SlideShare ist ein Scribd-Unternehmen logo
1 von 77
Downloaden Sie, um offline zu lesen
Volumes of Solids
Volumes By Discs & Washers
         slice  rotation 
Volumes of Solids
Volumes By Discs & Washers
                   slice  rotation 
About the x axis
Volumes of Solids
Volumes By Discs & Washers
                   slice  rotation 
About the x axis
                   y  f x
       y




                   x
Volumes of Solids
Volumes By Discs & Washers
                       slice  rotation 
About the x axis
                       y  f x
       y



           a       b   x
Volumes of Solids
Volumes By Discs & Washers
                       slice  rotation 
About the x axis
                       y  f x
       y



           a x    b   x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x

                                                   A x     f  x 
                                                                       2


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x

                                                   A x     f  x 
                                                                        2


           a x    b x                         V    f  x   x
                                                                    2


                                       x
Volumes of Solids
Volumes By Discs & Washers
                      slice  rotation 
About the x axis
                      y  f x
       y
                                        y  f x

                                                    A x     f  x 
                                                                         2


           a x    b x                           V    f  x   x
                                                                     2


                                         x
                                 b
                   V  lim    f  x   x
                                        2
                         x 0
                                 xa
Volumes of Solids
Volumes By Discs & Washers
                      slice  rotation 
About the x axis
                      y  f x
       y
                                            y  f x

                                                        A x     f  x 
                                                                             2


           a x    b x                              V    f  x   x
                                                                         2


                                            x
                                 b
                   V  lim    f  x   x
                                            2
                         x 0
                                 xa
                           b
                          f  x  dx
                                       2

                           a
About the y axis
                   y  f x
       y




                   x
About the y axis
                   y  f x
       y
       d

       c

                   x
About the y axis
                   y  f x
       y
       d
      y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                            x
                               y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                            x  g y
                               y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                                           x  g y
                               y
       c

                                    A y    g  y 
                                                       2
                   x
About the y axis
                   y  f x
       y
       d
      y                                           x  g y
                               y
       c

                                    A y    g  y 
                                                       2
                   x

                                     V   g  y   y
                                                           2
About the y axis
                      y  f x
       y
       d
      y                                                   x  g y
                                       y
       c

                                            A y    g  y 
                                                               2
                      x

                                             V   g  y   y
                                                                   2




                                 d
                   V  lim   g  y   y
                                              2
                       y  0
                                y c
About the y axis
                      y  f x
       y
       d
      y                                                   x  g y
                                       y
       c

                                            A y    g  y 
                                                               2
                      x

                                             V   g  y   y
                                                                   2




                                 d
                   V  lim   g  y   y
                                              2
                       y  0
                                y c
                          d
                        g  y  dy
                                       2

                          c
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

    -2          2       x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

    -2     x 2         x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2      x




y  4  x2




             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2       x




y  4  x2

                     A x    4  x    
                                         2 2




             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2          x




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                           2
             y
             4                                    x 0
                                                        x  2
                    y  4 x  2




     -2       x 2          x




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                     0




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                        0
                                                                              2
                                                        16 x  8 x 3  1 x 5 
                                                    2 
                                                               3       5 0  


y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                        0
                                                                              2
                                                        16 x  8 x 3  1 x 5 
                                                    2 
                                                               3       5 0  
                                                        32 64 32 0
                                                    2     
                                                             3 5  
y  4  x2
                                                     512
                                                          units 3
                       A x    4  x    
                                           2 2        15
                  V   16  8 x 2  x 4  x
             x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
          y
          4
                       y3

                         x
                    y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
           y
           4
  (-1,3)        (1,3)   y3

                        x
                   y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)   y3
                x
                           x
                      y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)   y3
                x
                           x
                      y  4  x2




