SlideShare ist ein Scribd-Unternehmen logo
1 von 38
CSP



(STOC 2011, to appear)

                         (   )
Max CSP
CSP (                                        )
•

•   : SAT
         : (¬x1 ∨ x2 ∨ x3), (x1 ∨ ¬x2), (x1 ∨ ¬x3)
         : Yes ( β = (1,1,0))
•   :          k         , Fq

•        NP
Max CSP
•

•   : Max Cut
      I: (v1 ⊕ v2), (v1 ⊕ v3), (v1 ⊕ v4), (v2 ⊕ v3), (v2 ⊕ v4)

        v1          v2                β = (1,1,0,0)
                              opt(I) = val(I, β) = 4 / 5
        v3          v4                (                    )

•       NP
CSP Λ
• CSP                   Λ = ([q], s, t, P)
     [q] = {1,...,q}:
     s=
     t=
     P=


• Max SAT = ({0, 1}, ∞, ∞, {∨})
• Max Cut = ({0,1}, 2, ∞, {⊕})
CSP Λ                                     I
• CSP Λ                I = (V, P)

    V:
    P:



• Max Cut                 I = (V, P)
                                       v1       v2
    V = {v1,v2,v3,v4}
    P = {(v1⊕v2), (v1⊕v3),
                                       v3       v4
         (v1⊕v4), (v2⊕v3), (v2⊕v4)}
Max CSP
• Max CSP                NP

•     x x*   α       : αx* ≦ x ≦ x*

•β                   I α           :
    val(I, β) opt(I) α

• CSP Λ              α                  :
                 I             α       β
Max CSP


• Random Assignment
• SDP
• PCP/Unique Games Conjecture
    CSP         RA          SDP           UGC-Hard
  Max SAT       0.5      0.787[ABZ06]           ?
  Max Cut       0.5      0.878[GW95]     0.878+ε[KKMO04]
 Max Dicut     0.25      0.874[LLZ06]           ?
 Max k-CSP     1/2k    poly(k)/2k[CMM09] poly(k)/2k[ST06]
Max CSP


• [Rag08] (informal)     CSP Λ      UGC
          ”BasicSDP”+

              UGC-Hard


    CSP           RA        SDP    UGC-Hard
  Max SAT         0.5
  Max Cut         0.5      0.878    0.878+ε
 Max Dicut       0.25
 Max k-CSP       1/2k
Max CSP
Max CSP
•
    (o(n)       )

•       x x*        (α, ε)         : αx* - ε ≦ x ≦ x*

•β                   I (α,ε)                     :
    val(I, β) opt(I) (α, ε)                (0 ≦ opt(I) ≦ 1       )


• CSP Λ                      (α, ε)                          :
                        I                       2/3                  (α,ε)
            β
    v                          (      1   )βv
Max CSP
•                       Ω(n)


• CSP(        )

    1. Dense model
    2. Bounded-degree model (           )

•
    (Dense model        CSP     (1,ε)       )
•              t

•        I = (V, P)            OI: V × [t] → P


    OI(v, i) = v           i



•                     OI                    (
    )
t=3                                     v1   v2
V = {v1,v2,v3,v4}
P = {(v1 ⊕ v2), (v1 ⊕ v3),              v3   v4
     (v1 ⊕ v4), (v2 ⊕ v3), (v2 ⊕ v4)}

OI(v1, 1) = (v1⊕v3)
OI(v3, 2) = (v2⊕v3)
OI(v3, 3) = ⊥
(α, ε)
[Rag08]
• (informal)    CSP Λ             ”BasicLP”+




    CSP        RA       O(1) (LP)         Ω(√n)
  Max SAT      0.5       0.75-ε           0.75+ε
  Max Cut      0.5         0.5            0.5+ε
 Max Dicut     0.25       0.5-ε           0.5+ε
 Max k-CSP     1/2k      2/2k-ε           2/2k+ε
Integrality Gap
• lp(I):               I            BasicLP
                                opt(I)
• Integrality Gap:     αΛ = inf
                            I∈Λ lp(I)


   [       ]        CSP Λ
               ε                     (αΛ-ε, ε)


               ε             δ                         (αΛ+ε, δ)
                            Ω(√n)

