2 m 2 m 4 m Or using equilibrium conditions: 1 RA x 1 VCL = RA - 1 VCL x -1-1 VCL = RA RA 1 VCL MB RA VCL MB
  • 43. 43 A B C D E 2 m 2 m 2 m 4 m VCR x VCR VCR 1 0.333 0.667
  • 44. 44 A B C D E 2 m 2 m 2 m 4 m Or using equilibrium conditions: 1 VCR x 0.333 1 0.667 RE x -2/6 = -0.333 1 2/6=0.33 VCR = -RE RE VCR MC VCR = 1 -RE RE VCR MC 1
  • 45. 45 A B C D E 2 m 2 m 2 m 4 m MC MC MC x 1 -2
  • 46. 46 A B C D E 2 m 2 m 2 m 4 m MC x 1 -2 Or using equilibrium conditions: 1 RE x -2/6 = -0.333 1 2/6=0.33 MC = 6RE RE VCR MC 6 m '6 xRM AC −= 6 m 'x RE VCR MC 1
  • 47. 47 Example 6-3 Construct the influence line for - the reaction at A and C - shear at D, E and F - the moment at D, E and F Hinge A B CD E F 2 m 2 m 2 m 2 m2 m 2 m
  • 48. 48 SOLUTION RA RA x 1 1 -1 0.5 -0.5 2 m 2 m 2 m 2 m A B CD E 2 m 2 m F
  • 49. 49 2 m 2 m 2 m 2 m A B CD E 2 m 2 m F RC x RC 1 0.5 1.5 2
  • 50. 50 2 m 2 m 2 m 2 m A B CD E 2 m 2 m F VD VD VD x -1 0.5 -0.5 1 1 = =
  • 51. 51 A B CD E 2 m 2 m 2 m 2 m2 m 2 m F VE VE VE x 1 -0.5 -1 0.5 -0.5 = =
  • 52. 52 2 m 2 m 2 m 2 m A B CD E 2 m 2 m F VF VF VF x 1 = =
  • 53. 53 2 m 2 m 2 m 2 m A B CD E 2 m 2 m F MD MD MD x -2 θD = 1 -1 1 2
  • 54. 54 2 m 2 m 2 m 2 m A B CD E 2 m 2 m F φE = 1 ME ME ME x θC = 0.5θB = 0.5 (2)(2)/4 = 1 -2 -1
  • 55. 55 2 m 2 m 2 m 2 m A B CD E 2 m 2 m F ME ME MF x θF = 1 -2
  • 56. 56 Example 6-4 Determine the maximum reaction at support B, the maximum shear at point C and the maximum positive moment that can be developed at point C on the beam shown due to - a single concentrate live load of 8000 N - a uniform live load of 3000 N/m - a beam weight (dead load) of 1000 N/m 4 m 4 m 4 m A BC
  • 57. 57 0.5(12)(1.5) = 9 SOLUTION RB x 1 1.5 0.5 = 48000 N = 48 kN (RB)max + (8000)(1.5)= (1000)(9) + (3000)(9) 8000 N 1000 N/m 3000 N/m 4 m 4 m 4 m A BC
  • 58. 58 0.5(4)(-0.5) = -1 0.5(4)(0.5) = 1 0.5(4)(-0.5) = -1 = (1000)(-2+1) 4 m 4 m 4 m A BC VC x 0.5 -0.5 1000 N/m (VC)max + (8000)(-0.5) = -11000 N = 11 kN + (3000)(-2) -0.5 3000 N/m 3000 N/m 8000 N
  • 59. 59 8000 N 3000 N/m 1000 N/m (1/2)(4)(2) = 4 +(1/2)(8)(2) = 8 4 m 4 m 4 m A BC 3000 N/m (MC)max positive = (8000)(2) = 44000 N•m = 44 kN•m + (8-4)(1000)+ (3000)(8) MC x 2 -2