SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
Student ID: U10011024                          Name: Kuan-Lun Wang

               √
1. Let f (x) = 5 x − x3.
(a) Give the domain and range of f .
(b) State whether f is odd, even or neight.
(a) Range of f is R because that y 5 = x − x3. Domain of f
is R because taht x3 − x + y 5 = 0 and range of f is R.
(b) f is odd because that f (−x) = −f (x).
2. Find that following linits.
        tan x
(a) lim        .
    x→0 x
          [x2] − x2
(b) lim                where [·] is the Gaussian symbol.
    x→2+ x − 2
                 1
        x2 sin( x )
(c) lim             .
    x→0 sin x

        tan x            sin x        1
(a) lim          = lim         lim       = 1 · 1 = 1.
    x→0 x          x→0 x x→0 cos x
          [x2] − x2              4 − x2
(b) lim                = lim            = lim −(x + 2) = −4.
    x→2+ x − 2            x→2+ x − 2      x→22
                                                              1
                                  1                   x2 sin( x )
(c) Note that −1 ≤ lim sin( ) ≤ 1. We have lim                    =
                        x→0       x                x→0 sin x
      x                     1                    1
lim        lim x lim sin( ) = 1 · 0 · lim sin( ) = 0.
x→0 sin x x→0 x→0           x           x→0      x
3. Find a simplify expression for the product
                           1        1          1
                     (1 − )(1 − ) · · · (1 − )
                           2        3          n
and verify its validity for all integers n ≥ 2.
                                                       1
    We can show by mathematical induction that (1 − 2 )(1 −
1              1     1
3 ) · · · (1 − n ) = n for all integers n ≥ 2. The basis step,
                                                     1      1
namely, the case where n = 2, hold because (1 − 2 ) = 2 .
Calculus First Test 2011/10/20                                    1
Student ID: U10011024                            Name: Kuan-Lun Wang


Now, assume that (1 − 1 )(1 − 1 ) · · · (1 − n ) = n ; this is the
                             2      3
                                                1     1

inductive hypothesis. To complete the proof, we must show,
under the assumption that the inductive hypothesis is true,
          1
that (1 − 2 )(1 − 1 ) · · · (1 − n+1 ) = n+1 . Using the inductive
                  3
                                  1       1

hypothesis, we have
                 1     1              1
            (1 − )(1 − ) · · · (1 −     )
                 2     3            n+1
                  1     1            1       1
           =((1 − )(1 − ) · · · (1 − ))(1 −     )
                  2     3           n       n+1
            1    n        1
           = ·       =         .
            n n+1 n+1
This completes both the inductive step and the proof.
                              √    √
4. Given an , δ proof of lim x = c for c>0.
                          x→c
                     √
   Give >0, let δ = c . Then if |x − c|<δ, we have
                                            √
    √    √        |x − c|       δ             c
   | x − c| = √        √ <√       √ =√          √ ≤ .
                   x+ c        x+ c        x+ c
This establishes the limit statement using the definition.
                          f (x)
5. Prove that if lim [          ] exists, then lim f (x) = 0.
                     x→0 x                     x→0

             f (x)                                     f (x)
   If lim [        ] exists, then lim f (x) = lim [          ] lim x =
       x→0 x                        x→0           x→0 x        x→0
      f (x)
lim [       ] · 0 = 0.
x→0 x
                2
6. Express dxy in terms of x and y for b2x2 + a2y 2 = a2b2
            d
              2
where a, b are positive constants.

Calculus First Test 2011/10/20                                       2
Student ID: U10011024                          Name: Kuan-Lun Wang


                dy         2
  Note that     dx   = − a2x because that b2x2 + a2y 2 = a2b2. We
                         b
                           y
have
                                                 dy
        d2y d    b2 x        b2(a2y) − b2x(a2 dx )
           = (−       )=−
        dx2 dx a2y                   a4 y 2
                               b2
              a2b2y + a2b2x a2x   y    a4 b2 y 2 + a2 b4 x 2
           =−                       =−
                      a4 y 2                   a6 y 3
              a2b2(b2x2 + a2y 2)        a2b2(a2b2)
           =−                       =−
                      a6y 3                 a6y 3
               b4
           = − 2 3.
              ay

