SlideShare ist ein Scribd-Unternehmen logo
1 von 69
Downloaden Sie, um offline zu lesen
Corisco: Robust edgel-based
orientation estimation for
generic camera models
Nicolau L. Werneck
http://nic.hpavc.net
Supervisor: Profa. Dra. Anna Helena Reali Costa
Intelligent Techniques Laboratory, LTI — PCS — Poli
Universidade de São Paulo
Augsburg, Deutschland — 8/10/2015
Meta-introduction
Nicolau Werneck, Sc.D.
E.Eng. graduated from UFMG, Unicamp and USP.
Specialized in signal processing and pattern
recognition, especially in computer vision and
parameter estimation problems.
Ex-Google and ex-Geekie.
Wants to help robots help us.
Presentation adapted from my doctorate defense.
Results were published in Werneck and Costa [2013].
1 / 40
Presentation Schedule
1 Problem introduction
2 Method proposal
3 Experiments and conclusion
2 / 40
Anthropic Environments
An anthropic environment is composed by straight lines,
parallel to the directions of a natural reference frame.
The orientation we find is a three-dimensional rotation
between the natural and the camera reference frame.
3 / 40
Edgels and straight lines
Edgels are points samples over curves or (straight) lines.
Edgels have many applications.
4 / 40
Proposal
We propose a monocular vision method, denominated
Corisco, that can estimate the orientation of a camera
relative to an anthropic environment.
Evolution of existing edgel based methods [Coughlan and
Yuille, 2003].
Aplication examples:
Guiding a mobile robot.
Initial estimates for multi-view reconstruction.
Object orientation estimation.
5 / 40
Proposal
We propose a monocular vision method, denominated
Corisco, that can estimate the orientation of a camera
relative to an anthropic environment.
Evolution of existing edgel based methods [Coughlan and
Yuille, 2003].
Aplication examples:
Guiding a mobile robot.
Initial estimates for multi-view reconstruction.
Object orientation estimation.
5 / 40
Proposal
We propose a monocular vision method, denominated
Corisco, that can estimate the orientation of a camera
relative to an anthropic environment.
Evolution of existing edgel based methods [Coughlan and
Yuille, 2003].
Aplication examples:
Guiding a mobile robot.
Initial estimates for multi-view reconstruction.
Object orientation estimation.
5 / 40
Contributions
Corisco has the following peculiarities:
Supports any possible camera model.
Compromise between speed and precision.
Dismisses the use of very costly operations (sin,
atan, exp, log). Uses the function x−1/2.
There are also no assumptions about the solution.
6 / 40
High-level view
Inputs: Image, intrinsic and control parameters.
Output: Orientation Ψ (three-dimensional rotation).
7 / 40
Geometry
The direction v of a line over the point p depends on Ψ.
(Ψ,p) → v
http://youtu.be/PbUyvdnBIzs
8 / 40
Objective
Our question
What could be the best way to estimate the orientation
of a camera in real time in an anthropic environment
based on a single distorted image?
9 / 40
Objective
Our question
What could be the best way to estimate the orientation
of a camera in real time in an anthropic environment
based on a single distorted image?
9 / 40
Edgels versus lines
Orientation can be found from lines (Caprile and Torre
[1990], Cipolla et al. [1999], Rother [2002]).
More intuitive.
Attain a good precision.
On the other hand:
Restricted to perspective projection.
Rely on complicated line extraction.
Edgels allow us to handle distortions and are easier to
extract and sub-sample.
10 / 40
Corisco in detail
11 / 40
Corisco in detail
11 / 40
Corisco in detail
11 / 40
Corisco in detail
11 / 40
Block diagram
12 / 40
Block diagram
12 / 40
Block diagram
12 / 40
Edgel extraction
13 / 40
Edgel extraction
Similar to the Canny border detection.
Borders are local maxima in the gradient direction.
0 100 200 300 400 500 600
0
100
200
300
400
Imagem
0 100 200 300 400 500 600
0
100
200
300
400
Derivada em x
0 100 200 300 400 500 600
0
100
200
300
400
Derivada em y
0 100 200 300 400 500 600
0
100
200
300
400
Intensidade do gradiente
13 / 40
Edgel extraction
Sweep the image over a set of lines and columns that
constitute a grid mask.
Each border found produces an edgel. Its direction
should be approximately orthogonal to the line swept.
0 100 200 300 400 500 600
0
100
200
300
400
Grade de amostragem
0 100 200 300 400 500 600
0
100
200
300
400
Edgels extraídos
14 / 40
Camera models
15 / 40
Camera models
15 / 40
Camera models
Bijective map between the image points and directions
around the camera focal point.
q p
15 / 40
Camera model examples
Wide-angle, fisheye, equirectangular.
16 / 40
Equações de modelos de câmera
Perspective Equiretangular (lat-lon)
px = (qx /qz)f +cx
py = (qy /qz)f +cy
px = f tan−1(qz,qx )
py = f sin−1 (qy /|q|)
Harris (radial distortion) Polar Equidistant (fisheye)
g(x) = 1√
1−2κx2
px = p x
g(|p |)+cx
py = p y
g(|p |)+cy
ϕ = cos−1 (qz/|q|)
px = ϕ qx
√
qx 2+qy 2
f +cx
py = ϕ qy
√
qx 2+qy 2
f +cy
17 / 40
Edgel projection
A point qn from a line in the direction rk is projected on
pn, producuing an edgel com with direction
vnk ∝ Jnrk (v ← (Ψ,p))
The projection Jacobian matrix Jn depends on pn. The
direction orthogonal to vn is denominated un.
18 / 40
Edgel projection
A point qn from a line in the direction rk is projected on
pn, producuing an edgel com with direction
vnk ∝ Jnrk (v ← (Ψ,p))
The projection Jacobian matrix Jn depends on pn. The
direction orthogonal to vn is denominated un.
18 / 40
Edgel normal vector
Direction of a plane defined by the focal point and by an
edgel, or a corresponding environment line.
nk = ux
kJx
k +uy
kJy
k
19 / 40
Objective function
20 / 40
Objective function
20 / 40
Objective function
The objective function is the heart of the method.
Does not depend on the extraction technique.
Determines the result.
Conducts the choice of the optimization algorithm.
The expression has the shape of a summation of errors
obtained from each observation.
yn = xn − ˆxn(Ψ)
F(Ψ) = ∑
n
(yn)2
20 / 40
Rotation matrix
An edgel direction prediction starts by finding the
directions of the natural frame rk as a function of Ψ.
Corisco works with quaternions.
Ψ = (Ψa
,Ψb
,Ψc
