SlideShare ist ein Scribd-Unternehmen logo
1 von 23
Sub:-COMPLEXVARIABLES AND NUMERICAL METHODS
SUBJECT CODE:-2141905
Topic:-ANALYTIC FUNCTION, Cauchy-riemann equations, Harmonic Conjugate
functions.
Branch:-Mechanical Engineering( 4th Sem.)
Prepared by:-Malaysinh Borasiya(130990119004)
Chintan Charola(130990119005)
Mayurrajsinh Chauhan(130990119006)
ANALYTIC FUNCTION
 A single valued function which is defined and differentiable
at each point of a domain D is said to be analytic in that
domain.
 A function is said to be analytic at a point if its derivative
exists not only at that point but in some neighbourhood of
that point.
 The point where the function is not analytic is called a
singular point of the function.
Notes
 Let f(z) and g(z) be analytic functions in some domain D;
(i) and f(z).g(z) are analytic functions in D.
(ii) is analytic in D except where g(z)=0.
(iii) f[g(z)] and g[f(z)] are analytic functions in D.
)()( zgzf 
)(
)(
zg
zf
Example -1 : State where the function is not analytic?
Solution:- f(z) is not analytic at as the function is not defined at these
points. Hence, the points are singular points.
Example-2 : State where the function is not
analytic?
Solution:- The function is not analytic at the points
and
and
1
2
)( 2


z
z
zf
iz 
iz 
)22)(2(
1
)( 2
2



zzz
z
zf
02 z 0222
 zz
2z iz 

 1
2
842
CAUCHY-RIEMANN PARTIAL DIFFERENTIAL
EQUATIONS
Theorem : If a function f(z) = u(x,y) + iv(x,y) is analytic at any point z = x+iy,
then the partial derivatives ux , uy , vx , vy should exist and satisfy the
equations ux =vy , uy = -vx or
Proof : Let f(z) be an analytic function at any point z.
exist
Now
…..(1)
x
v
y
u
y
v
x
u










,
z
zfzzf
z
zf



)()(
0
lim
)('



z
ivuvviuu
z
zf



)()()(
0
lim
)('



z
viu
z 





0
lim
CAUCHY-RIEMANN PARTIAL DIFFERENTIAL
EQUATIONS
For equation (1) limit exist along any path as Consider the path along real
axis(z=x).
from (1),
….(2)
Now consider the path along y axis i.e. z=iy
from (1),
….(3)
.0z

 00 xz 
x
viu
x
zf






0
lim
)('
x
v
i
x
u







 00 yz 
y
v
y
u
i
yi
viu
y
zf











 0
lim
)('
CAUCHY-RIEMANN PARTIAL DIFFERENTIAL
EQUATIONS
It is obvious that the limits (2) and (3) are same.
and
y
v
y
u
i
x
v
i
x
u












yx vu  xy vu 
Example 3 : Use C-R equation concept to find derivative of
Solution:- We have
and
So, C-R equations are satisfied everywhere in z-plane.
exists everywhere. Thus we get
Example 4 : Show that neither nor is an analytic function.
Solution:- We have
So, C-R equation is not satisfied.
is not analytic.
.)( 2
zzf 
xyiyxzzf 2)( 222

xyyxvyxyxu 2),(,),( 22

yx vxu  2 xy vyu  2
)(' zf
zyixiuvivuzf yyxx 222)(' 
zzf )( zzf )(
iyxzzf )(
yyxvxyxu  ),(,),(
1,0,0,1  yxyx vvuu yx vu 
zzf  )(
Continue…
Now
So, C-R equation is not satisfied.
is not analytic.
Example 5 : Show that is an analytic function, find
Solution:- We have,
and . So, w is analytic.
22
)( yxzzf 
0),(,),( 22
 yxvyxyxu
0,
22


 yx v
yx
x
u yx vu 
zzf  )(
2222
yx
iy
yx
x
w



 .
dz
dw
2222
,
yx
y
v
yx
x
u




,
)( 222
22
yx
xy
ux


 222
)(
2
yx
xy
vx


222
22
)( yx
xy
vy


,
)(
2
222
yx
xy
uy


yx vu  xy vu 
Continue…
Now,
Example 6 : Check whether the following functions are analytic or not at any point:
Solution:-
(a) we have
is not analytic anywhere.
(b)We have
is not
analytic anywhere.
xx ivu
dz
dw