7. Let f and g be continuous functions such that f (0) < g(0)
< g(1) < f (1). Prove that there exists c ∈ (0, 1) such that
f (c) = g(c).
   Let h(x) = f (x)−g(x). This is a continuous function of h
because that f and g are continuous functions. We see h is a
differentiable function where x ∈ (0, 1) because it continuous
where x ∈ [0, 1]. Note that h(0)<0 and h(1)>0. It is that
exists c ∈ (0, 1) such that f (c) = g(c).

                     x sin(1/x) x = 0
8. Let f (x) =                          and g(x) = xf (x).
                0            x=0
(a) Show that f and g are both continuous at 0.
(b) Show that f is not differentiable at 0.
(c) Show that g is differentiable at 0 and give g (0).
(a) lim f (x) = lim x sin(1/x) = 0 = f (0) and lim g(x) =
      x→0            x→0                              x→0
lim xf (x) = 0 = g(0).
x→0

Calculus First Test 2011/10/20                                   3
Student ID: U10011024                              Name: Kuan-Lun Wang


                    f (x) − f (0)
(b) f (0) = lim                   = lim sin(1/x) is not differen-
                x→0     x−0         x→0
tiable at 0.
                                 1                   g(x) − g(0)
(c) Note that −1 ≤ lim sin( ) ≤ 1. g (0) = lim                   =
                          x→0   x                x→0    x−0
    x2 sin(1/x)
lim                  = lim x sin(1/x) = 0 is differentiable at 0.
x→0      x−0             x→0

9. Find the indicated derivatives.
     d2
(a) dx2 [(x2 − 3x) dx (x + x−1)].
                       d

     d     d2
(b) dt [t2 dt2 (t cos 3t)].
       d2                      −1       d2
(a)   dx
              2        d
         2 [(x − 3x) dx (x + x    )] = dx2 [(x2 − 3x)(1 − x−2)] =
 d2
dx2
     [x2 − 3x − 1 + 3x−1] = dx [2x − 3 − 3x−2] = 2 + 6x−3.
                                 d

                  d2              d
(b) Note that dt2 (t cos 3t) = dt (cos 3t−3t sin 3t) = −6 sin 3t−
              d                                      d
9t cos 3t, dt (t2 sin 3t) = 2t sin 3t+3t2 cos 3t and dt (t3 cos 3t) =
   2              3
3t cos 3t − 3t sin 3t. We havt
        d 2 d2
          [t     (t cos 3t)]
       dt dt2
        d
      = [t2(−6 sin 3t − 9t cos 3t)]
       dt
             d
      = − 3 [2t2 sin 3t + 3t3 cos 3t]
             dt
      = − 3[(4t sin 3t + 6t2 cos 3t) + (9t2 cos 3t − 9t3 sin 3t)]
      =27t3 sin 3t − 12 sin 3t − 45 cos 3t.

10. Find the points (c, f (c)) where the line tangent to the
                  x
graph of f (x) = x+1 is parallel to the secent line that passes
through the points (1, f (1)) and (3, f (3)).
                              1                            1(x+1)−x(1)
   Note that f (c) =      c2 +2c+1
                                     because tat f (x) =      (x+1)2
                                                                         =
Calculus First Test 2011/10/20                                           4
Student ID: U10011024                              Name: Kuan-Lun Wang


    1
x2 +2x+1
         .  The points (c, f (c)) where the line tangent to the
                      x          c      1
graph of f (x) = x+1 is y − c+1 = c2+2c+1 (x − c). Note that
f (3)−f (1)   1
                        √                        1      1
            = 8 . c = ± 2 − 1 because that c2+2c+1 = 8 . This
    3−1                  √            √
is that the points (± 2 − 1, f (± 2 − 1)) where the line
                  √
                 ± √2−1
                                         √
                           √1
tangent y − ± 2 = (± 2−1)2 (x − ± 2 + 1) to the graph
              x
of f (x) = x+1 parallel to the secent line that passes through
the points (1, f (1)) and (3, f (3))
11. Prove or give a counterexample:
(a) Suppose that f (x)<g(x) for all x ∈ (c − p, c + p), except
possibly at c itself. Then lim f (x)< lim g(x).
                                 x→c         x→c
(b) Suppose that lim f (x) = 0 and lim [f (x)g(x)] = 1. Then
                        x→c              x→c
lim g(x) dose not exist.
x→c

(a) That is not true bucause that let f (x) = 1 − x2 and
g(x) = 1 + x2, then lim f (x) = lim g(x).
                          x→c          x→c
(b) Note that f (x) = 0 for all x ∈ (c−p, c+p), except possi-
bly at c itselfif because that f (x) = 0 and lim [f (x)g(x)] = 0.
                                                   x→c
It follows that lim g(x) is not exist because that lim [f (x)g(x)] =
                x→c                                x→c
       1
lim        lim g(x) = 1.
x→c f (x) x→c




Calculus First Test 2011/10/20                                       5

Weitere ähnliche Inhalte

Was ist angesagt?

Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guideakabaka12
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009akabaka12
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010akabaka12
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Matthew Leingang
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010akabaka12
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010akabaka12
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009akabaka12
 
Sifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh SoalSifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh SoalAsrifida Juwita Tanjung
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles SlidesMatthew Leingang
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsMatthew Leingang
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialZerick Lucernas
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 
Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009akabaka12
 

Was ist angesagt? (20)

Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
Sifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh SoalSifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh Soal
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Imc2017 day1-solutions
Imc2017 day1-solutionsImc2017 day1-solutions
Imc2017 day1-solutions
 
Week 2
Week 2 Week 2
Week 2
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009
 
Algebra
AlgebraAlgebra
Algebra
 

Andere mochten auch

Economy Update August 19, 2011
Economy  Update  August 19, 2011Economy  Update  August 19, 2011
Economy Update August 19, 2011Churairatana Nimha
 
但丁神曲企劃書
但丁神曲企劃書但丁神曲企劃書
但丁神曲企劃書Kuan-Lun Wang
 
Tren cloud-computing
Tren cloud-computingTren cloud-computing
Tren cloud-computingutak-atik
 
Javaone2011 atn8 pdf
Javaone2011 atn8 pdfJavaone2011 atn8 pdf
Javaone2011 atn8 pdfUeda Yusuke
 
나는 세상 통역사다 by No.1최소영
나는 세상 통역사다 by No.1최소영나는 세상 통역사다 by No.1최소영
나는 세상 통역사다 by No.1최소영fgisoyoung
 
E kutir presentation-online
E kutir presentation-onlineE kutir presentation-online
E kutir presentation-onlinemillionaireb
 

Andere mochten auch (9)

Economy Update August 19, 2011
Economy  Update  August 19, 2011Economy  Update  August 19, 2011
Economy Update August 19, 2011
 
但丁神曲企劃書
但丁神曲企劃書但丁神曲企劃書
但丁神曲企劃書
 
第二次作業
第二次作業第二次作業
第二次作業
 
Tren cloud-computing
Tren cloud-computingTren cloud-computing
Tren cloud-computing
 
Šėtos kultūros centras
Šėtos kultūros centrasŠėtos kultūros centras
Šėtos kultūros centras
 
Javaone2011 atn8 pdf
Javaone2011 atn8 pdfJavaone2011 atn8 pdf
Javaone2011 atn8 pdf
 
나는 세상 통역사다 by No.1최소영
나는 세상 통역사다 by No.1최소영나는 세상 통역사다 by No.1최소영
나는 세상 통역사다 by No.1최소영
 
E kutir presentation-online
E kutir presentation-onlineE kutir presentation-online
E kutir presentation-online
 
John Cage
John CageJohn Cage
John Cage
 

Ähnlich wie Calculus First Test 2011/10/20

Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Mel Anthony Pepito
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoioNoorYassinHJamel
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Matthew Leingang
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005akabaka12
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)asghar123456
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and modelsTarun Gehlot
 
limits and continuity
limits and continuitylimits and continuity
limits and continuityElias Dinsa
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010akabaka12
 
Varian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookVarian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookJosé Antonio PAYANO YALE
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxOchiriaEliasonyait
 

Ähnlich wie Calculus First Test 2011/10/20 (20)

Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
 
F.Komposisi
F.KomposisiF.Komposisi
F.Komposisi
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)
 
125 5.2
125 5.2125 5.2
125 5.2
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and models
 
Sect4 5
Sect4 5Sect4 5
Sect4 5
 
limits and continuity
limits and continuitylimits and continuity
limits and continuity
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
 
lec12.pdf
lec12.pdflec12.pdf
lec12.pdf
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
Varian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookVarian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution book
 
DIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptxDIFFERENTIATION Integration and limits (1).pptx
DIFFERENTIATION Integration and limits (1).pptx
 

Mehr von Kuan-Lun Wang

Mehr von Kuan-Lun Wang (8)

軍訓報告
軍訓報告軍訓報告
軍訓報告
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
第三次作業
第三次作業第三次作業
第三次作業
 