,Ψd
) |Ψ| = 1
For a general orientation Ψ we have
R(Ψ) = rx ry rz
T
=
Ψa2 +Ψb2
−Ψc 2
−Ψd 2
2ΨbΨc +2ΨaΨd 2ΨbΨd −2ΨaΨc
2ΨbΨc −2ΨaΨd Ψa2 −Ψb2
+Ψc 2
−Ψd 2
2Ψc Ψd +2ΨaΨb
2ΨbΨd +2ΨaΨc 2Ψc Ψd −2ΨaΨb Ψa2 −Ψb2
−Ψc 2
+Ψd 2
21 / 40
Edgel residue
Given the rk, we calculate the predicted vnk using Jk.
Ψ → rk → vnk
vnk ∝ Jnrk
The residue compares:
vn (ou un) taken from the imagem.
vnk predicted from Ψ e pn.
Previous methods: Corisco:
∠v = arctan(vx ,vy ) unvnk
∠vn −∠vnk
22 / 40
Error function
Comparison with existing edgel based techiques:
MAP EM M-estimation
Models Probabilistic Probabilistic ρ(x)
Classes 4 4 3
Classification × Iterative Direct
0.2 0.1 0.0 0.1 0.20.0
0.2
0.4
0.6
0.8
1.0
1.2
Funções de Tukey, e quadrática
23 / 40
Objective function expression
MAP estimation (Coughlan and Yuille [2003]):
F(Ψ) = −∑
n
log ∑
k
p(cn = k)p(∠vn|Ψ,pn,cn = k)
EM estimation (Schindler and Dellaert [2004]):
F(Ψ) = −∑
n
∑
k
p(cn = k)log(p(∠vn|Ψ,pn,cn = k))
F(Ψ) = ∑
n
∑
k
p(cn = k)(∠vn −∠vnk)2
Corisco:
F(Ψ) = ∑
n
min
k
ρ(unvnk)
24 / 40
Objective function expression
MAP estimation (Coughlan and Yuille [2003]):
F(Ψ) = −∑
n
log ∑
k
p(cn = k)p(∠vn|Ψ,pn,cn = k)
EM estimation (Schindler and Dellaert [2004]):
F(Ψ) = −∑
n
∑
k
p(cn = k)log(p(∠vn|Ψ,pn,cn = k))
F(Ψ) = ∑
n
∑
k
p(cn = k)(∠vn −∠vnk)2
Corisco:
F(Ψ) = ∑
n
min
k
ρ(unvnk)
24 / 40
F(Ψ) = −∑
n
∑
k
p(cn = k)log(p(∠vn|Ψ,pn,cn = k))
Objective function expression
MAP estimation (Coughlan and Yuille [2003]):
F(Ψ) = −∑
n
log ∑
k
p(cn = k)p(∠vn|Ψ,pn,cn = k)
EM estimation (Schindler and Dellaert [2004]):
F(Ψ) = −∑
n
∑
k
p(cn = k)log(p(∠vn|Ψ,pn,cn = k))
F(Ψ) = ∑
n
∑
k
p(cn = k)(∠vn −∠vnk)2
Corisco:
F(Ψ) = ∑
n
min
k
ρ(unvnk)
24 / 40
F(Ψ) = ∑
n
∑
k
p(cn = k)(∠vn −∠vnk)2
Objective function expression
MAP estimation (Coughlan and Yuille [2003]):
F(Ψ) = −∑
n
log ∑
k
p(cn = k)p(∠vn|Ψ,pn,cn = k)
EM estimation (Schindler and Dellaert [2004]):
F(Ψ) = −∑
n
∑
k
p(cn = k)log(p(∠vn|Ψ,pn,cn = k))
F(Ψ) = ∑
n
∑
k
p(cn = k)(∠vn −∠vnk)2
Corisco:
F(Ψ) = ∑
n
min
k
ρ(unvnk)
24 / 40
Corisco:
F(Ψ) = ∑
n
min
k
ρ(unvnk)
Optimization
25 / 40
Optimization
25 / 40
Optimization
First step: RANSAC, stochastic search guided by data.
Inherently inefficient and imprecise.
→ Ψ inicial
Second step: FilterSQP, continuous optimization, more
efficient and precise than RANSAC.
→ Ψ final
25 / 40
Optimization
First step: RANSAC, stochastic search guided by data.
Inherently inefficient and imprecise.
→ Ψ inicial
Second step: FilterSQP, continuous optimization, more
efficient and precise than RANSAC.
→ Ψ final
25 / 40
Optimization
First step: RANSAC, stochastic search guided by data.
Inherently inefficient and imprecise.
→ Ψ inicial
Second step: FilterSQP, continuous optimization, more
efficient and precise than RANSAC.
→ Ψ final
25 / 40
RANSAC
Observation triplets are randomly selected. From each
one we calculate a hypothetical Ψ, using nk.
The Ψ with the smallest F(Ψ) is the initial estimate.
http://i.imgur.com/O9jP8tz.gifv
26 / 40
FilterSQP
Minimize F(Ψ) over the 4D and constrained to |Ψ| = 1.
Non-linear program →
SQP: Sequential Quadratic
Programming
FilterSQP (Fletcher and Leyffer [2002]) dismisses penalty
functions.
27 / 40
Derivative
Corisco calculates the Ψ derivatives by closed formulas.
∂F
∂Ψa
(Ψ) = ∑
nk
Knk ρ (unvnk) ux
n
∂vx
nk
∂Ψa
+uy
n
∂vy
nk
∂Ψa
The derivatives of the directions rk are trivial:
∂rx
∂Ψa
= 2(Ψa
,Ψd
,−Ψc
)
∂rx
∂Ψb
= 2(Ψb
,Ψc
,Ψd
)
···
28 / 40
Experiments
We performed 3 experiments to assess the performance
of Corisco.
Each experiment used a different image set, and method
to obtain the reference orientations.
The observed error is the displacement in degrees of the
“rotação residual” entre cada estimativa e referência.
Corisco was executed changing the settings:
grid size Cg ,
number of RANSAC iterations Cr .
29 / 40
YorkUrbanDB
Images: 101 imagens from anthropic environments.
Model: Perspective.
Reference: Semi-automatic method based on lines.
Comparison: Methods studied by Denis et al. [2008].
Camera parameters, reference orientations and
performance statistics provided by the authors.
30 / 40
YorkUrbanDB
31 / 40
YorkUrbanDB
32 / 40
Method Time Error
[s] Mean σ 1/4 Median 3/4
EM Newton 27+? 4.00◦ 1.00◦ 1.15◦ 2.61◦ 4.10◦
MAP Quasi-Newton 6+? 4.00◦ 1.00◦ 1.32◦ 2.39◦ 4.07◦
EM Quasi-Newton 1+? 9.00◦ 1.00◦ 4.04◦ 6.21◦ 10.33◦
J-linkage 1.13 8.23◦ 13.76◦ 1.14◦ 2.36◦ 4.44◦
Corisco Cr = 104 Cg = 1 47.20 1.51◦ 3.26◦ 0.69◦ 1.09◦ 1.51◦
Corisco Cr = 104 Cg = 4 16.68 1.71◦ 3.35◦ 0.72◦ 1.14◦ 1.64◦
Corisco Cr = 104 Cg = 32 7.57 2.43◦ 4.03◦ 0.97◦ 1.54◦ 2.42◦
Corisco Cr = 103 Cg = 1 8.12 1.70◦ 3.22◦ 0.70◦ 1.11◦ 1.77◦
Corisco Cr = 103 Cg = 4 2.50 2.02◦ 3.86◦ 0.81◦ 1.24◦ 1.80◦
Corisco Cr = 103 Cg = 32 0.99 2.44◦ 3.54◦ 1.00◦ 1.68◦ 2.64◦
Corisco Cr = 200 Cg = 1 5.34 2.08◦ 3.38◦ 0.72◦ 1.22◦ 1.78◦
Corisco Cr = 200 Cg = 4 1.89 3.27◦ 6.38◦ 0.85◦ 1.34◦ 2.35◦
Corisco Cr = 200 Cg = 32 0.45 3.29◦ 4.99◦ 0.99◦ 1.72◦ 3.46◦
YorkUrbanDB
32 / 40
Method Time Error
[s] Mean σ 1/4 Median 3/4
EM Newton 27+? 4.00◦ 1.00◦ 1.15◦ 2.61◦ 4.10◦
MAP Quasi-Newton 6+? 4.00◦ 1.00◦ 1.32◦ 2.39◦ 4.07◦
EM Quasi-Newton 1+? 9.00◦ 1.00◦ 4.04◦ 6.21◦ 10.33◦
J-linkage 1.13 8.23◦ 13.76◦ 1.14◦ 2.36◦ 4.44◦
Corisco Cr = 104 Cg = 1 47.20 1.51◦ 3.26◦ 0.69◦ 1.09◦ 1.51◦
Corisco Cr = 104 Cg = 4 16.68 1.71◦ 3.35◦ 0.72◦ 1.14◦ 1.64◦
Corisco Cr = 104 Cg = 32 7.57 2.43◦ 4.03◦ 0.97◦ 1.54◦ 2.42◦
Corisco Cr = 103 Cg = 1 8.12 1.70◦ 3.22◦ 0.70◦ 1.11◦ 1.77◦
Corisco Cr = 103 Cg = 4 2.50 2.02◦ 3.86◦ 0.81◦ 1.24◦ 1.80◦
Corisco Cr = 103 Cg = 32 0.99 2.44◦ 3.54◦ 1.00◦ 1.68◦ 2.64◦
Corisco Cr = 200 Cg = 1 5.34 2.08◦ 3.38◦ 0.72◦ 1.22◦ 1.78◦
Corisco Cr = 200 Cg = 4 1.89 3.27◦ 6.38◦ 0.85◦ 1.34◦ 2.35◦
Corisco Cr = 200 Cg = 32 0.45 3.29◦ 4.99◦ 0.99◦ 1.72◦ 3.46◦
YorkUrbanDB
32 / 40
Method Time Error
[s] Mean σ 1/4 Median 3/4
EM Newton 27+? 4.00◦ 1.00◦ 1.15◦ 2.61◦ 4.10◦
MAP Quasi-Newton 6+? 4.00◦ 1.00◦ 1.32◦ 2.39◦ 4.07◦
EM Quasi-Newton 1+? 9.00◦ 1.00◦ 4.04◦ 6.21◦ 10.33◦
J-linkage 1.13 8.23◦ 13.76◦ 1.14◦ 2.36◦ 4.44◦
Corisco Cr = 104 Cg = 1 47.20 1.51◦ 3.26◦ 0.69◦ 1.09◦ 1.51◦
Corisco Cr = 104 Cg = 4 16.68 1.71◦ 3.35◦ 0.72◦ 1.14◦ 1.64◦
Corisco Cr = 104 Cg = 32 7.57 2.43◦ 4.03◦ 0.97◦ 1.54◦ 2.42◦