222222
22
)(
2
)( yx
xy
i
yx
xy





.2)()()()( 2
ixyxzfbezfa z

)sin(cos)( yiyeeezf xiyxz
 
,cos yeu x
 ,sin yev x

,cos yeu x
x  yev x
y cos
yx vu 
z
ezf  )(
2
2)( ixyxzf 
,2
,2


xu
xu
xyv
xyv
y 2
2


yx vu  2
2)( ixyxzf 
Example 7 : Examine the analyticity of sinh z.
Solution:- Let z0 be any point in the domain.
exist at any point z.
is analytic.
0
0
00
0
0
sinhsinhlim)()(lim
zz
zz
zzzz
zfzf
zz 







0
00
0
2
sinh
2
cosh2
lim
zz
zzzz
zz 





 





 


0
0
0
0
0
0
cosh
2
2
sinh
lim
2
cosh
lim
z
zz
zz
zz
zz
zz






 





 






 


)(' zf
)(zf
Continue….
OR
We have
and
So, C-R equation is satisfied for any point.
So, f(z) is analytic function.
)sinh(sinh)( iyxzzf 
xyixy coshsinsinhcos 
,sinhcos),( xyyxu  xyyxv coshsin),( 
,coshcos xyux  xyvy coshcos
,sinhsin xyuy  ,sinhsin xyvx 
yx vu  xy vu 
POLAR FORM OF C.R. EQUATIONS
We have
are C-R equations in polar form.
and
 sin,cos ryrx 






 
x
y
yxr 122
tan,
r
vu
r
v
rr
u











1
,
1











 
r
v
i
r
u
ezf i
)('
Harmonic Function & Conjugate harmonic
function
Harmonic Function:- A function is said to be harmonic in a
domain D if
(1) Satisfy Laplace’s equation and
(2) are continuous functions of x and y in D.
Conjugate harmonic function:- If f(z)=u+iv is an analytic function of
z, then v is called a conjugate harmonic function of u and u in its turn is
termed a conjugate harmonic function of v. Or u and v are called conjugate
harmonic functions.
),( yx
),( yx 0 yyxx 
yyxyxx  ,,
Example 8 : Is the function u=x sin x cosh y - cos x sinh y harmonic?
Solution:- We have
And
also are continuous functions.
So, u is a harmonic function.
yxyyxxyxyxu
yxyyxxyxu
yxyyxxu
xx
x
sinhcoscoshsincoshcoscoshcos
sinhsincoshcoscoshsin
sinhcoscoshsin



yxyyxxyx sinhcoscoshsincoshcos2 
yxyyxyxyxxu
yxyyxyxxu
yy
y
sinhcoscoshcoscoshcoscoshsin
coshcossinhcossinhsin


yxyyxyxx sinhcoscoshcos2coshsin 
0 yyxx uu
yyxyxx uuu ,,
Example 9 : Show that is harmonic.
Solution:- We have
….(1)
22
yx
x
u


22
yx
x
u


222
22
222
22
)()(
)2()1)((
yx
xy
yx
xxyx
ux






422
2222222
)(
)2)((2)()2()(
yx
xyxxyxyx
uxx



322
23
322
3223
422
222222
)(
62
)(
4422
)(
)](4)2)()[((
yx
xyx
yx
xxyxyx
yx
xyxxyxyx









Continue…
…(2)
So, From equation (1) & (2),
Also are continuous functions.
So, u is a harmonic function.











422
22222
222
)(
2)(2)2()2()(
)(
2
yx
yyxxyxyx
u
yx
xy
u
yy
y
322
23
322
223
422
22222222
)(
62
)(
]822[
)(
)](8)2)([()(
yx
xyx
yx
xyxyx
yx
yxxyxyxyx









0 yyxx uu
yyxyxx uuu ,,
Example 10 : Determine a and b such that is harmonic and find
its conjugate harmonic.
Solution:- We have
since u is harmonic function,
and b assumes any value
Now,
bxyaxu  3
bxyaxu  3
0
63 2


yyy
xxx
ubxu
axubyaxu
0 yyxx uu
006  aax
bxubyubxyu yx  ,
dyvdxvdv yx 
bydybxdx
dyudxu xy