第一次作業
第一次作業第一次作業
第一次作業
 
第八次習題 Exercise 5.4-14
第八次習題 Exercise 5.4-14第八次習題 Exercise 5.4-14
第八次習題 Exercise 5.4-14
 
第五次習題 Exercise 4.4-28
第五次習題 Exercise 4.4-28第五次習題 Exercise 4.4-28
第五次習題 Exercise 4.4-28
 
第二次習題 Exercise 2.5-32
第二次習題 Exercise 2.5-32第二次習題 Exercise 2.5-32
第二次習題 Exercise 2.5-32
 
第一次習題
第一次習題第一次習題
第一次習題
 

Calculus First Test 2011/10/20

  • 1. Student ID: U10011024 Name: Kuan-Lun Wang √ 1. Let f (x) = 5 x − x3. (a) Give the domain and range of f . (b) State whether f is odd, even or neight. (a) Range of f is R because that y 5 = x − x3. Domain of f is R because taht x3 − x + y 5 = 0 and range of f is R. (b) f is odd because that f (−x) = −f (x). 2. Find that following linits. tan x (a) lim . x→0 x [x2] − x2 (b) lim where [·] is the Gaussian symbol. x→2+ x − 2 1 x2 sin( x ) (c) lim . x→0 sin x tan x sin x 1 (a) lim = lim lim = 1 · 1 = 1. x→0 x x→0 x x→0 cos x [x2] − x2 4 − x2 (b) lim = lim = lim −(x + 2) = −4. x→2+ x − 2 x→2+ x − 2 x→22 1 1 x2 sin( x ) (c) Note that −1 ≤ lim sin( ) ≤ 1. We have lim = x→0 x x→0 sin x x 1 1 lim lim x lim sin( ) = 1 · 0 · lim sin( ) = 0. x→0 sin x x→0 x→0 x x→0 x 3. Find a simplify expression for the product 1 1 1 (1 − )(1 − ) · · · (1 − ) 2 3 n and verify its validity for all integers n ≥ 2. 1 We can show by mathematical induction that (1 − 2 )(1 − 1 1 1 3 ) · · · (1 − n ) = n for all integers n ≥ 2. The basis step, 1 1 namely, the case where n = 2, hold because (1 − 2 ) = 2 . Calculus First Test 2011/10/20 1
  • 2. Student ID: U10011024 Name: Kuan-Lun Wang Now, assume that (1 − 1 )(1 − 1 ) · · · (1 − n ) = n ; this is the 2 3 1 1 inductive hypothesis. To complete the proof, we must show, under the assumption that the inductive hypothesis is true, 1 that (1 − 2 )(1 − 1 ) · · · (1 − n+1 ) = n+1 . Using the inductive 3 1 1 hypothesis, we have 1 1 1 (1 − )(1 − ) · · · (1 − ) 2 3 n+1 1 1 1 1 =((1 − )(1 − ) · · · (1 − ))(1 − ) 2 3 n n+1 1 n 1 = · = . n n+1 n+1 This completes both the inductive step and the proof. √ √ 4. Given an , δ proof of lim x = c for c>0. x→c √ Give >0, let δ = c . Then if |x − c|<δ, we have √ √ √ |x − c| δ c | x − c| = √ √ <√ √ =√ √ ≤ . x+ c x+ c x+ c This establishes the limit statement using the definition. f (x) 5. Prove that if lim [ ] exists, then lim f (x) = 0. x→0 x x→0 f (x) f (x) If lim [ ] exists, then lim f (x) = lim [ ] lim x = x→0 x x→0 x→0 x x→0 f (x) lim [ ] · 0 = 0. x→0 x 2 6. Express dxy in terms of x and y for b2x2 + a2y 2 = a2b2 d 2 where a, b are positive constants. Calculus First Test 2011/10/20 2