                                                        Θ(n)
                                              : exp(exp(poly(qst/ε)))
• lp(I) = c
    1. opt(I) ≦ lp(I) = c
    2. opt(I) ≧ αΛlp(I) = αΛc
➡ opt(I) = c, opt(J) < αΛc      I, J
    BasicLP

•             (αΛ-ε, ε)

➡ BasicLP
        LP
• lp(I) = c
    1. opt(I) ≦ lp(I) = c
    2. opt(I) ≧ αΛlp(I) = αΛc
➡ opt(I) = c, opt(J) > αΛc         I, J
    BasicLP

•             (αΛ+ε,δ)

➡ BasicLP                       (SDP      )
• Dense Model
  • [AE02, AdlVKK03]
               CSP             (1,ε)

• Bounded-degree model
  • Max E3LIN2 (1/2+ε,δ)      Ω(n)
      [BOT02]


   • Max Cut (1/2+ε,δ)     Ω(√n)       [GR08]
[Rag08]

                         [Rag08]

    CSP                  CSP
BasicLP             BasicSDP
                 Unique Games Conjecture
 Unconditional
•
•         I                          ε-far: I
    εtn       (                     ε )

• CSP Λ                                    : CSP Λ
      ε-far               2/3

• CSP Λ
                  CSP Λ         I                lp(I) = 1⇒ opt(I) = 1

                                (integrality gap curve c = 1             )
(   )
(αΛ-ε, ε)
•

    1. BasicLP        Packing LP

    2. Packing LP LP solver

    3. LP

•
•       Max Cut
BasicLP for Max Cut
•             IP                                             e
                                                         u       v
• xv,i:          v          i∈{0,1}
    µe,β:    e                   β∈{0,1}2

            max Σewe(µe,01 + µe,10)
             s.t. xv,0 + xv,1 = 1        ∀v
                     µe,00 + µe,01 = xv,0 ∀ e = (v, u)
                     µe,10 + µe,11 = xv,1 ∀ e = (v, u)
                     xv,i ∈ {0,1}        ∀ v, i
                     µe,β ∈ {0,1}2       ∀ e, β
BasicLP for Max Cut
• LP                                                    e
                                                    u       v
• xv:       v
  µe:   e

        max Σewe(µe,01 + µe,10)
         s.t. xv,0 + xv,1 = 1       ∀v
                µe,00 + µe,01 = xv,0 ∀ e = (v, u)
                µe,10 + µe,11 = xv,1 ∀ e = (v, u)
                xv,i ≧ 0            ∀ v, i
                µe,β ≧ 0            ∀ e, β
Basic LP             Packing LP
• Packing LP:               LP
                max cTx
                s.t. Ax ≦ b
                     A, b, c ≧ 0

•
BasicLP


• LP
• xv,i ε                                      xεv,i

• (xεu,0, xεu,0)=(xεv,0, xεv,0)              u,v

                 G                                          G’

   (0.41,0.59)       (0.39,0.61)   ε = 0.1
                                                                 (0.4,0.6)



   (0.22,0.78)       (0.81,0.19)                (0.2,0.8)        (0.8,0.2)
BasicLP


• lp(G’) ≈ lp(G)
• G’                            (1/ε)2                                 β


• β G
               G’                                           G
                                              (0.41,0.59)       (0.39,0.61)
                    (0.4,0.6)       ε = 0.1




   (0.2,0.8)    (0.8,0.2)                     (0.22,0.78)       (0.81,0.19)
BasicLP


                        opt(I)
               αΛ = inf
                    I∈Λ lp(I)




val(G,β) = val(G’,β) = opt(G’,β) ≧ αΛlp(G’) ≈ αΛlp(G)
• Packing LP (         )        x* = {x*v,i}v∈V,i∈{0,1}

• [KMW06]                  x*                        Olp

                           Olp(v,i) = x*v,i
• G’               β                          β            Olp
       val(G, β)
(           )
(αΛ+ε, δ)       Ω(√n)
Yao’s minimax principle
•
• DN: opt(J) ≦ (αΛc+ε)   J

• DY: opt(J) ≧ c    J

• D: DY DN                       J


•D             J DY,DN       (
             )   2/3
         Ω(√n)
• lp(I) = c, opt(I) ≈ αΛc       I         (              c,I
             )