Continue… c
y
b
x
bv 
22
22






 c
bybx
ibxyivuzf
22
)(
22
Method of constructing a regular function
If only the real part of an analytic function f(z) is given then
where c is a real constant.
Replace x by and y by to find and put x=y=0 to find u(0,0)
in u(x,y)
ciu
i
zz
uzf 





 )0,0(
2
,
2
2)(
2
z
i
z
2






i
zz
u
2
,
2
Example 11 : Find an analytic function if
Solution:- We have
and u(0,0)=0
.33
xyxu ivuzf )(
xyxu 33

iz
z
i
zzz
i
zz
u 2
33
4
3
822
3
22
,
2

























ciu
i
zz
uzf 





 )0,0(
2
,
2
2)(
ciiz
z
zf  2
3
2
3
4
)(
Example 12 : Show that the function is harmonic and find the
corresponding analytic function.
Solution:- We have
So, u is harmonic.
Now,
xyxu  22
xyxu  22
22
212


yyy
xxx
uyu
uxu
0 yyxx uu
0)0,0(
222442
,
2
222







u
zzzzz
i
zz
u
cizzciu
i
zz
uzf 





 2
)0,0(
2
,
2
2)(
C.v.n.m (m.e. 130990119004-06)

Weitere ähnliche Inhalte

Was ist angesagt?

Differential equations
Differential equationsDifferential equations
Differential equationsSeyid Kadher
 
Dobule and triple integral
Dobule and triple integralDobule and triple integral
Dobule and triple integralsonendra Gupta
 
Complex function
Complex functionComplex function
Complex functionShrey Patel
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiationTanuj Parikh
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1 Pokarn Narkhede
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)tejaspatel1997
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equationJUGAL BORAH
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl VishalVishwakarma59
 
Jacobian solved examples (2019)
Jacobian solved examples (2019)Jacobian solved examples (2019)
Jacobian solved examples (2019)sumanmathews
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equationNofal Umair
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential EquationShrey Patel
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT 03062679929
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.Kartikey Rohila
 

Was ist angesagt? (20)

Differential equations
Differential equationsDifferential equations
Differential equations
 
Complex integration
Complex integrationComplex integration
Complex integration
 
Dobule and triple integral
Dobule and triple integralDobule and triple integral
Dobule and triple integral
 
Complex function
Complex functionComplex function
Complex function
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Jacobian solved examples (2019)
Jacobian solved examples (2019)Jacobian solved examples (2019)
Jacobian solved examples (2019)
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
 
DIFFERENTIATION
DIFFERENTIATIONDIFFERENTIATION
DIFFERENTIATION
 
Continuity
ContinuityContinuity
Continuity
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.
 

Andere mochten auch

Lecture notes for s4 b tech Mathematics
Lecture notes for s4 b tech Mathematics  Lecture notes for s4 b tech Mathematics
Lecture notes for s4 b tech Mathematics Anoop T Vilakkuvettom
 
Applications of analytic functions and vector calculus
Applications of analytic functions and vector calculusApplications of analytic functions and vector calculus
Applications of analytic functions and vector calculusPoojith Chowdhary
 
2012 740 stober_ppt
2012 740 stober_ppt2012 740 stober_ppt
2012 740 stober_pptmarykdan
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature FormulaDhaval Shukla
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian IntegrationReza Rahimi
 
5 Reason's To Tint Your Car
5 Reason's To Tint Your Car5 Reason's To Tint Your Car
5 Reason's To Tint Your CarEason Chan
 
Geometrical tolerances
Geometrical tolerancesGeometrical tolerances
Geometrical tolerancesHassan Habib
 
NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)krishnapriya R
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IRai University
 
Types of flow in fluid mechanics
Types of flow in fluid mechanicsTypes of flow in fluid mechanics
Types of flow in fluid mechanicsAmit Mak
 
10 Researched Benefits of Chiropractic
10 Researched Benefits of Chiropractic10 Researched Benefits of Chiropractic
10 Researched Benefits of ChiropracticEason Chan
 
TYPES OF PATTERN AND ITS APPLICATION
TYPES OF PATTERN AND ITS APPLICATIONTYPES OF PATTERN AND ITS APPLICATION
TYPES OF PATTERN AND ITS APPLICATIONPraveen Kumar
 
Newton cotes integration method
Newton cotes integration  methodNewton cotes integration  method
Newton cotes integration methodshashikant pabari
 