Corisco Cr = 103 Cg = 1 8.12 1.70◦ 3.22◦ 0.70◦ 1.11◦ 1.77◦
Corisco Cr = 103 Cg = 4 2.50 2.02◦ 3.86◦ 0.81◦ 1.24◦ 1.80◦
Corisco Cr = 103 Cg = 32 0.99 2.44◦ 3.54◦ 1.00◦ 1.68◦ 2.64◦
Corisco Cr = 200 Cg = 1 5.34 2.08◦ 3.38◦ 0.72◦ 1.22◦ 1.78◦
Corisco Cr = 200 Cg = 4 1.89 3.27◦ 6.38◦ 0.85◦ 1.34◦ 2.35◦
Corisco Cr = 200 Cg = 32 0.45 3.29◦ 4.99◦ 0.99◦ 1.72◦ 3.46◦
YorkUrbanDB
32 / 40
Method Time Error
[s] Mean σ 1/4 Median 3/4
EM Newton 27+? 4.00◦ 1.00◦ 1.15◦ 2.61◦ 4.10◦
MAP Quasi-Newton 6+? 4.00◦ 1.00◦ 1.32◦ 2.39◦ 4.07◦
EM Quasi-Newton 1+? 9.00◦ 1.00◦ 4.04◦ 6.21◦ 10.33◦
J-linkage 1.13 8.23◦ 13.76◦ 1.14◦ 2.36◦ 4.44◦
Corisco Cr = 104 Cg = 1 47.20 1.51◦ 3.26◦ 0.69◦ 1.09◦ 1.51◦
Corisco Cr = 104 Cg = 4 16.68 1.71◦ 3.35◦ 0.72◦ 1.14◦ 1.64◦
Corisco Cr = 104 Cg = 32 7.57 2.43◦ 4.03◦ 0.97◦ 1.54◦ 2.42◦
Corisco Cr = 103 Cg = 1 8.12 1.70◦ 3.22◦ 0.70◦ 1.11◦ 1.77◦
Corisco Cr = 103 Cg = 4 2.50 2.02◦ 3.86◦ 0.81◦ 1.24◦ 1.80◦
Corisco Cr = 103 Cg = 32 0.99 2.44◦ 3.54◦ 1.00◦ 1.68◦ 2.64◦
Corisco Cr = 200 Cg = 1 5.34 2.08◦ 3.38◦ 0.72◦ 1.22◦ 1.78◦
Corisco Cr = 200 Cg = 4 1.89 3.27◦ 6.38◦ 0.85◦ 1.34◦ 2.35◦
Corisco Cr = 200 Cg = 32 0.45 3.29◦ 4.99◦ 0.99◦ 1.72◦ 3.46◦
ApaSt
Images: 24+24 building images.
Model: Perspective with radial distortion (Harris).
Reference: Bundler.
33 / 40
ApaSt
Bundler
(Snavely et al. [2006]) foi used to obtain the reference
orientations and intrinsic parameters.
Point-based multi-view method.
34 / 40
ApaSt
0 5 10 15 20
Error [degrees]
1
2
4
8
16
32
64
128
GridspacingCg[pixels]
Error distribution
10 100
Time [seconds]
Process duration
Total
RANSAC
Corisco performance on ApaSt, Cr=10000 RANSAC iterations
35 / 40
ApaSt
0 5 10 15 20
Error [degrees]
1
2
4
8
16
32
64
128
GridspacingCg[pixels]
Error distribution
1 10
Time [seconds]
Process duration
Total
RANSAC
Corisco performance on ApaSt, Cr=1000 RANSAC iterations
35 / 40
StreetView
Images: 250 images from an urban environment.
Model: Equiretangular projection.
Reference: Physical sensors (IMU).
36 / 40
StreetView
Erro 1◦, time 17s.
0 50 100 150 200 2500.9970
0.9975
0.9980
0.9985
0.9990
0.9995
1.0000
0 50 100 150 200 250
0.03
0.02
0.01
0.00
0.01
0.02
0.03
0 50 100 150 200 250
0.03
0.02
0.01
0.00
0.01
0.02
0.03
0 50 100 150 200 250
0.03
0.02
0.01
0.00
0.01
0.02
0.03
Parâmetros estimados e referência ajustada
Estimativa Referência
37 / 40
Conclusion
Corisco is a method with great potential for immediate
application.
Relatively simple implementation.
Great robustness (distortions, RANSAC).
Good performance.
We demonstrated the advantages of applying the grid
mask and M-estimation to the problem.
We also demonstrated how to use FilterSQP in order to
work with quaternions in a convenient way.
38 / 40
Future Work
Automatic parameter control. Replace RANSAC.
Apply to multi-view reconstruction, monocular
SLAM, object tracking...
Use directional filters to measure the angular error.
Use the grid mask in other problems.
Estimate orientation, camera parameters, and
extract curves all in a single unified process. (MRF?)
39 / 40
Fim
Obrigado!
40 / 40
Referências BibliográficasB. Caprile and V. Torre. Using vanishing points for camera calibration.
International Journal of Computer Vision, 4(2):127–139, March 1990.
ISSN 0920-5691. doi: 10.1007/BF00127813. URL
http://www.springerlink.com/content/k75077108473tm15/.
R Cipolla, T Drummond, and D Robertson. Camera calibration from
vanishing points in images of architectural scenes. In British Machine
Vision Conference, volume 2, pages 382–391, Nottingham, England,
1999. BMVA.
James M. Coughlan and A. L. Yuille. Manhattan World: Orientation and
outlier detection by Bayesian inference. Neural Computation, 15(5):
1063—-1088, March 2003. URL http://www.mitpressjournals.org/
doi/abs/10.1162/089976603765202668.
Patrick Denis, James H Elder, and Francisco J Estrada. Efficient
edge-based methods for estimating Manhattan frames in urban imagery.
In European Conference on Computer Vision, pages 197–210, Marselha,
França, 2008. Springer. doi: 10.1007/978-3-540-88688-4_15.
Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty
function. Mathematical Programming, 91(2):239–269, January 2002.
ISSN 0025-5610. doi: 10.1007/s101070100244. URL
http://www.springerlink.com/content/qqj37x00y79ygdl8/.
1 / 3
Carsten Rother. A new approach to vanishing point detection in
architectural environments. Image and Vision Computing, 20(9-10):
647–655, 2002. doi: 10.1016/S0262-8856(02)00054-9. URL
http://dx.doi.org/10.1016/S0262-8856(02)00054-9.
G. Schindler and F. Dellaert. Atlanta World: An expectation maximization
framework for simultaneous low-level edge grouping and camera
calibration in complex man-made environments. In Conference on
Computer Vision and Pattern Recognition, pages 203–209, Washington,
DC, USA, 2004. IEEE. ISBN 0-7695-2158-4. doi:
10.1109/CVPR.2004.1315033. URL http:
//ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1315033.
Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo Tourism:
Exploring photo collections in 3D. In SIGGRAPH, pages 835–846,
Boston, MA, USA, 2006. ACM. URL
http://dl.acm.org/citation.cfm?id=1141964.
Nicolau Leal Werneck and Anna Helena Reali Costa. Corisco: Robust
edgel-based orientation estimation for generic camera models. Image
and Vision Computing, 12(31):969—-981, 2013. URL
http://nic.hpavc.net/almoxarifado/imavis2013-final.pdf.
2 / 3
Calibration test
Estimating focal distance with the same F(Ψ).
600 700 800 900 1000 1100 1200
Distância focal
0
500
1000
1500
2000
Funçãoobjetivo(transladada)
N8 - todas imagens
600 700 800 900 1000 1100 1200
Distância focal
0
20
40
60
80
100
120
140
160
Funçãoobjetivo(transladada)
N8 - imagens individuais
600 700 800 900 1000 1100 1200
Distância focal
0
500
1000
1500
2000
Funçãoobjetivo(transladada)
a230 - todas imagens
600 700 800 900 1000 1100 1200
Distância focal
0
20
40
60
80
100
120
140
160
Funçãoobjetivo(transladada)
a230 - imagens individuais
Calibração baseada no Corisco - Função objetivo variando com a distância focal
Referência (Bundler) Estimado (Corisco)Referência (Bundler) Estimado (Corisco)Referência (Bundler) Estimado (Corisco)Referência (Bundler) Estimado (Corisco)
3 / 3