•I
• DIopt: opt(J) ≦ αΛc+ε         J        1-o(1)

• DIlp: opt(J) ≧ c       J          1
     I
                             opt(I) = 2 / 3, lp(I) = 1
                 e           µe,00=µe,11=0
         u           v
                             µe,01=µe,10=1/2
DIopt
•I                                     I


•J                I   (     )

•        1-o(1)   opt(J) ≦ αΛc+ε

                                   J
     I

             e
         u            v
DIlp
•I                                     µ


• I LP          J

• opt(J) ≧ c
                                   J
     I

               e
         u
          µe,00=µe,11=0
          µe,01=µe,10=1/2
• DIopt DIlp     Ω(√n)

•                        o(√n)
    1-o(1)                       (   )


•(           )
• Ω(√n)
  • Sherali-Adams
• CSP Λ
  • Horn Sat: Θ(1)
  • 2-Colorability: Θ*(√n)
  •                  : Θ(n)

Weitere ähnliche Inhalte

Was ist angesagt?

Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsIan Huston
 
short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018Christian Robert
 
Abstract Algebra in 3 Hours
Abstract Algebra in 3 HoursAbstract Algebra in 3 Hours
Abstract Algebra in 3 HoursAshwin Rao
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsArvind Devaraj
 
SPU Optimizations - Part 2
SPU Optimizations - Part 2SPU Optimizations - Part 2
SPU Optimizations - Part 2Naughty Dog
 
SPU Optimizations-part 1
SPU Optimizations-part 1SPU Optimizations-part 1
SPU Optimizations-part 1Naughty Dog
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
pres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdfpres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdfgrssieee
 
Continuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDContinuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDValentin De Bortoli
 
Ada boost brown boost performance with noisy data
Ada boost brown boost performance with noisy dataAda boost brown boost performance with noisy data
Ada boost brown boost performance with noisy dataShadhin Rahman
 
A brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTA brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTJiahao Chen
 
Practical Spherical Harmonics Based PRT Methods
Practical Spherical Harmonics Based PRT MethodsPractical Spherical Harmonics Based PRT Methods
Practical Spherical Harmonics Based PRT MethodsNaughty Dog
 
Tele4653 l6
Tele4653 l6Tele4653 l6
Tele4653 l6Vin Voro
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysiszukun
 
Runtime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary AlgorithmsRuntime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary AlgorithmsPK Lehre
 

Was ist angesagt? (19)

Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical Simulations
 
short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018
 
Abstract Algebra in 3 Hours
Abstract Algebra in 3 HoursAbstract Algebra in 3 Hours
Abstract Algebra in 3 Hours
 
Two Curves Upfront
Two Curves UpfrontTwo Curves Upfront
Two Curves Upfront
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
 
SPU Optimizations - Part 2
SPU Optimizations - Part 2SPU Optimizations - Part 2
SPU Optimizations - Part 2
 
SPU Optimizations-part 1
SPU Optimizations-part 1SPU Optimizations-part 1
SPU Optimizations-part 1
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
pres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdfpres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdf
 
Continuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDContinuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGD
 
The FFT And Spectral Analysis
The FFT And Spectral AnalysisThe FFT And Spectral Analysis
The FFT And Spectral Analysis
 
Ada boost brown boost performance with noisy data
Ada boost brown boost performance with noisy dataAda boost brown boost performance with noisy data
Ada boost brown boost performance with noisy data
 
A brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFTA brief introduction to Hartree-Fock and TDDFT
A brief introduction to Hartree-Fock and TDDFT
 
Practical Spherical Harmonics Based PRT Methods
Practical Spherical Harmonics Based PRT MethodsPractical Spherical Harmonics Based PRT Methods
Practical Spherical Harmonics Based PRT Methods
 
Tele4653 l6
Tele4653 l6Tele4653 l6
Tele4653 l6
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysis
 
Runtime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary AlgorithmsRuntime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary Algorithms
 
Cb25464467
Cb25464467Cb25464467
Cb25464467
 

Andere mochten auch

計算情報学研究室 (数理情報学第7研究室)
計算情報学研究室  (数理情報学第7研究室) 計算情報学研究室  (数理情報学第7研究室)
計算情報学研究室 (数理情報学第7研究室) Tasuku Soma
 
