Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Funções, quais as suas funções?
A definição de função é um dos conceitos mais importantes da Matemática, pois ele está presente sempre que relacionamos gr...
Também variações na pressão sanguínea, onde se relaciona a pressão máxima, com a mínima.
Para trabalharmos com funções, são necessários alguns pré-requisitos, como: Produto cartesiano Par ordenado São elementos ...
Relação Binária A relação Binária, é qualquer subconjunto do produto cartesiano A x B A relação  R1  de  A  = {0, 1, 2, 3}...
Funções F:A  B ou y=f(x), dado que x  Adotando dois conjuntos, A e B, não-vazios e uma relação binária de A em B, dizemos...
Função injetora Se para quaiquer elementos distintos do conjunto A(x≠ X) correspondem elementos distintos do conjunto B (y...
Função sobrejetora Se o conjunto imagem é igual ao conjunto B, Im(f)=B.
Função bijetora Se, ao mesmo tempo, é injetora e sobrejetora.
Domínio de uma função real 1º caso: Quando a variável aparece no denominador de uma fração. Condição: o denominador de uma...
Função inversa Considerando a função f:A  B bijetora, chamamos função inversa de f a função g:B  A, tal que f(m)=n se e ...
Resolva as atividades abaixo: 1-)Dadas as funções f(x)=2x+m e g(x)=ax+2 qual a relação que  a  e  m  devem satisfazer para...
Referências Bibliográficas: http://ecalculo.if.usp.br/funcoes/grandezas/exemplos/exemplos.htm http://mathfire.sites.uol.co...
Tutoria:  CLEONICE WEBER Aluna: Pollyana de Brito Correa Soares e-mail:  [email_address] Instituição:Universidade Federal ...
Nächste SlideShare
Wird geladen in …5
×

FunçõEs, Quais As Suas FunçõEs

978 Aufrufe

Veröffentlicht am

Veröffentlicht in: Bildung
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

FunçõEs, Quais As Suas FunçõEs

  1. 1. Funções, quais as suas funções?
  2. 2. A definição de função é um dos conceitos mais importantes da Matemática, pois ele está presente sempre que relacionamos grandezas variáveis, e a mesma aparece, em situações do nosso cotidiano. <ul><li>A usamos por exemplo, para o cálculo do IMC, índice de massa corpórea, onde se relaciona a massa e a altura de um indivíduo. </li></ul>
  3. 3. Também variações na pressão sanguínea, onde se relaciona a pressão máxima, com a mínima.
  4. 4. Para trabalharmos com funções, são necessários alguns pré-requisitos, como: Produto cartesiano Par ordenado São elementos do conjunto A que possuem um correspondente em B, e o seu produto, é chamado de produto cartesiano. AxB={(x,y)Ix <ul><li>A B </li></ul>
  5. 5. Relação Binária A relação Binária, é qualquer subconjunto do produto cartesiano A x B A relação R1 de A = {0, 1, 2, 3} em B = {a, b, c, d} dada por R1 = {(0; a), (1; b), (2; c), (2; d)} pode ser representada dos seguintes modos:
  6. 6. Funções F:A  B ou y=f(x), dado que x Adotando dois conjuntos, A e B, não-vazios e uma relação binária de A em B, dizemos que essa relação é função de A em B se, e somente se, a cada elemento do conjunto A corresponde um único elemento do conjunto B. Assim sendo, temos que : Domínio da função D(f)=A O domínio, é o conjunto que contem todos os elementos x, para os quais a função deve ser definida. Contradomínio da função CD(f)=B O contradomínio, é o conjunto que contem os elementos que podem ser relacionados a elementos do domínio. Imagem da função Im(f)B O conjunto imagem, é um subconjunto do contradomínio.
  7. 7. Função injetora Se para quaiquer elementos distintos do conjunto A(x≠ X) correspondem elementos distintos do conjunto B (y≠ y).
  8. 8. Função sobrejetora Se o conjunto imagem é igual ao conjunto B, Im(f)=B.
  9. 9. Função bijetora Se, ao mesmo tempo, é injetora e sobrejetora.
  10. 10. Domínio de uma função real 1º caso: Quando a variável aparece no denominador de uma fração. Condição: o denominador de uma fração deve ser diferente de zero. 2º caso: Quando a variável aparece no radicando de um radical de índice par. Condição: o radicando de um radical de índice par deve ser um número maior ou igual a zero. 3º caso: Quando a variável aparece no radicando de um radical de índice par e esse radical está no denominador de uma fração. Condição: este caso é a reunião dos dois primeiros; logo, o radicando deve ser maior que zero.
  11. 11. Função inversa Considerando a função f:A  B bijetora, chamamos função inversa de f a função g:B  A, tal que f(m)=n se e somente se g(n)=m para todo m A e para todo n B. Função composta Considerando as funções f:A  B e g:B  C, temos que a função composta de g com f é a função g ○ f:A  C, sendo (g ○ f)(x)=g[f(x)]
  12. 12. Resolva as atividades abaixo: 1-)Dadas as funções f(x)=2x+m e g(x)=ax+2 qual a relação que a e m devem satisfazer para que se tenha (fog)(x)=(gof)(x)? 2-)Sejam as funções reais f e g definidas por: e Obtenha as leis que definem fog e gof. 3-)Seja a função dada por: e seja a função dada por ,com, h ≠0 . Nessas condições, g(x) é igual a : a) h b) x c) 2 x d) 2 x + h e) x + h
  13. 13. Referências Bibliográficas: http://ecalculo.if.usp.br/funcoes/grandezas/exemplos/exemplos.htm http://mathfire.sites.uol.com.br/Funcao.htm http://mathfire.sites.uol.com.br/RelacaoBinaria.htm http://pt.wikipedia.org/wiki/Ficheiro:Injection.svg
  14. 14. Tutoria: CLEONICE WEBER Aluna: Pollyana de Brito Correa Soares e-mail: [email_address] Instituição:Universidade Federal Fluminense

×