Weitere ähnliche Inhalte

Was ist angesagt?

Bayesian restoration of high-dimensional photon-starved images
Bayesian restoration of high-dimensional photon-starved imagesBayesian restoration of high-dimensional photon-starved images
Bayesian restoration of high-dimensional photon-starved imagesJulián Tachella
 
DETECTION OF MOVING OBJECT
DETECTION OF MOVING OBJECTDETECTION OF MOVING OBJECT
DETECTION OF MOVING OBJECTAM Publications
 
Discussion of Fearnhead and Prangle, RSS< Dec. 14, 2011
Discussion of Fearnhead and Prangle, RSS< Dec. 14, 2011Discussion of Fearnhead and Prangle, RSS< Dec. 14, 2011
Discussion of Fearnhead and Prangle, RSS< Dec. 14, 2011Christian Robert
 
Применение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиПрименение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиSkolkovo Robotics Center
 
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...Integrated Carbon Observation System (ICOS)
 
Sound Source Localization
Sound Source LocalizationSound Source Localization
Sound Source LocalizationMuhammad Imran
 
Calculus II - 15
Calculus II - 15Calculus II - 15
Calculus II - 15David Mao
 
Calculus II - 16
Calculus II - 16Calculus II - 16
Calculus II - 16David Mao
 
Image Restoration (Digital Image Processing)
Image Restoration (Digital Image Processing)Image Restoration (Digital Image Processing)
Image Restoration (Digital Image Processing)Shajun Nisha
 
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...Kitsukawa Yuki
 
Study o horizontal flows in solar active regions
Study o horizontal flows in solar active regionsStudy o horizontal flows in solar active regions
Study o horizontal flows in solar active regionsastrosanti
 
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient AlgorithmOptimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient AlgorithmTasuku Soma
 
2015-06-17 FEKO Based ISAR Analysis for 3D Object Reconstruction
2015-06-17 FEKO Based ISAR Analysis for 3D Object Reconstruction2015-06-17 FEKO Based ISAR Analysis for 3D Object Reconstruction
2015-06-17 FEKO Based ISAR Analysis for 3D Object ReconstructionDr. Ali Nassib
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and DerivativesFaisal Waqar
 
From STC (Stereo Camera onboard on Bepi Colombo ESA Mission) to Blender
From STC (Stereo Camera onboard on Bepi Colombo ESA Mission) to BlenderFrom STC (Stereo Camera onboard on Bepi Colombo ESA Mission) to Blender
From STC (Stereo Camera onboard on Bepi Colombo ESA Mission) to BlenderEmanuele Simioni
 

Was ist angesagt? (20)

Bayesian restoration of high-dimensional photon-starved images
Bayesian restoration of high-dimensional photon-starved imagesBayesian restoration of high-dimensional photon-starved images
Bayesian restoration of high-dimensional photon-starved images
 
DETECTION OF MOVING OBJECT
DETECTION OF MOVING OBJECTDETECTION OF MOVING OBJECT
DETECTION OF MOVING OBJECT
 
Discussion of Fearnhead and Prangle, RSS< Dec. 14, 2011
Discussion of Fearnhead and Prangle, RSS< Dec. 14, 2011Discussion of Fearnhead and Prangle, RSS< Dec. 14, 2011
Discussion of Fearnhead and Prangle, RSS< Dec. 14, 2011
 
CAMSAP19
CAMSAP19CAMSAP19
CAMSAP19
 
ICASSP19
ICASSP19ICASSP19
ICASSP19
 
Применение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиПрименение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботами
 
Raytracing Part II
Raytracing Part IIRaytracing Part II
Raytracing Part II
 
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
 
P1150740001
P1150740001P1150740001
P1150740001
 
Foreground Detection : Combining Background Subspace Learning with Object Smo...
Foreground Detection : Combining Background Subspace Learning with Object Smo...Foreground Detection : Combining Background Subspace Learning with Object Smo...
Foreground Detection : Combining Background Subspace Learning with Object Smo...
 
Sound Source Localization
Sound Source LocalizationSound Source Localization
Sound Source Localization
 
Calculus II - 15
Calculus II - 15Calculus II - 15
Calculus II - 15
 
Calculus II - 16
Calculus II - 16Calculus II - 16
Calculus II - 16
 
Image Restoration (Digital Image Processing)
Image Restoration (Digital Image Processing)Image Restoration (Digital Image Processing)
Image Restoration (Digital Image Processing)
 
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
SkyStitch: a Cooperative Multi-UAV-based Real-time Video Surveillance System ...
 
Study o horizontal flows in solar active regions
Study o horizontal flows in solar active regionsStudy o horizontal flows in solar active regions
Study o horizontal flows in solar active regions
 
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient AlgorithmOptimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
 
2015-06-17 FEKO Based ISAR Analysis for 3D Object Reconstruction
2015-06-17 FEKO Based ISAR Analysis for 3D Object Reconstruction2015-06-17 FEKO Based ISAR Analysis for 3D Object Reconstruction
2015-06-17 FEKO Based ISAR Analysis for 3D Object Reconstruction
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
 
From STC (Stereo Camera onboard on Bepi Colombo ESA Mission) to Blender
From STC (Stereo Camera onboard on Bepi Colombo ESA Mission) to BlenderFrom STC (Stereo Camera onboard on Bepi Colombo ESA Mission) to Blender
From STC (Stereo Camera onboard on Bepi Colombo ESA Mission) to Blender
 

Ähnlich wie Corisco - 2015

Slides: Perspective click-and-drag area selections in pictures
Slides: Perspective click-and-drag area selections in picturesSlides: Perspective click-and-drag area selections in pictures
Slides: Perspective click-and-drag area selections in picturesFrank Nielsen
 
Phase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and TechniquesPhase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and TechniquesVaibhav Dixit
 
13 fourierfiltrationen
13 fourierfiltrationen13 fourierfiltrationen
13 fourierfiltrationenhoailinhtinh
 
iv10_linear_pose.pptx
iv10_linear_pose.pptxiv10_linear_pose.pptx
iv10_linear_pose.pptxdarmadi ir,mm
 
Indoor Heading Estimation
 Indoor Heading Estimation Indoor Heading Estimation
Indoor Heading EstimationAlwin Poulose
 
CT Scan Image reconstruction
CT Scan Image reconstructionCT Scan Image reconstruction
CT Scan Image reconstructionGunjan Patel
 