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98thYoichi Motomura
 
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術Yoichi Motomura
 
ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望maruyama097
 
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用Kota Abe
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Keigo Nishida
 
Statistical Semantic入門 ~分布仮説からword2vecまで~
Statistical Semantic入門 ~分布仮説からword2vecまで~Statistical Semantic入門 ~分布仮説からword2vecまで~
Statistical Semantic入門 ~分布仮説からword2vecまで~Yuya Unno
 

Andere mochten auch (7)

計算情報学研究室 (数理情報学第7研究室)
計算情報学研究室  (数理情報学第7研究室) 計算情報学研究室  (数理情報学第7研究室)
計算情報学研究室 (数理情報学第7研究室)
 
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
 
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
 
ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望
 
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西
 
Statistical Semantic入門 ~分布仮説からword2vecまで~
Statistical Semantic入門 ~分布仮説からword2vecまで~Statistical Semantic入門 ~分布仮説からword2vecまで~
Statistical Semantic入門 ~分布仮説からword2vecまで~
 

Ähnlich wie 次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性

Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.SEENET-MTP
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesSreedhar Chowdam
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDChristos Kallidonis
 
Algorithm Design and Complexity - Course 11
Algorithm Design and Complexity - Course 11Algorithm Design and Complexity - Course 11
Algorithm Design and Complexity - Course 11Traian Rebedea
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..KarthikeyaLanka1
 
Lossy Kernelization
Lossy KernelizationLossy Kernelization
Lossy Kernelizationmsramanujan
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化Akira Tanimoto
 
5icdsa2007 v4
5icdsa2007 v45icdsa2007 v4
5icdsa2007 v4fminhos
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures? Alessandro Palmeri
 
Lp and ip programming cp 9
Lp and ip programming cp 9Lp and ip programming cp 9
Lp and ip programming cp 9M S Prasad
 
1_Asymptotic_Notation_pptx.pptx
1_Asymptotic_Notation_pptx.pptx1_Asymptotic_Notation_pptx.pptx
1_Asymptotic_Notation_pptx.pptxpallavidhade2
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning Sean Meyn
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programmingShakil Ahmed
 
Recurrence Relation for Achromatic Number of Line Graph of Graph
Recurrence Relation for Achromatic Number of Line Graph of GraphRecurrence Relation for Achromatic Number of Line Graph of Graph
Recurrence Relation for Achromatic Number of Line Graph of GraphIRJET Journal
 

Ähnlich wie 次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性 (20)

Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
DAA_LECT_2.pdf
DAA_LECT_2.pdfDAA_LECT_2.pdf
DAA_LECT_2.pdf
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 
Algorithm Design and Complexity - Course 11
Algorithm Design and Complexity - Course 11Algorithm Design and Complexity - Course 11
Algorithm Design and Complexity - Course 11
 
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..
 
Lossy Kernelization
Lossy KernelizationLossy Kernelization
Lossy Kernelization
 
16 fft
16 fft16 fft
16 fft
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
5icdsa2007 v4
5icdsa2007 v45icdsa2007 v4
5icdsa2007 v4
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Lp and ip programming cp 9
Lp and ip programming cp 9Lp and ip programming cp 9
Lp and ip programming cp 9
 
1_Asymptotic_Notation_pptx.pptx
1_Asymptotic_Notation_pptx.pptx1_Asymptotic_Notation_pptx.pptx
1_Asymptotic_Notation_pptx.pptx
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programming
 
Recurrence Relation for Achromatic Number of Line Graph of Graph
Recurrence Relation for Achromatic Number of Line Graph of GraphRecurrence Relation for Achromatic Number of Line Graph of Graph
Recurrence Relation for Achromatic Number of Line Graph of Graph
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
economics
economicseconomics
economics
 

Kürzlich hochgeladen

This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 

Kürzlich hochgeladen (20)