Andere mochten auch (20)

Lecture notes for s4 b tech Mathematics
Lecture notes for s4 b tech Mathematics  Lecture notes for s4 b tech Mathematics
Lecture notes for s4 b tech Mathematics
 
Applications of analytic functions and vector calculus
Applications of analytic functions and vector calculusApplications of analytic functions and vector calculus
Applications of analytic functions and vector calculus
 
2012 740 stober_ppt
2012 740 stober_ppt2012 740 stober_ppt
2012 740 stober_ppt
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
 
Gaussian Quadrature Formula
Gaussian Quadrature FormulaGaussian Quadrature Formula
Gaussian Quadrature Formula
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
5 Reason's To Tint Your Car
5 Reason's To Tint Your Car5 Reason's To Tint Your Car
5 Reason's To Tint Your Car
 
U3 p4 casting defects
U3 p4 casting defectsU3 p4 casting defects
U3 p4 casting defects
 
Es272 ch6
Es272 ch6Es272 ch6
Es272 ch6
 
Casting Defects And Remedies
Casting Defects And RemediesCasting Defects And Remedies
Casting Defects And Remedies
 
Geometrical tolerances
Geometrical tolerancesGeometrical tolerances
Geometrical tolerances
 
NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-I
 
Lever and Its Types
Lever and Its TypesLever and Its Types
Lever and Its Types
 
Types of flow in fluid mechanics
Types of flow in fluid mechanicsTypes of flow in fluid mechanics
Types of flow in fluid mechanics
 
10 Researched Benefits of Chiropractic
10 Researched Benefits of Chiropractic10 Researched Benefits of Chiropractic
10 Researched Benefits of Chiropractic
 
TYPES OF PATTERN AND ITS APPLICATION
TYPES OF PATTERN AND ITS APPLICATIONTYPES OF PATTERN AND ITS APPLICATION
TYPES OF PATTERN AND ITS APPLICATION
 
Levers ppt
Levers pptLevers ppt
Levers ppt
 
Newton cotes integration method
Newton cotes integration  methodNewton cotes integration  method
Newton cotes integration method
 
MANGENESE
MANGENESEMANGENESE
MANGENESE
 

Ähnlich wie C.v.n.m (m.e. 130990119004-06)

Test Problems in Optimization
Test Problems in OptimizationTest Problems in Optimization
Test Problems in OptimizationXin-She Yang
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iiimanoj302009
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concretemocr84810
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfhabtamu292245
 
Inverse functions
Inverse functionsInverse functions
Inverse functionsJJkedst
 
Functions
FunctionsFunctions
FunctionsJJkedst
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3Amin khalil
 
Supporting Vector Machine
Supporting Vector MachineSupporting Vector Machine
Supporting Vector MachineSumit Singh
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B techRaj verma
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09志远 姚
 
Convex Optimization
Convex OptimizationConvex Optimization
Convex Optimizationadil raja
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAlbert Jose
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Poleijtsrd
 

Ähnlich wie C.v.n.m (m.e. 130990119004-06) (20)

Test Problems in Optimization
Test Problems in OptimizationTest Problems in Optimization
Test Problems in Optimization
 
Unit1
Unit1Unit1
Unit1
 
Real and complex
Real and complexReal and complex
Real and complex
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iii
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concrete
 
U unit3 vm
U unit3 vmU unit3 vm
U unit3 vm
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
Graph a function
Graph a functionGraph a function
Graph a function
 
Make up test
Make up testMake up test
Make up test
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Functions
FunctionsFunctions
Functions
 
Formula m2
Formula m2Formula m2
Formula m2
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
Supporting Vector Machine
Supporting Vector MachineSupporting Vector Machine
Supporting Vector Machine
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Partial differentiation B tech
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09
 
Convex Optimization
Convex OptimizationConvex Optimization
Convex Optimization
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notes
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
 

Kürzlich hochgeladen

Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxNadaHaitham1
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEselvakumar948
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 

Kürzlich hochgeladen (20)

Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 

C.v.n.m (m.e. 130990119004-06)