Fisheye Omnidirectional View in Autonomous Driving
Fisheye Omnidirectional View in Autonomous DrivingFisheye Omnidirectional View in Autonomous Driving
Fisheye Omnidirectional View in Autonomous DrivingYu Huang
 
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)Shajun Nisha
 
Control Strategies For Formation Flight In The Vicinity Of The Libration Points
Control Strategies For Formation Flight In The Vicinity Of The Libration PointsControl Strategies For Formation Flight In The Vicinity Of The Libration Points
Control Strategies For Formation Flight In The Vicinity Of The Libration PointsBelinda Marchand
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptgrssieee
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptgrssieee
 
Formations Near The Libration Points: Design Strategies Using Natural And Non...
Formations Near The Libration Points: Design Strategies Using Natural And Non...Formations Near The Libration Points: Design Strategies Using Natural And Non...
Formations Near The Libration Points: Design Strategies Using Natural And Non...Belinda Marchand
 
Visual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environmentsVisual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environmentsNAVER Engineering
 
Design And Control Of Formations Near The Libration Points Of The Sun-Earth...
  Design And Control Of Formations Near The Libration Points Of The Sun-Earth...  Design And Control Of Formations Near The Libration Points Of The Sun-Earth...
Design And Control Of Formations Near The Libration Points Of The Sun-Earth...Belinda Marchand
 
Bayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyBayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyMatt Moores
 
Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for GraphsLearning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphspione30
 

Ähnlich wie Corisco - 2015 (20)

Slides: Perspective click-and-drag area selections in pictures
Slides: Perspective click-and-drag area selections in picturesSlides: Perspective click-and-drag area selections in pictures
Slides: Perspective click-and-drag area selections in pictures
 
Phase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and TechniquesPhase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and Techniques
 
US_pres.pptx
US_pres.pptxUS_pres.pptx
US_pres.pptx
 
13 fourierfiltrationen
13 fourierfiltrationen13 fourierfiltrationen
13 fourierfiltrationen
 
iv10_linear_pose.pptx
iv10_linear_pose.pptxiv10_linear_pose.pptx
iv10_linear_pose.pptx
 
Indoor Heading Estimation
 Indoor Heading Estimation Indoor Heading Estimation
Indoor Heading Estimation
 
Image restoration and reconstruction
Image restoration and reconstructionImage restoration and reconstruction
Image restoration and reconstruction
 
CT Scan Image reconstruction
CT Scan Image reconstructionCT Scan Image reconstruction
CT Scan Image reconstruction
 
Ch14.ppt
Ch14.pptCh14.ppt
Ch14.ppt
 
Dip mcq1
Dip mcq1Dip mcq1
Dip mcq1
 
Fisheye Omnidirectional View in Autonomous Driving
Fisheye Omnidirectional View in Autonomous DrivingFisheye Omnidirectional View in Autonomous Driving
Fisheye Omnidirectional View in Autonomous Driving
 
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
ESTIMATING NOISE PARAMETER & FILTERING (Digital Image Processing)
 
Control Strategies For Formation Flight In The Vicinity Of The Libration Points
Control Strategies For Formation Flight In The Vicinity Of The Libration PointsControl Strategies For Formation Flight In The Vicinity Of The Libration Points
Control Strategies For Formation Flight In The Vicinity Of The Libration Points
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.ppt
 
IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.ppt
 
Formations Near The Libration Points: Design Strategies Using Natural And Non...
Formations Near The Libration Points: Design Strategies Using Natural And Non...Formations Near The Libration Points: Design Strategies Using Natural And Non...
Formations Near The Libration Points: Design Strategies Using Natural And Non...
 
Visual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environmentsVisual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environments
 
Design And Control Of Formations Near The Libration Points Of The Sun-Earth...
  Design And Control Of Formations Near The Libration Points Of The Sun-Earth...  Design And Control Of Formations Near The Libration Points Of The Sun-Earth...
Design And Control Of Formations Near The Libration Points Of The Sun-Earth...
 
Bayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyBayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopy
 
Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for GraphsLearning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs
 

Mehr von Nicolau Werneck

Introdução a Scala [GeekieTalk]
Introdução a Scala [GeekieTalk]Introdução a Scala [GeekieTalk]
Introdução a Scala [GeekieTalk]Nicolau Werneck
 
Expectation Maximization: o básico do básico
Expectation Maximization: o básico do básicoExpectation Maximization: o básico do básico
Expectation Maximization: o básico do básicoNicolau Werneck
 
Nicolau Werneck professional experience
Nicolau Werneck professional experienceNicolau Werneck professional experience
Nicolau Werneck professional experienceNicolau Werneck
 
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels
Estimação de orientação de câmera em ambientes antrópicos a partir de edgelsEstimação de orientação de câmera em ambientes antrópicos a partir de edgels
Estimação de orientação de câmera em ambientes antrópicos a partir de edgelsNicolau Werneck
 
Speeding up probabilistic inference of camera orientation by function ap...
Speeding up probabilistic inference of    camera orientation by function   ap...Speeding up probabilistic inference of    camera orientation by function   ap...
Speeding up probabilistic inference of camera orientation by function ap...Nicolau Werneck
 
Detecção de quedas em robôs móveis com visão monocular linear
Detecção de quedas em robôs móveis com visão monocular linearDetecção de quedas em robôs móveis com visão monocular linear
Detecção de quedas em robôs móveis com visão monocular linearNicolau Werneck
 
Mapeamento Visual Monocular com a Transformada Rápida de Hough
Mapeamento Visual Monocular com a Transformada Rápida de HoughMapeamento Visual Monocular com a Transformada Rápida de Hough
Mapeamento Visual Monocular com a Transformada Rápida de HoughNicolau Werneck
 

Mehr von Nicolau Werneck (8)

Introdução a Scala [GeekieTalk]
Introdução a Scala [GeekieTalk]Introdução a Scala [GeekieTalk]
Introdução a Scala [GeekieTalk]
 
Expectation Maximization: o básico do básico
Expectation Maximization: o básico do básicoExpectation Maximization: o básico do básico
Expectation Maximization: o básico do básico
 
Nicolau Werneck professional experience
Nicolau Werneck professional experienceNicolau Werneck professional experience
Nicolau Werneck professional experience
 
Agrupamento espectral
Agrupamento espectralAgrupamento espectral
Agrupamento espectral
 
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels
Estimação de orientação de câmera em ambientes antrópicos a partir de edgelsEstimação de orientação de câmera em ambientes antrópicos a partir de edgels
Estimação de orientação de câmera em ambientes antrópicos a partir de edgels
 
Speeding up probabilistic inference of camera orientation by function ap...
Speeding up probabilistic inference of    camera orientation by function   ap...Speeding up probabilistic inference of    camera orientation by function   ap...
Speeding up probabilistic inference of camera orientation by function ap...
 
Detecção de quedas em robôs móveis com visão monocular linear
Detecção de quedas em robôs móveis com visão monocular linearDetecção de quedas em robôs móveis com visão monocular linear
Detecção de quedas em robôs móveis com visão monocular linear
 
Mapeamento Visual Monocular com a Transformada Rápida de Hough
Mapeamento Visual Monocular com a Transformada Rápida de HoughMapeamento Visual Monocular com a Transformada Rápida de Hough
Mapeamento Visual Monocular com a Transformada Rápida de Hough
 

Kürzlich hochgeladen

HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...Health
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
Bridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxBridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxnuruddin69
 

Kürzlich hochgeladen (20)

HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Bridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxBridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptx
 