This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 

次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性

  • 1. CSP (STOC 2011, to appear) ( )
  • 3. CSP ( ) • • : SAT : (¬x1 ∨ x2 ∨ x3), (x1 ∨ ¬x2), (x1 ∨ ¬x3) : Yes ( β = (1,1,0)) • : k , Fq • NP
  • 4. Max CSP • • : Max Cut I: (v1 ⊕ v2), (v1 ⊕ v3), (v1 ⊕ v4), (v2 ⊕ v3), (v2 ⊕ v4) v1 v2 β = (1,1,0,0) opt(I) = val(I, β) = 4 / 5 v3 v4 ( ) • NP
  • 5. CSP Λ • CSP Λ = ([q], s, t, P) [q] = {1,...,q}: s= t= P= • Max SAT = ({0, 1}, ∞, ∞, {∨}) • Max Cut = ({0,1}, 2, ∞, {⊕})
  • 6. CSP Λ I • CSP Λ I = (V, P) V: P: • Max Cut I = (V, P) v1 v2 V = {v1,v2,v3,v4} P = {(v1⊕v2), (v1⊕v3), v3 v4 (v1⊕v4), (v2⊕v3), (v2⊕v4)}
  • 7. Max CSP • Max CSP NP • x x* α : αx* ≦ x ≦ x* •β I α : val(I, β) opt(I) α • CSP Λ α : I α β
  • 8. Max CSP • Random Assignment • SDP • PCP/Unique Games Conjecture CSP RA SDP UGC-Hard Max SAT 0.5 0.787[ABZ06] ? Max Cut 0.5 0.878[GW95] 0.878+ε[KKMO04] Max Dicut 0.25 0.874[LLZ06] ? Max k-CSP 1/2k poly(k)/2k[CMM09] poly(k)/2k[ST06]
  • 9. Max CSP • [Rag08] (informal) CSP Λ UGC ”BasicSDP”+ UGC-Hard CSP RA SDP UGC-Hard Max SAT 0.5 Max Cut 0.5 0.878 0.878+ε Max Dicut 0.25 Max k-CSP 1/2k
  • 11. Max CSP • (o(n) ) • x x* (α, ε) : αx* - ε ≦ x ≦ x* •β I (α,ε) : val(I, β) opt(I) (α, ε) (0 ≦ opt(I) ≦ 1 ) • CSP Λ (α, ε) : I 2/3 (α,ε) β v ( 1 )βv
  • 12. Max CSP • Ω(n) • CSP( ) 1. Dense model 2. Bounded-degree model ( ) • (Dense model CSP (1,ε) )
  • 13. t • I = (V, P) OI: V × [t] → P OI(v, i) = v i • OI ( )
  • 14. t=3 v1 v2 V = {v1,v2,v3,v4} P = {(v1 ⊕ v2), (v1 ⊕ v3), v3 v4 (v1 ⊕ v4), (v2 ⊕ v3), (v2 ⊕ v4)} OI(v1, 1) = (v1⊕v3) OI(v3, 2) = (v2⊕v3) OI(v3, 3) = ⊥
  • 16. • (informal) CSP Λ ”BasicLP”+ CSP RA O(1) (LP) Ω(√n) Max SAT 0.5 0.75-ε 0.75+ε Max Cut 0.5 0.5 0.5+ε Max Dicut 0.25 0.5-ε 0.5+ε Max k-CSP 1/2k 2/2k-ε 2/2k+ε
  • 17. Integrality Gap • lp(I): I BasicLP opt(I) • Integrality Gap: αΛ = inf I∈Λ lp(I) [ ] CSP Λ ε (αΛ-ε, ε) ε δ (αΛ+ε, δ) Ω(√n) Θ(n) : exp(exp(poly(qst/ε)))
  • 18. • lp(I) = c 1. opt(I) ≦ lp(I) = c 2. opt(I) ≧ αΛlp(I) = αΛc ➡ opt(I) = c, opt(J) < αΛc I, J BasicLP • (αΛ-ε, ε) ➡ BasicLP LP
  • 19. • lp(I) = c 1. opt(I) ≦ lp(I) = c 2. opt(I) ≧ αΛlp(I) = αΛc ➡ opt(I) = c, opt(J) > αΛc I, J BasicLP • (αΛ+ε,δ) ➡ BasicLP (SDP )
  • 20. • Dense Model • [AE02, AdlVKK03] CSP (1,ε) • Bounded-degree model • Max E3LIN2 (1/2+ε,δ) Ω(n) [BOT02] • Max Cut (1/2+ε,δ) Ω(√n) [GR08]