  • 1. Sub:-COMPLEXVARIABLES AND NUMERICAL METHODS SUBJECT CODE:-2141905 Topic:-ANALYTIC FUNCTION, Cauchy-riemann equations, Harmonic Conjugate functions. Branch:-Mechanical Engineering( 4th Sem.) Prepared by:-Malaysinh Borasiya(130990119004) Chintan Charola(130990119005) Mayurrajsinh Chauhan(130990119006)
  • 2. ANALYTIC FUNCTION  A single valued function which is defined and differentiable at each point of a domain D is said to be analytic in that domain.  A function is said to be analytic at a point if its derivative exists not only at that point but in some neighbourhood of that point.  The point where the function is not analytic is called a singular point of the function.
  • 3. Notes  Let f(z) and g(z) be analytic functions in some domain D; (i) and f(z).g(z) are analytic functions in D. (ii) is analytic in D except where g(z)=0. (iii) f[g(z)] and g[f(z)] are analytic functions in D. )()( zgzf  )( )( zg zf
  • 4. Example -1 : State where the function is not analytic? Solution:- f(z) is not analytic at as the function is not defined at these points. Hence, the points are singular points. Example-2 : State where the function is not analytic? Solution:- The function is not analytic at the points and and 1 2 )( 2   z z zf iz  iz  )22)(2( 1 )( 2 2    zzz z zf 02 z 0222  zz 2z iz    1 2 842
  • 5. CAUCHY-RIEMANN PARTIAL DIFFERENTIAL EQUATIONS Theorem : If a function f(z) = u(x,y) + iv(x,y) is analytic at any point z = x+iy, then the partial derivatives ux , uy , vx , vy should exist and satisfy the equations ux =vy , uy = -vx or Proof : Let f(z) be an analytic function at any point z. exist Now …..(1) x v y u y v x u           , z zfzzf z zf    )()( 0 lim )('    z ivuvviuu z zf    )()()( 0 lim )('    z viu z       0 lim
  • 6. CAUCHY-RIEMANN PARTIAL DIFFERENTIAL EQUATIONS For equation (1) limit exist along any path as Consider the path along real axis(z=x). from (1), ….(2) Now consider the path along y axis i.e. z=iy from (1), ….(3) .0z   00 xz  x viu x zf       0 lim )(' x v i x u         00 yz  y v y u i yi viu y zf             0 lim )('
  • 7. CAUCHY-RIEMANN PARTIAL DIFFERENTIAL EQUATIONS It is obvious that the limits (2) and (3) are same. and y v y u i x v i x u             yx vu  xy vu 
  • 8. Example 3 : Use C-R equation concept to find derivative of Solution:- We have and So, C-R equations are satisfied everywhere in z-plane. exists everywhere. Thus we get Example 4 : Show that neither nor is an analytic function. Solution:- We have So, C-R equation is not satisfied. is not analytic. .)( 2 zzf  xyiyxzzf 2)( 222  xyyxvyxyxu 2),(,),( 22  yx vxu  2 xy vyu  2 )(' zf zyixiuvivuzf yyxx 222)('  zzf )( zzf )( iyxzzf )( yyxvxyxu  ),(,),( 1,0,0,1  yxyx vvuu yx vu  zzf  )(
  • 9. Continue… Now So, C-R equation is not satisfied. is not analytic. Example 5 : Show that is an analytic function, find Solution:- We have, and . So, w is analytic. 22 )( yxzzf  0),(,),( 22  yxvyxyxu 0, 22    yx v yx x u yx vu  zzf  )( 2222 yx iy yx x w     . dz dw 2222 , yx y v yx x u     , )( 222 22 yx xy ux    222 )( 2 yx xy vx   222 22 )( yx xy vy   , )( 2 222 yx xy uy   yx vu  xy vu 
  • 10. Continue… Now, Example 6 : Check whether the following functions are analytic or not at any point: Solution:- (a) we have is not analytic anywhere. (b)We have is not analytic anywhere. xx ivu dz dw  222222 22 )( 2 )( yx xy i yx xy      .2)()()()( 2 ixyxzfbezfa z  )sin(cos)( yiyeeezf xiyxz   ,cos yeu x  ,sin yev x  ,cos yeu x x  yev x y cos yx vu  z ezf  )( 2 2)( ixyxzf  ,2 ,2   xu xu xyv xyv y 2 2   yx vu  2 2)( ixyxzf 