  • 3. Student ID: U10011024 Name: Kuan-Lun Wang dy 2 Note that dx = − a2x because that b2x2 + a2y 2 = a2b2. We b y have dy d2y d b2 x b2(a2y) − b2x(a2 dx ) = (− )=− dx2 dx a2y a4 y 2 b2 a2b2y + a2b2x a2x y a4 b2 y 2 + a2 b4 x 2 =− =− a4 y 2 a6 y 3 a2b2(b2x2 + a2y 2) a2b2(a2b2) =− =− a6y 3 a6y 3 b4 = − 2 3. ay 7. Let f and g be continuous functions such that f (0) < g(0) < g(1) < f (1). Prove that there exists c ∈ (0, 1) such that f (c) = g(c). Let h(x) = f (x)−g(x). This is a continuous function of h because that f and g are continuous functions. We see h is a differentiable function where x ∈ (0, 1) because it continuous where x ∈ [0, 1]. Note that h(0)<0 and h(1)>0. It is that exists c ∈ (0, 1) such that f (c) = g(c). x sin(1/x) x = 0 8. Let f (x) = and g(x) = xf (x). 0 x=0 (a) Show that f and g are both continuous at 0. (b) Show that f is not differentiable at 0. (c) Show that g is differentiable at 0 and give g (0). (a) lim f (x) = lim x sin(1/x) = 0 = f (0) and lim g(x) = x→0 x→0 x→0 lim xf (x) = 0 = g(0). x→0 Calculus First Test 2011/10/20 3
  • 4. Student ID: U10011024 Name: Kuan-Lun Wang f (x) − f (0) (b) f (0) = lim = lim sin(1/x) is not differen- x→0 x−0 x→0 tiable at 0. 1 g(x) − g(0) (c) Note that −1 ≤ lim sin( ) ≤ 1. g (0) = lim = x→0 x x→0 x−0 x2 sin(1/x) lim = lim x sin(1/x) = 0 is differentiable at 0. x→0 x−0 x→0 9. Find the indicated derivatives. d2 (a) dx2 [(x2 − 3x) dx (x + x−1)]. d d d2 (b) dt [t2 dt2 (t cos 3t)]. d2 −1 d2 (a) dx 2 d 2 [(x − 3x) dx (x + x )] = dx2 [(x2 − 3x)(1 − x−2)] = d2 dx2 [x2 − 3x − 1 + 3x−1] = dx [2x − 3 − 3x−2] = 2 + 6x−3. d d2 d (b) Note that dt2 (t cos 3t) = dt (cos 3t−3t sin 3t) = −6 sin 3t− d d 9t cos 3t, dt (t2 sin 3t) = 2t sin 3t+3t2 cos 3t and dt (t3 cos 3t) = 2 3 3t cos 3t − 3t sin 3t. We havt d 2 d2 [t (t cos 3t)] dt dt2 d = [t2(−6 sin 3t − 9t cos 3t)] dt d = − 3 [2t2 sin 3t + 3t3 cos 3t] dt = − 3[(4t sin 3t + 6t2 cos 3t) + (9t2 cos 3t − 9t3 sin 3t)] =27t3 sin 3t − 12 sin 3t − 45 cos 3t. 10. Find the points (c, f (c)) where the line tangent to the x graph of f (x) = x+1 is parallel to the secent line that passes through the points (1, f (1)) and (3, f (3)). 1 1(x+1)−x(1) Note that f (c) = c2 +2c+1 because tat f (x) = (x+1)2 = Calculus First Test 2011/10/20 4
  • 5. Student ID: U10011024 Name: Kuan-Lun Wang 1 x2 +2x+1 . The points (c, f (c)) where the line tangent to the x c 1 graph of f (x) = x+1 is y − c+1 = c2+2c+1 (x − c). Note that f (3)−f (1) 1 √ 1 1 = 8 . c = ± 2 − 1 because that c2+2c+1 = 8 . This 3−1 √ √ is that the points (± 2 − 1, f (± 2 − 1)) where the line √ ± √2−1 √ √1 tangent y − ± 2 = (± 2−1)2 (x − ± 2 + 1) to the graph x of f (x) = x+1 parallel to the secent line that passes through the points (1, f (1)) and (3, f (3)) 11. Prove or give a counterexample: (a) Suppose that f (x)<g(x) for all x ∈ (c − p, c + p), except possibly at c itself. Then lim f (x)< lim g(x). x→c x→c (b) Suppose that lim f (x) = 0 and lim [f (x)g(x)] = 1. Then x→c x→c lim g(x) dose not exist. x→c (a) That is not true bucause that let f (x) = 1 − x2 and g(x) = 1 + x2, then lim f (x) = lim g(x). x→c x→c (b) Note that f (x) = 0 for all x ∈ (c−p, c+p), except possi- bly at c itselfif because that f (x) = 0 and lim [f (x)g(x)] = 0. x→c It follows that lim g(x) is not exist because that lim [f (x)g(x)] = x→c x→c 1 lim lim g(x) = 1. x→c f (x) x→c Calculus First Test 2011/10/20 5