Corisco - 2015

  • 1. Corisco: Robust edgel-based orientation estimation for generic camera models Nicolau L. Werneck http://nic.hpavc.net Supervisor: Profa. Dra. Anna Helena Reali Costa Intelligent Techniques Laboratory, LTI — PCS — Poli Universidade de São Paulo Augsburg, Deutschland — 8/10/2015
  • 2. Meta-introduction Nicolau Werneck, Sc.D. E.Eng. graduated from UFMG, Unicamp and USP. Specialized in signal processing and pattern recognition, especially in computer vision and parameter estimation problems. Ex-Google and ex-Geekie. Wants to help robots help us. Presentation adapted from my doctorate defense. Results were published in Werneck and Costa [2013]. 1 / 40
  • 3. Presentation Schedule 1 Problem introduction 2 Method proposal 3 Experiments and conclusion 2 / 40
  • 4. Anthropic Environments An anthropic environment is composed by straight lines, parallel to the directions of a natural reference frame. The orientation we find is a three-dimensional rotation between the natural and the camera reference frame. 3 / 40
  • 5. Edgels and straight lines Edgels are points samples over curves or (straight) lines. Edgels have many applications. 4 / 40
  • 6. Proposal We propose a monocular vision method, denominated Corisco, that can estimate the orientation of a camera relative to an anthropic environment. Evolution of existing edgel based methods [Coughlan and Yuille, 2003]. Aplication examples: Guiding a mobile robot. Initial estimates for multi-view reconstruction. Object orientation estimation. 5 / 40
  • 7. Proposal We propose a monocular vision method, denominated Corisco, that can estimate the orientation of a camera relative to an anthropic environment. Evolution of existing edgel based methods [Coughlan and Yuille, 2003]. Aplication examples: Guiding a mobile robot. Initial estimates for multi-view reconstruction. Object orientation estimation. 5 / 40
  • 8. Proposal We propose a monocular vision method, denominated Corisco, that can estimate the orientation of a camera relative to an anthropic environment. Evolution of existing edgel based methods [Coughlan and Yuille, 2003]. Aplication examples: Guiding a mobile robot. Initial estimates for multi-view reconstruction. Object orientation estimation. 5 / 40
  • 9. Contributions Corisco has the following peculiarities: Supports any possible camera model. Compromise between speed and precision. Dismisses the use of very costly operations (sin, atan, exp, log). Uses the function x−1/2. There are also no assumptions about the solution. 6 / 40
  • 10. High-level view Inputs: Image, intrinsic and control parameters. Output: Orientation Ψ (three-dimensional rotation). 7 / 40
  • 11. Geometry The direction v of a line over the point p depends on Ψ. (Ψ,p) → v http://youtu.be/PbUyvdnBIzs 8 / 40
  • 12. Objective Our question What could be the best way to estimate the orientation of a camera in real time in an anthropic environment based on a single distorted image? 9 / 40
  • 13. Objective Our question What could be the best way to estimate the orientation of a camera in real time in an anthropic environment based on a single distorted image? 9 / 40
  • 14. Edgels versus lines Orientation can be found from lines (Caprile and Torre [1990], Cipolla et al. [1999], Rother [2002]). More intuitive. Attain a good precision. On the other hand: Restricted to perspective projection. Rely on complicated line extraction. Edgels allow us to handle distortions and are easier to extract and sub-sample. 10 / 40
  • 23. Edgel extraction Similar to the Canny border detection. Borders are local maxima in the gradient direction. 0 100 200 300 400 500 600 0 100 200 300 400 Imagem 0 100 200 300 400 500 600 0 100 200 300 400 Derivada em x 0 100 200 300 400 500 600 0 100 200 300 400 Derivada em y 0 100 200 300 400 500 600 0 100 200 300 400 Intensidade do gradiente 13 / 40
  • 24. Edgel extraction Sweep the image over a set of lines and columns that constitute a grid mask. Each border found produces an edgel. Its direction should be approximately orthogonal to the line swept. 0 100 200 300 400 500 600 0 100 200 300 400 Grade de amostragem 0 100 200 300 400 500 600 0 100 200 300 400 Edgels extraídos 14 / 40
  • 27. Camera models Bijective map between the image points and directions around the camera focal point. q p 15 / 40
  • 28. Camera model examples Wide-angle, fisheye, equirectangular. 16 / 40
  • 29. Equações de modelos de câmera Perspective Equiretangular (lat-lon) px = (qx /qz)f +cx py = (qy /qz)f +cy px = f tan−1(qz,qx ) py = f sin−1 (qy /|q|) Harris (radial distortion) Polar Equidistant (fisheye) g(x) = 1√ 1−2κx2 px = p x g(|p |)+cx py = p y g(|p |)+cy ϕ = cos−1 (qz/|q|) px = ϕ qx √ qx 2+qy 2 f +cx py = ϕ qy √ qx 2+qy 2 f +cy 17 / 40
  • 30. Edgel projection A point qn from a line in the direction rk is projected on pn, producuing an edgel com with direction vnk ∝ Jnrk (v ← (Ψ,p)) The projection Jacobian matrix Jn depends on pn. The direction orthogonal to vn is denominated un. 18 / 40
  • 31. Edgel projection A point qn from a line in the direction rk is projected on pn, producuing an edgel com with direction vnk ∝ Jnrk (v ← (Ψ,p)) The projection Jacobian matrix Jn depends on pn. The direction orthogonal to vn is denominated un. 18 / 40
  • 32. Edgel normal vector Direction of a plane defined by the focal point and by an edgel, or a corresponding environment line. nk = ux kJx k +uy kJy k 19 / 40
  • 35. Objective function The objective function is the heart of the method. Does not depend on the extraction technique. Determines the result. Conducts the choice of the optimization algorithm. The expression has the shape of a summation of errors obtained from each observation. yn = xn − ˆxn(Ψ) F(Ψ) = ∑ n (yn)2 20 / 40
  • 36. Rotation matrix An edgel direction prediction starts by finding the directions of the natural frame rk as a function of Ψ. Corisco works with quaternions. Ψ = (Ψa ,Ψb ,Ψc ,Ψd ) |Ψ| = 1 For a general orientation Ψ we have R(Ψ) = rx ry rz T = Ψa2 +Ψb2 −Ψc 2 −Ψd 2 2ΨbΨc +2ΨaΨd 2ΨbΨd −2ΨaΨc 2ΨbΨc −2ΨaΨd Ψa2 −Ψb2 +Ψc 2 −Ψd 2 2Ψc Ψd +2ΨaΨb 2ΨbΨd +2ΨaΨc 2Ψc Ψd −2ΨaΨb Ψa2 −Ψb2 −Ψc 2 +Ψd 2 21 / 40