  • 11. Example 7 : Examine the analyticity of sinh z. Solution:- Let z0 be any point in the domain. exist at any point z. is analytic. 0 0 00 0 0 sinhsinhlim)()(lim zz zz zzzz zfzf zz         0 00 0 2 sinh 2 cosh2 lim zz zzzz zz                  0 0 0 0 0 0 cosh 2 2 sinh lim 2 cosh lim z zz zz zz zz zz                          )(' zf )(zf
  • 12. Continue…. OR We have and So, C-R equation is satisfied for any point. So, f(z) is analytic function. )sinh(sinh)( iyxzzf  xyixy coshsinsinhcos  ,sinhcos),( xyyxu  xyyxv coshsin),(  ,coshcos xyux  xyvy coshcos ,sinhsin xyuy  ,sinhsin xyvx  yx vu  xy vu 
  • 13. POLAR FORM OF C.R. EQUATIONS We have are C-R equations in polar form. and  sin,cos ryrx          x y yxr 122 tan, r vu r v rr u            1 , 1              r v i r u ezf i )('
  • 14. Harmonic Function & Conjugate harmonic function Harmonic Function:- A function is said to be harmonic in a domain D if (1) Satisfy Laplace’s equation and (2) are continuous functions of x and y in D. Conjugate harmonic function:- If f(z)=u+iv is an analytic function of z, then v is called a conjugate harmonic function of u and u in its turn is termed a conjugate harmonic function of v. Or u and v are called conjugate harmonic functions. ),( yx ),( yx 0 yyxx  yyxyxx  ,,
  • 15. Example 8 : Is the function u=x sin x cosh y - cos x sinh y harmonic? Solution:- We have And also are continuous functions. So, u is a harmonic function. yxyyxxyxyxu yxyyxxyxu yxyyxxu xx x sinhcoscoshsincoshcoscoshcos sinhsincoshcoscoshsin sinhcoscoshsin    yxyyxxyx sinhcoscoshsincoshcos2  yxyyxyxyxxu yxyyxyxxu yy y sinhcoscoshcoscoshcoscoshsin coshcossinhcossinhsin   yxyyxyxx sinhcoscoshcos2coshsin  0 yyxx uu yyxyxx uuu ,,
  • 16. Example 9 : Show that is harmonic. Solution:- We have ….(1) 22 yx x u   22 yx x u   222 22 222 22 )()( )2()1)(( yx xy yx xxyx ux       422 2222222 )( )2)((2)()2()( yx xyxxyxyx uxx    322 23 322 3223 422 222222 )( 62 )( 4422 )( )](4)2)()[(( yx xyx yx xxyxyx yx xyxxyxyx         
  • 17. Continue… …(2) So, From equation (1) & (2), Also are continuous functions. So, u is a harmonic function.            422 22222 222 )( 2)(2)2()2()( )( 2 yx yyxxyxyx u yx xy u yy y 322 23 322 223 422 22222222 )( 62 )( ]822[ )( )](8)2)([()( yx xyx yx xyxyx yx yxxyxyxyx          0 yyxx uu yyxyxx uuu ,,
  • 18. Example 10 : Determine a and b such that is harmonic and find its conjugate harmonic. Solution:- We have since u is harmonic function, and b assumes any value Now, bxyaxu  3 bxyaxu  3 0 63 2   yyy xxx ubxu axubyaxu 0 yyxx uu 006  aax bxubyubxyu yx  , dyvdxvdv yx  bydybxdx dyudxu xy  
  • 20. Method of constructing a regular function If only the real part of an analytic function f(z) is given then where c is a real constant. Replace x by and y by to find and put x=y=0 to find u(0,0) in u(x,y) ciu i zz uzf        )0,0( 2 , 2 2)( 2 z i z 2       i zz u 2 , 2
  • 21. Example 11 : Find an analytic function if Solution:- We have and u(0,0)=0 .33 xyxu ivuzf )( xyxu 33  iz z i zzz i zz u 2 33 4 3 822 3 22 , 2                          ciu i zz uzf        )0,0( 2 , 2 2)( ciiz z zf  2 3 2 3 4 )(
  • 22. Example 12 : Show that the function is harmonic and find the corresponding analytic function. Solution:- We have So, u is harmonic. Now, xyxu  22 xyxu  22 22 212   yyy xxx uyu uxu 0 yyxx uu 0)0,0( 222442 , 2 222        u zzzzz i zz u cizzciu i zz uzf        2 )0,0( 2 , 2 2)(