                                   x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)    y3
                x
                            x
                       y  4  x2

                y  3  4  x2  3
                      1 x2



                                     x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)      y3
                x
                             x
                        y  4  x2

                y  3  4  x2  3
                      1 x2

   A x    1  x    
                       2 2


                                     x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)       y3
                x
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3
                x
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x                                           1
                                                    x  2 x3  1 x5 
                                               2 
                         y  4  x2
                                                    3          5 0 

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x                                           1
                                                    x  2 x3  1 x5 
                                               2 
                         y  4  x2
                                                    3          5 0 

                y  3  4  x2  3                 1 2 1 0
                                               2     
                                                    3 5 
                      1 x2
                                                16
                                                    units 3
    A x    1  x    
                        2 2
                                                 15

V   1  2 x 2  x 4  x         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2



                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)

                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)
              y
                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)
              y
                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                x  y2
           (1,1)
              y
                            x

                        1
                 x y   2
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                x  y2
           (1,1)
              y
                            x

                        1
x y   2
                 x y   2
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                 x  y2
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2        
A y     y    y  
            
               2      2 2

            
                          
                           
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2

                                 x  y2
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x
                                                                    1
                                                1 2 1 5 
                                               y  y 
                         1                      2   5 0
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x
                                                                    1
                                                1 2 1 5 
                                               y  y 
                         1                      2   5 0
x y   2
                  x y   2

                                                  1 1 0
                                                 
                                                 2 5 
                                                3
            1  2                              units 3
A y     y    y  
            
               2       2 2                     10
            
                           
                            
 V    y  y 4  y
(iv) (1996)        y
                   1
      x  y2  0            S

                           1                  4     x


                   -1
The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and
the curve x  y  0 . The region is rotated through 360 about the line
                2

x = 4 to form a solid.

When the region is rotated, the line segment S at height y sweeps out
an annulus.
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y               r
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 


                      R
  y
1
x  y2  0        S

                  1   4   x


             -1
1
x  y2  0        S r

                  1     4   x


             -1
1
x  y2  0         S r  4 1
                       3
                  1             4   x


             -1
1
x  y2  0         S r  4 1
                       3
                  1             4   x

                     R
             -1
1
x  y2  0         S r  4 1
                       3
                  1               4   x

                     R  4 x
             -1         4  y2
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                 3
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                                                   
                                          A y    4  y      3 
                                                              2 2    2

                 3
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                                                    
                                          A y    4  y      3 
                                                              2 2       2

                 3
                                                  16  8 y 2  y 4  9 
                                                  y 4  8 y 2  7
b) Hence find the volume of the solid.
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
                                       1

         2  y 5  y 3  7 y 
               1    8
             5
                   3          0
                               
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
                                       1

         2  y 5  y 3  7 y 
               1     8
             5
                    3         0
                               
             1  8   
         2          7 0
             5 3         
          296
                units 3
            15
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy                 Exercise 3A;
               0
                                       1          2, 5, 7, 9, 13, 14, 15
         2  y 5  y 3  7 y 
               1     8
             5
                    3         0
                                                     Exercise 3B;
             1  8   
         2                                    1, 2, 5, 7, 9, 10, 11, 12
                       7 0
             5 3         
          296
                units 3
            15

Weitere ähnliche Inhalte

Ähnlich wie X2 T06 01 discs and washers (2010)

X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves IINigel Simmons
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)Nigel Simmons
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5Garden City
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsNigel Simmons
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)Nigel Simmons
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)Nigel Simmons
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)Nigel Simmons
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsNigel Simmons
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersNigel Simmons
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)Nigel Simmons
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)Nigel Simmons
 

Ähnlich wie X2 T06 01 discs and washers (2010) (20)

X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functions
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical Shells
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & Washers
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Kürzlich hochgeladen

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 

Kürzlich hochgeladen (20)

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 

X2 T06 01 discs and washers (2010)

