SlideShare ist ein Scribd-Unternehmen logo
1 von 54
Downloaden Sie, um offline zu lesen
Conics
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse


   e=1           parabola
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse


   e=1           parabola


   e>1           hyperbola
Ellipse (e < 1)
     y

     b
A’         A
-a        a    x
     -b
Ellipse (e < 1)
     y

     b
A’             A
-a        S   a    Z x
     -b
Ellipse (e < 1)
           y

            b
  A’                   A
  -a             S    a       Z x
           -b

SA = eAZ   and   SA’ = eA’Z
Ellipse (e < 1)
                y

                 b
    A’                        A
    -a                   S   a       Z x
                -b

 SA = eAZ      and      SA’ = eA’Z
(1) SA’ + SA = 2a
(2) SA’ – SA = e(A’Z – AZ)
Ellipse (e < 1)
                y

                 b
    A’                        A
    -a                   S   a       Z x
                -b

 SA = eAZ      and      SA’ = eA’Z
(1) SA’ + SA = 2a
(2) SA’ – SA = e(A’Z – AZ)
            = e(AA’)
            = e(2a)
            = 2ae
b
             A’                      A
             -a                 S   a    Z x
                         -b

(1) + (2);   2SA’ = 2a(1 + e)
              SA’ = a(1 + e)
b
             A’                         A
             -a                 S      a     Z x
                         -b

(1) + (2);   2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
              SA’ = a(1 + e)                  SA = a(1 - e)
b
              A’                         A
              -a                 S      a     Z x
                          -b

 (1) + (2);   2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
               SA’ = a(1 + e)                  SA = a(1 - e)
Focus
OS = OA - SA
b
                A’                         A
                -a                 S      a     Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                  SA = a(1 - e)
Focus
OS = OA - SA
   = a – a(1 – e)
   = ae
 S  ae,0 
b
                A’                             A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
   = a – a(1 – e)
   = ae
 S  ae,0 
b
                A’                             A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
                                             SA
   = a – a(1 – e)                      OA             SA  eAZ 
   = ae                                       e
 S  ae,0 
b
                A’                              A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
                                             SA
   = a – a(1 – e)                      OA           SA  eAZ 
   = ae                                       e
                                        ae a1  e 
 S  ae,0                           
                                         e      e                     a
                                        a          directrices x  
                                                                     e
                                        e
S ae,0 
                  b        P
P  x, y 
                                    N
             A’                 A
             -a                a
N , y
   a                   S            Z x
     
 e              -b
S ae,0 
                        b        P
P  x, y 
                                          N
                 A’                   A
                 -a                  a
N , y
   a                         S            Z x
     
 e                    -b
             SP  ePN
S ae,0 
                                         b             P
P  x, y 
                                                               N
                        A’                                 A
                        -a                                 a
N , y
   a                                               S           Z x
     
 e                                     -b
                  SP  ePN
                                     2

 x  ae 2   y  02  e  x     y  y 2
                                 a
                                  
                               e
                                   2
                        2    a
       x  ae   y  e  x  
                2   2

                             e
S ae,0 
                                                     b        P
   P  x, y 
                                                                       N
                                 A’                                A
                                 -a                               a
  N , y
     a                                                    S            Z x
       
   e                                               -b
                        SP  ePN
                                                 2

   x  ae 2   y  02  e  x     y  y 2
                                   a
                                    
                                          e
                                                 2
                              2       a
         x  ae   y  e  x  
                  2     2

                                      e
x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2
         x 2 1  e 2   y 2  a 2 1  e 2 
S ae,0 
                                                     b        P
   P  x, y 
                                                                      N
                                 A’                               A
                                 -a                               a
  N , y
     a                                                    S           Z x
       
   e                                               -b
                        SP  ePN
                                                 2

   x  ae 2   y  02  e  x     y  y 2
                                   a
                                    
                                          e
                                                 2
                              2       a
         x  ae   y  e  x  
                  2     2

                                      e
x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2
         x 2 1  e 2   y 2  a 2 1  e 2 

                 x2     y2
                     2       1
                 a a 1  e 
                  2        2
b2
when x  0, y  b                  1
                         a 1  e 
                     i.e. 2      2


                               b 2  a 2 1  e 2 
b2
when x  0, y  b                      1
                             a 1  e 
                         i.e. 2      2


                                     b 2  a 2 1  e 2 

 Ellipse: (a > b)              x2 y2
                                2
                                   2 1
                               a b

 where; b 2  a 2 1  e 2 
           focus :  ae,0 
                              a
           directrices : x  
                              e
            e is the eccentricity
 major semi-axis = a units
 minor semi-axis = b units
b2
when x  0, y  b                     1
                            a 1  e 
                        i.e. 2      2


                                      b 2  a 2 1  e 2 

 Ellipse: (a > b)               x2 y2                  Note: If b > a
                                 2
                                    2 1
                                a b                    foci on the y axis

 where; b  a 1  e
            2       2   2
                                                       a 2  b 2 1  e 2 

          focus :  ae,0                             focus : 0,be 
                              a                                            b
          directrices : x                            directrices : y  
                              e                                            e
           e is the eccentricity
 major semi-axis = a units
 minor semi-axis = b units
b2
when x  0, y  b                     1
                            a 1  e 
                        i.e. 2      2