  • 37. Edgel residue Given the rk, we calculate the predicted vnk using Jk. Ψ → rk → vnk vnk ∝ Jnrk The residue compares: vn (ou un) taken from the imagem. vnk predicted from Ψ e pn. Previous methods: Corisco: ∠v = arctan(vx ,vy ) unvnk ∠vn −∠vnk 22 / 40
  • 38. Error function Comparison with existing edgel based techiques: MAP EM M-estimation Models Probabilistic Probabilistic ρ(x) Classes 4 4 3 Classification × Iterative Direct 0.2 0.1 0.0 0.1 0.20.0 0.2 0.4 0.6 0.8 1.0 1.2 Funções de Tukey, e quadrática 23 / 40
  • 39. Objective function expression MAP estimation (Coughlan and Yuille [2003]): F(Ψ) = −∑ n log ∑ k p(cn = k)p(∠vn|Ψ,pn,cn = k) EM estimation (Schindler and Dellaert [2004]): F(Ψ) = −∑ n ∑ k p(cn = k)log(p(∠vn|Ψ,pn,cn = k)) F(Ψ) = ∑ n ∑ k p(cn = k)(∠vn −∠vnk)2 Corisco: F(Ψ) = ∑ n min k ρ(unvnk) 24 / 40
  • 40. Objective function expression MAP estimation (Coughlan and Yuille [2003]): F(Ψ) = −∑ n log ∑ k p(cn = k)p(∠vn|Ψ,pn,cn = k) EM estimation (Schindler and Dellaert [2004]): F(Ψ) = −∑ n ∑ k p(cn = k)log(p(∠vn|Ψ,pn,cn = k)) F(Ψ) = ∑ n ∑ k p(cn = k)(∠vn −∠vnk)2 Corisco: F(Ψ) = ∑ n min k ρ(unvnk) 24 / 40 F(Ψ) = −∑ n ∑ k p(cn = k)log(p(∠vn|Ψ,pn,cn = k))
  • 41. Objective function expression MAP estimation (Coughlan and Yuille [2003]): F(Ψ) = −∑ n log ∑ k p(cn = k)p(∠vn|Ψ,pn,cn = k) EM estimation (Schindler and Dellaert [2004]): F(Ψ) = −∑ n ∑ k p(cn = k)log(p(∠vn|Ψ,pn,cn = k)) F(Ψ) = ∑ n ∑ k p(cn = k)(∠vn −∠vnk)2 Corisco: F(Ψ) = ∑ n min k ρ(unvnk) 24 / 40 F(Ψ) = ∑ n ∑ k p(cn = k)(∠vn −∠vnk)2
  • 42. Objective function expression MAP estimation (Coughlan and Yuille [2003]): F(Ψ) = −∑ n log ∑ k p(cn = k)p(∠vn|Ψ,pn,cn = k) EM estimation (Schindler and Dellaert [2004]): F(Ψ) = −∑ n ∑ k p(cn = k)log(p(∠vn|Ψ,pn,cn = k)) F(Ψ) = ∑ n ∑ k p(cn = k)(∠vn −∠vnk)2 Corisco: F(Ψ) = ∑ n min k ρ(unvnk) 24 / 40 Corisco: F(Ψ) = ∑ n min k ρ(unvnk)
  • 45. Optimization First step: RANSAC, stochastic search guided by data. Inherently inefficient and imprecise. → Ψ inicial Second step: FilterSQP, continuous optimization, more efficient and precise than RANSAC. → Ψ final 25 / 40
  • 46. Optimization First step: RANSAC, stochastic search guided by data. Inherently inefficient and imprecise. → Ψ inicial Second step: FilterSQP, continuous optimization, more efficient and precise than RANSAC. → Ψ final 25 / 40
  • 47. Optimization First step: RANSAC, stochastic search guided by data. Inherently inefficient and imprecise. → Ψ inicial Second step: FilterSQP, continuous optimization, more efficient and precise than RANSAC. → Ψ final 25 / 40
  • 48. RANSAC Observation triplets are randomly selected. From each one we calculate a hypothetical Ψ, using nk. The Ψ with the smallest F(Ψ) is the initial estimate. http://i.imgur.com/O9jP8tz.gifv 26 / 40
  • 49. FilterSQP Minimize F(Ψ) over the 4D and constrained to |Ψ| = 1. Non-linear program → SQP: Sequential Quadratic Programming FilterSQP (Fletcher and Leyffer [2002]) dismisses penalty functions. 27 / 40
  • 50. Derivative Corisco calculates the Ψ derivatives by closed formulas. ∂F ∂Ψa (Ψ) = ∑ nk Knk ρ (unvnk) ux n ∂vx nk ∂Ψa +uy n ∂vy nk ∂Ψa The derivatives of the directions rk are trivial: ∂rx ∂Ψa = 2(Ψa ,Ψd ,−Ψc ) ∂rx ∂Ψb = 2(Ψb ,Ψc ,Ψd ) ··· 28 / 40
  • 51. Experiments We performed 3 experiments to assess the performance of Corisco. Each experiment used a different image set, and method to obtain the reference orientations. The observed error is the displacement in degrees of the “rotação residual” entre cada estimativa e referência. Corisco was executed changing the settings: grid size Cg , number of RANSAC iterations Cr . 29 / 40
  • 52. YorkUrbanDB Images: 101 imagens from anthropic environments. Model: Perspective. Reference: Semi-automatic method based on lines. Comparison: Methods studied by Denis et al. [2008]. Camera parameters, reference orientations and performance statistics provided by the authors. 30 / 40
  • 54. YorkUrbanDB 32 / 40 Method Time Error [s] Mean σ 1/4 Median 3/4 EM Newton 27+? 4.00◦ 1.00◦ 1.15◦ 2.61◦ 4.10◦ MAP Quasi-Newton 6+? 4.00◦ 1.00◦ 1.32◦ 2.39◦ 4.07◦ EM Quasi-Newton 1+? 9.00◦ 1.00◦ 4.04◦ 6.21◦ 10.33◦ J-linkage 1.13 8.23◦ 13.76◦ 1.14◦ 2.36◦ 4.44◦ Corisco Cr = 104 Cg = 1 47.20 1.51◦ 3.26◦ 0.69◦ 1.09◦ 1.51◦ Corisco Cr = 104 Cg = 4 16.68 1.71◦ 3.35◦ 0.72◦ 1.14◦ 1.64◦ Corisco Cr = 104 Cg = 32 7.57 2.43◦ 4.03◦ 0.97◦ 1.54◦ 2.42◦ Corisco Cr = 103 Cg = 1 8.12 1.70◦ 3.22◦ 0.70◦ 1.11◦ 1.77◦ Corisco Cr = 103 Cg = 4 2.50 2.02◦ 3.86◦ 0.81◦ 1.24◦ 1.80◦ Corisco Cr = 103 Cg = 32 0.99 2.44◦ 3.54◦ 1.00◦ 1.68◦ 2.64◦ Corisco Cr = 200 Cg = 1 5.34 2.08◦ 3.38◦ 0.72◦ 1.22◦ 1.78◦ Corisco Cr = 200 Cg = 4 1.89 3.27◦ 6.38◦ 0.85◦ 1.34◦ 2.35◦ Corisco Cr = 200 Cg = 32 0.45 3.29◦ 4.99◦ 0.99◦ 1.72◦ 3.46◦
  • 55. YorkUrbanDB 32 / 40 Method Time Error [s] Mean σ 1/4 Median 3/4 EM Newton 27+? 4.00◦ 1.00◦ 1.15◦ 2.61◦ 4.10◦ MAP Quasi-Newton 6+? 4.00◦ 1.00◦ 1.32◦ 2.39◦ 4.07◦ EM Quasi-Newton 1+? 9.00◦ 1.00◦ 4.04◦ 6.21◦ 10.33◦ J-linkage 1.13 8.23◦ 13.76◦ 1.14◦ 2.36◦ 4.44◦ Corisco Cr = 104 Cg = 1 47.20 1.51◦ 3.26◦ 0.69◦ 1.09◦ 1.51◦ Corisco Cr = 104 Cg = 4 16.68 1.71◦ 3.35◦ 0.72◦ 1.14◦ 1.64◦ Corisco Cr = 104 Cg = 32 7.57 2.43◦ 4.03◦ 0.97◦ 1.54◦ 2.42◦ Corisco Cr = 103 Cg = 1 8.12 1.70◦ 3.22◦ 0.70◦ 1.11◦ 1.77◦ Corisco Cr = 103 Cg = 4 2.50 2.02◦ 3.86◦ 0.81◦ 1.24◦ 1.80◦ Corisco Cr = 103 Cg = 32 0.99 2.44◦ 3.54◦ 1.00◦ 1.68◦ 2.64◦ Corisco Cr = 200 Cg = 1 5.34 2.08◦ 3.38◦ 0.72◦ 1.22◦ 1.78◦ Corisco Cr = 200 Cg = 4 1.89 3.27◦ 6.38◦ 0.85◦ 1.34◦ 2.35◦ Corisco Cr = 200 Cg = 32 0.45 3.29◦ 4.99◦ 0.99◦ 1.72◦ 3.46◦
  • 56. YorkUrbanDB 32 / 40 Method Time Error [s] Mean σ 1/4 Median 3/4 EM Newton 27+? 4.00◦ 1.00◦ 1.15◦ 2.61◦ 4.10◦ MAP Quasi-Newton 6+? 4.00◦ 1.00◦ 1.32◦ 2.39◦ 4.07◦ EM Quasi-Newton 1+? 9.00◦ 1.00◦ 4.04◦ 6.21◦ 10.33◦ J-linkage 1.13 8.23◦ 13.76◦ 1.14◦ 2.36◦ 4.44◦ Corisco Cr = 104 Cg = 1 47.20 1.51◦ 3.26◦ 0.69◦ 1.09◦ 1.51◦ Corisco Cr = 104 Cg = 4 16.68 1.71◦ 3.35◦ 0.72◦ 1.14◦ 1.64◦ Corisco Cr = 104 Cg = 32 7.57 2.43◦ 4.03◦ 0.97◦ 1.54◦ 2.42◦ Corisco Cr = 103 Cg = 1 8.12 1.70◦ 3.22◦ 0.70◦ 1.11◦ 1.77◦ Corisco Cr = 103 Cg = 4 2.50 2.02◦ 3.86◦ 0.81◦ 1.24◦ 1.80◦ Corisco Cr = 103 Cg = 32 0.99 2.44◦ 3.54◦ 1.00◦ 1.68◦ 2.64◦ Corisco Cr = 200 Cg = 1 5.34 2.08◦ 3.38◦ 0.72◦ 1.22◦ 1.78◦ Corisco Cr = 200 Cg = 4 1.89 3.27◦ 6.38◦ 0.85◦ 1.34◦ 2.35◦ Corisco Cr = 200 Cg = 32 0.45 3.29◦ 4.99◦ 0.99◦ 1.72◦ 3.46◦