  • 1. Volumes of Solids Volumes By Discs & Washers slice  rotation 
  • 2. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis
  • 3. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y x
  • 4. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y a b x
  • 5. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y a x b x
  • 6. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y a x b x x
  • 7. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x a x b x x
  • 8. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x x
  • 9. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x
  • 10. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x b V  lim    f  x   x 2 x 0 xa
  • 11. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x b V  lim    f  x   x 2 x 0 xa b     f  x  dx 2 a
  • 12. About the y axis y  f x y x
  • 13. About the y axis y  f x y d c x
  • 14. About the y axis y  f x y d y c x
  • 15. About the y axis y  f x y d y x y c x
  • 16. About the y axis y  f x y d y x  g y y c x
  • 17. About the y axis y  f x y d y x  g y y c A y    g  y  2 x
  • 18. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2
  • 19. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2 d V  lim   g  y   y 2 y  0 y c
  • 20. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2 d V  lim   g  y   y 2 y  0 y c d    g  y  dy 2 c
  • 21. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis
  • 22. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 2 x
  • 23. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x
  • 24. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 x
  • 25. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 A x    4  x  2 2 x
  • 26. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 27. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 -2 x 2 x y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 28. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 29. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 2 16 x  8 x 3  1 x 5   2   3 5 0  y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 30. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 2 16 x  8 x 3  1 x 5   2   3 5 0  32 64 32 0  2       3 5  y  4  x2 512  units 3 A x    4  x  2 2 15 V   16  8 x 2  x 4  x x
  • 31. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3
  • 32. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 y3 x y  4  x2
  • 33. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x y  4  x2
  • 34. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2
  • 35. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 x
  • 36. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 x
  • 37. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 x
  • 38. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 39. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 40. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 41. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x 1  x  2 x3  1 x5   2  y  4  x2  3 5 0  y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 42. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x 1  x  2 x3  1 x5   2  y  4  x2  3 5 0  y  3  4  x2  3 1 2 1 0  2       3 5   1 x2 16  units 3 A x    1  x  2 2 15 V   1  2 x 2  x 4  x x
  • 43. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated.
  • 44. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 x
  • 45. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) x
  • 46. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x
  • 47. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x
  • 48. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2
  • 49. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2
  • 50. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2     
  • 51. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 52. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 53. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 54. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 1 2 1 5   y  y  1 2 5 0 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 55. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 1 2 1 5   y  y  1 2 5 0 x y 2 x y 2  1 1 0     2 5  3  1  2   units 3 A y     y    y    2 2 2 10      V    y  y 4  y
  • 56. (iv) (1996) y 1 x  y2  0 S 1 4 x -1 The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and the curve x  y  0 . The region is rotated through 360 about the line 2 x = 4 to form a solid. When the region is rotated, the line segment S at height y sweeps out an annulus.
  • 57. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 
  • 58. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y
  • 59. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y r
  • 60. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R y
  • 61. 1 x  y2  0 S 1 4 x -1
  • 62. 1 x  y2  0 S r 1 4 x -1
  • 63. 1 x  y2  0 S r  4 1 3 1 4 x -1
  • 64. 1 x  y2  0 S r  4 1 3 1 4 x R -1
  • 65. 1 x  y2  0 S r  4 1 3 1 4 x R  4 x -1  4  y2
  • 66. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y
  • 67. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y
  • 68. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1 3
  • 69. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1  A y    4  y   3  2 2 2 3
  • 70. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1  A y    4  y   3  2 2 2 3   16  8 y 2  y 4  9    y 4  8 y 2  7
  • 71. b) Hence find the volume of the solid.
  • 72. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y
  • 73. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1
  • 74. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0
  • 75. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0 1  2  y 5  y 3  7 y  1 8 5  3 0 
  • 76. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0 1  2  y 5  y 3  7 y  1 8 5  3 0  1  8     2  7 0 5 3  296  units 3 15
  • 77. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy Exercise 3A; 0 1 2, 5, 7, 9, 13, 14, 15  2  y 5  y 3  7 y  1 8 5  3 0  Exercise 3B; 1  8     2  1, 2, 5, 7, 9, 10, 11, 12 7 0 5 3  296  units 3 15