  • 21. [Rag08] [Rag08] CSP CSP BasicLP BasicSDP Unique Games Conjecture Unconditional
  • 22. • • I ε-far: I εtn ( ε ) • CSP Λ : CSP Λ ε-far 2/3 • CSP Λ CSP Λ I lp(I) = 1⇒ opt(I) = 1 (integrality gap curve c = 1 )
  • 23. ( ) (αΛ-ε, ε)
  • 24. 1. BasicLP Packing LP 2. Packing LP LP solver 3. LP • • Max Cut
  • 25. BasicLP for Max Cut • IP e u v • xv,i: v i∈{0,1} µe,β: e β∈{0,1}2 max Σewe(µe,01 + µe,10) s.t. xv,0 + xv,1 = 1 ∀v µe,00 + µe,01 = xv,0 ∀ e = (v, u) µe,10 + µe,11 = xv,1 ∀ e = (v, u) xv,i ∈ {0,1} ∀ v, i µe,β ∈ {0,1}2 ∀ e, β
  • 26. BasicLP for Max Cut • LP e u v • xv: v µe: e max Σewe(µe,01 + µe,10) s.t. xv,0 + xv,1 = 1 ∀v µe,00 + µe,01 = xv,0 ∀ e = (v, u) µe,10 + µe,11 = xv,1 ∀ e = (v, u) xv,i ≧ 0 ∀ v, i µe,β ≧ 0 ∀ e, β
  • 27. Basic LP Packing LP • Packing LP: LP max cTx s.t. Ax ≦ b A, b, c ≧ 0 •
  • 28. BasicLP • LP • xv,i ε xεv,i • (xεu,0, xεu,0)=(xεv,0, xεv,0) u,v G G’ (0.41,0.59) (0.39,0.61) ε = 0.1 (0.4,0.6) (0.22,0.78) (0.81,0.19) (0.2,0.8) (0.8,0.2)
  • 29. BasicLP • lp(G’) ≈ lp(G) • G’ (1/ε)2 β • β G G’ G (0.41,0.59) (0.39,0.61) (0.4,0.6) ε = 0.1 (0.2,0.8) (0.8,0.2) (0.22,0.78) (0.81,0.19)
  • 30. BasicLP opt(I) αΛ = inf I∈Λ lp(I) val(G,β) = val(G’,β) = opt(G’,β) ≧ αΛlp(G’) ≈ αΛlp(G)
  • 31. • Packing LP ( ) x* = {x*v,i}v∈V,i∈{0,1} • [KMW06] x* Olp Olp(v,i) = x*v,i • G’ β β Olp val(G, β)
  • 32. ( ) (αΛ+ε, δ) Ω(√n)
  • 33. Yao’s minimax principle • • DN: opt(J) ≦ (αΛc+ε) J • DY: opt(J) ≧ c J • D: DY DN J •D J DY,DN ( ) 2/3 Ω(√n)
  • 34. • lp(I) = c, opt(I) ≈ αΛc I ( c,I ) •I • DIopt: opt(J) ≦ αΛc+ε J 1-o(1) • DIlp: opt(J) ≧ c J 1 I opt(I) = 2 / 3, lp(I) = 1 e µe,00=µe,11=0 u v µe,01=µe,10=1/2
  • 35. DIopt •I I •J I ( ) • 1-o(1) opt(J) ≦ αΛc+ε J I e u v
  • 36. DIlp •I µ • I LP J • opt(J) ≧ c J I e u µe,00=µe,11=0 µe,01=µe,10=1/2
  • 37. • DIopt DIlp Ω(√n) • o(√n) 1-o(1) ( ) •( )
  • 38. • Ω(√n) • Sherali-Adams • CSP Λ • Horn Sat: Θ(1) • 2-Colorability: Θ*(√n) • : Θ(n)

Hinweis der Redaktion

  1. \n
  2. \n
  3. \n
  4. \n
  5. \n
  6. \n
  7. \n
  8. \n
  9. \n
  10. \n
  11. \n
  12. \n
  13. \n
  14. \n
  15. \n
  16. \n
  17. \n
  18. \n
  19. \n
  20. \n
  21. \n
  22. \n
  23. \n
  24. \n
  25. \n
  26. \n
  27. \n
  28. \n
  29. \n
  30. \n
  31. \n
  32. \n
  33. \n
  34. \n
  35. \n
  36. \n
  37. \n
  38. \n