                                      b 2  a 2 1  e 2 

 Ellipse: (a > b)               x2 y2                  Note: If b > a
                                 2
                                    2 1
                                a b                    foci on the y axis

 where; b  a 1  e
            2       2   2
                                                       a 2  b 2 1  e 2 

          focus :  ae,0                             focus : 0,be 
                              a                                            b
          directrices : x                            directrices : y  
                              e                                            e
           e is the eccentricity
 major semi-axis = a units                                   Area  ab
 minor semi-axis = b units
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1
      9 5

       a2  9
        a3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1             b2  5
      9 5
                      a 2 1  e 2   5
       a2  9
        a3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1             b2  5
      9 5
                      a 2 1  e 2   5
                       91  e 2   5
       a2  9
        a3
                                     5
                          1 e 2

                                     9
                                     4
                              e 
                                2

                                     9
                                     2
                                e
                                     3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1             b2  5
      9 5
                      a 2 1  e 2   5
                       91  e 2   5
       a2  9
                                                            2
        a3                                 eccentricity 
                                     5                      3
                          1 e 2

                                     9         foci :  2,0 
                                     4
                              e 
                                2
                                                                    3
                                     9       directrices : x  3 
                                                                    2
                                     2
                                e                              9
                                     3                    x
                                                                2
y

         Auxiliary circle




-3                 3        x
b    5
     y                      a  3 
                                  
         Auxiliary circle




-3                 3             x
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
                y                          a  3 
                                                 
                        Auxiliary circle
                    5




-3   S’(-2,0)            S(2,0)   3             x



             5
b    5
                    y                             a  3 
                                                        
                            Auxiliary circle
                        5




    -3   S’(-2,0)            S(2,0)   3                x



                 5
    9                                             9
x                                            x
    2                                             2
b    5
                        y                                 a  3 
                                                                
                                Auxiliary circle
                            5




       -3   S’(-2,0)             S(2,0)   3                    x



                        5
     9                                                9
 x                                               x
     2                                                2
Major axis = 6 units             Minor axis  2 5 units
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
      centre : (1,2)
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
      centre : (1,2)
      b2  9
       b3
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                            1
         4            9
      centre : (1,2)
      b2  9       a 2  b 2 1  e 2 
       b3         4  91  e 2 
                       5
                   e
                      3
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                            1
         4            9
      centre : (1,2)
      b2  9       a 2  b 2 1  e 2 
       b3         4  91  e 2 
                       5
                 e
                      3
  foci :  1,2  5 
                                               9
                         directrices : y  2 
                                                5
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22                   Exercise 6A; 1, 2, 3, 5, 7,
                            1
         4            9                         8, 9, 11, 13, 15
      centre : (1,2)
      b2  9       a 2  b 2 1  e 2 
       b3         4  91  e 2 
                       5
                 e
                      3
  foci :  1,2  5 
                                               9
                         directrices : y  2 
                                                5

Weitere ähnliche Inhalte

Mehr von Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Kürzlich hochgeladen

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Kürzlich hochgeladen (20)

ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 

X2 T03 01 ellipse (2011)

  • 2. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix)
  • 3. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix)
  • 4. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle
  • 5. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse
  • 6. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola
  • 7. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola e>1 hyperbola
  • 8. Ellipse (e < 1) y b A’ A -a a x -b
  • 9. Ellipse (e < 1) y b A’ A -a S a Z x -b
  • 10. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z
  • 11. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z (1) SA’ + SA = 2a (2) SA’ – SA = e(A’Z – AZ)
  • 12. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z (1) SA’ + SA = 2a (2) SA’ – SA = e(A’Z – AZ) = e(AA’) = e(2a) = 2ae
  • 13. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) SA’ = a(1 + e)
  • 14. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)
  • 15. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus OS = OA - SA
  • 16. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus OS = OA - SA = a – a(1 – e) = ae  S  ae,0 
  • 17. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ = a – a(1 – e) = ae  S  ae,0 
  • 18. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e  S  ae,0 
  • 19. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e ae a1  e   S  ae,0    e e a a  directrices x    e e
  • 20. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b
  • 21. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN
  • 22. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e
  • 23. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2 
  • 24. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2  x2 y2  2 1 a a 1  e  2 2
  • 25. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2 
  • 26. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 2  2 1 a b where; b 2  a 2 1  e 2  focus :  ae,0  a directrices : x   e e is the eccentricity major semi-axis = a units minor semi-axis = b units
  • 27. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity major semi-axis = a units minor semi-axis = b units
  • 28. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity major semi-axis = a units Area  ab minor semi-axis = b units
  • 29. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features.
  • 30. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 9 5 a2  9 a3
  • 31. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 a2  9 a3
  • 32. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 91  e 2   5 a2  9 a3 5 1 e 2 9 4 e  2 9 2 e 3
  • 33. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 91  e 2   5 a2  9 2 a3  eccentricity  5 3 1 e 2 9 foci :  2,0  4 e  2 3 9 directrices : x  3  2 2 e 9 3 x 2
  • 34. y Auxiliary circle -3 3 x
  • 35. b 5 y a  3    Auxiliary circle -3 3 x
  • 36. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 37. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 38. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 39. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 40. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 41. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 42. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 43. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5
  • 44. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9 x x 2 2
  • 45. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9 x x 2 2 Major axis = 6 units Minor axis  2 5 units
  • 46. (ii) 9 x 2  4 y 2  18 x  16 y  11  0
  • 47. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36
  • 48. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9
  • 49. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9
  • 50. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2)
  • 51. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 b3
  • 52. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3
  • 53. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3 foci :  1,2  5  9 directrices : y  2  5
  • 54. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22 Exercise 6A; 1, 2, 3, 5, 7,  1 4 9 8, 9, 11, 13, 15 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3 foci :  1,2  5  9 directrices : y  2  5