  • 57. YorkUrbanDB 32 / 40 Method Time Error [s] Mean σ 1/4 Median 3/4 EM Newton 27+? 4.00◦ 1.00◦ 1.15◦ 2.61◦ 4.10◦ MAP Quasi-Newton 6+? 4.00◦ 1.00◦ 1.32◦ 2.39◦ 4.07◦ EM Quasi-Newton 1+? 9.00◦ 1.00◦ 4.04◦ 6.21◦ 10.33◦ J-linkage 1.13 8.23◦ 13.76◦ 1.14◦ 2.36◦ 4.44◦ Corisco Cr = 104 Cg = 1 47.20 1.51◦ 3.26◦ 0.69◦ 1.09◦ 1.51◦ Corisco Cr = 104 Cg = 4 16.68 1.71◦ 3.35◦ 0.72◦ 1.14◦ 1.64◦ Corisco Cr = 104 Cg = 32 7.57 2.43◦ 4.03◦ 0.97◦ 1.54◦ 2.42◦ Corisco Cr = 103 Cg = 1 8.12 1.70◦ 3.22◦ 0.70◦ 1.11◦ 1.77◦ Corisco Cr = 103 Cg = 4 2.50 2.02◦ 3.86◦ 0.81◦ 1.24◦ 1.80◦ Corisco Cr = 103 Cg = 32 0.99 2.44◦ 3.54◦ 1.00◦ 1.68◦ 2.64◦ Corisco Cr = 200 Cg = 1 5.34 2.08◦ 3.38◦ 0.72◦ 1.22◦ 1.78◦ Corisco Cr = 200 Cg = 4 1.89 3.27◦ 6.38◦ 0.85◦ 1.34◦ 2.35◦ Corisco Cr = 200 Cg = 32 0.45 3.29◦ 4.99◦ 0.99◦ 1.72◦ 3.46◦
  • 58. ApaSt Images: 24+24 building images. Model: Perspective with radial distortion (Harris). Reference: Bundler. 33 / 40
  • 59. ApaSt Bundler (Snavely et al. [2006]) foi used to obtain the reference orientations and intrinsic parameters. Point-based multi-view method. 34 / 40
  • 60. ApaSt 0 5 10 15 20 Error [degrees] 1 2 4 8 16 32 64 128 GridspacingCg[pixels] Error distribution 10 100 Time [seconds] Process duration Total RANSAC Corisco performance on ApaSt, Cr=10000 RANSAC iterations 35 / 40
  • 61. ApaSt 0 5 10 15 20 Error [degrees] 1 2 4 8 16 32 64 128 GridspacingCg[pixels] Error distribution 1 10 Time [seconds] Process duration Total RANSAC Corisco performance on ApaSt, Cr=1000 RANSAC iterations 35 / 40
  • 62. StreetView Images: 250 images from an urban environment. Model: Equiretangular projection. Reference: Physical sensors (IMU). 36 / 40
  • 63. StreetView Erro 1◦, time 17s. 0 50 100 150 200 2500.9970 0.9975 0.9980 0.9985 0.9990 0.9995 1.0000 0 50 100 150 200 250 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0 50 100 150 200 250 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0 50 100 150 200 250 0.03 0.02 0.01 0.00 0.01 0.02 0.03 Parâmetros estimados e referência ajustada Estimativa Referência 37 / 40
  • 64. Conclusion Corisco is a method with great potential for immediate application. Relatively simple implementation. Great robustness (distortions, RANSAC). Good performance. We demonstrated the advantages of applying the grid mask and M-estimation to the problem. We also demonstrated how to use FilterSQP in order to work with quaternions in a convenient way. 38 / 40
  • 65. Future Work Automatic parameter control. Replace RANSAC. Apply to multi-view reconstruction, monocular SLAM, object tracking... Use directional filters to measure the angular error. Use the grid mask in other problems. Estimate orientation, camera parameters, and extract curves all in a single unified process. (MRF?) 39 / 40
  • 67. Referências BibliográficasB. Caprile and V. Torre. Using vanishing points for camera calibration. International Journal of Computer Vision, 4(2):127–139, March 1990. ISSN 0920-5691. doi: 10.1007/BF00127813. URL http://www.springerlink.com/content/k75077108473tm15/. R Cipolla, T Drummond, and D Robertson. Camera calibration from vanishing points in images of architectural scenes. In British Machine Vision Conference, volume 2, pages 382–391, Nottingham, England, 1999. BMVA. James M. Coughlan and A. L. Yuille. Manhattan World: Orientation and outlier detection by Bayesian inference. Neural Computation, 15(5): 1063—-1088, March 2003. URL http://www.mitpressjournals.org/ doi/abs/10.1162/089976603765202668. Patrick Denis, James H Elder, and Francisco J Estrada. Efficient edge-based methods for estimating Manhattan frames in urban imagery. In European Conference on Computer Vision, pages 197–210, Marselha, França, 2008. Springer. doi: 10.1007/978-3-540-88688-4_15. Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Mathematical Programming, 91(2):239–269, January 2002. ISSN 0025-5610. doi: 10.1007/s101070100244. URL http://www.springerlink.com/content/qqj37x00y79ygdl8/. 1 / 3
  • 68. Carsten Rother. A new approach to vanishing point detection in architectural environments. Image and Vision Computing, 20(9-10): 647–655, 2002. doi: 10.1016/S0262-8856(02)00054-9. URL http://dx.doi.org/10.1016/S0262-8856(02)00054-9. G. Schindler and F. Dellaert. Atlanta World: An expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In Conference on Computer Vision and Pattern Recognition, pages 203–209, Washington, DC, USA, 2004. IEEE. ISBN 0-7695-2158-4. doi: 10.1109/CVPR.2004.1315033. URL http: //ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1315033. Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo Tourism: Exploring photo collections in 3D. In SIGGRAPH, pages 835–846, Boston, MA, USA, 2006. ACM. URL http://dl.acm.org/citation.cfm?id=1141964. Nicolau Leal Werneck and Anna Helena Reali Costa. Corisco: Robust edgel-based orientation estimation for generic camera models. Image and Vision Computing, 12(31):969—-981, 2013. URL http://nic.hpavc.net/almoxarifado/imavis2013-final.pdf. 2 / 3
  • 69. Calibration test Estimating focal distance with the same F(Ψ). 600 700 800 900 1000 1100 1200 Distância focal 0 500 1000 1500 2000 Funçãoobjetivo(transladada) N8 - todas imagens 600 700 800 900 1000 1100 1200 Distância focal 0 20 40 60 80 100 120 140 160 Funçãoobjetivo(transladada) N8 - imagens individuais 600 700 800 900 1000 1100 1200 Distância focal 0 500 1000 1500 2000 Funçãoobjetivo(transladada) a230 - todas imagens 600 700 800 900 1000 1100 1200 Distância focal 0 20 40 60 80 100 120 140 160 Funçãoobjetivo(transladada) a230 - imagens individuais Calibração baseada no Corisco - Função objetivo variando com a distância focal Referência (Bundler) Estimado (Corisco)Referência (Bundler) Estimado (Corisco)Referência (Bundler) Estimado (Corisco)Referência (Bundler) Estimado (Corisco) 3 / 3