SlideShare ist ein Scribd-Unternehmen logo
1 von 35
Downloaden Sie, um offline zu lesen
Factorising Complex
Expressions
Factorising Complex
Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Factorising Complex
Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
real field
Factorising Complex
Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
real field
• factorised to n linear factors over the complex field
Factorising Complex
Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
real field
• factorised to n linear factors over the complex field
NOTE: odd ordered polynomials must have a real root
Factorising Complex
Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
real field
• factorised to n linear factors over the complex field
NOTE: odd ordered polynomials must have a real root
e.g . i  x 2  2 x  2
Factorising Complex
Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
real field
• factorised to n linear factors over the complex field
NOTE: odd ordered polynomials must have a real root
e.g . i  x 2  2 x  2   x  12  1
Factorising Complex
Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
real field
• factorised to n linear factors over the complex field
NOTE: odd ordered polynomials must have a real root
e.g . i  x 2  2 x  2   x  12  1

  x  1  i  x  1  i 
ii  z 4  z 2  12  0
ii  z 4  z 2  12  0

z

2

 3z 2  4   0
ii  z 4  z 2  12  0

z  3z  4  0
z  3 z  3z  4  0
2

2

2

factorised over Real numbers
ii  z 4  z 2  12  0

z  3z  4  0
factorised over Real numbers
z  3 z  3z  4  0
z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
2

2

2
ii  z 4  z 2  12  0

z  3z  4  0
factorised over Real numbers
z  3 z  3z  4  0
z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
2

2

2

z   3 or z  2i
ii  z 4  z 2  12  0

z  3z  4  0
factorised over Real numbers
z  3 z  3z  4  0
z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
2

2

2

z   3 or z  2i
If (x – a) is a factor of P(x), then P(a) = 0
b
If (ax – b) is a factor of P(x), then P  = 0
a
ii  z 4  z 2  12  0

z  3z  4  0
factorised over Real numbers
z  3 z  3z  4  0
z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
2

2

2

z   3 or z  2i
If (x – a) is a factor of P(x), then P(a) = 0
b
If (ax – b) is a factor of P(x), then P  = 0
a

iii  Factorise 2 x 3  3x 2  8 x  5
ii  z 4  z 2  12  0

z  3z  4  0
factorised over Real numbers
z  3 z  3z  4  0
z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
2

2

2

z   3 or z  2i
If (x – a) is a factor of P(x), then P(a) = 0
b
If (ax – b) is a factor of P(x), then P  = 0
a

iii  Factorise 2 x 3  3x 2  8 x  5
as it is a cubic it must have a real factor
ii  z 4  z 2  12  0

z  3z  4  0
factorised over Real numbers
z  3 z  3z  4  0
z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
2

2

2

z   3 or z  2i
If (x – a) is a factor of P(x), then P(a) = 0
b
If (ax – b) is a factor of P(x), then P  = 0
a

iii  Factorise 2 x 3  3x 2  8 x  5
as it is a cubic it must have a real factor
3
2
1  1
1


 1 5
P   2    3   8 
 2  2
 2
 2
1 3
   45
4 4
0
ii  z 4  z 2  12  0

z  3z  4  0
factorised over Real numbers
z  3 z  3z  4  0
z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
2

2

2

z   3 or z  2i
If (x – a) is a factor of P(x), then P(a) = 0
b
If (ax – b) is a factor of P(x), then P  = 0
a

iii  Factorise 2 x 3  3x 2  8 x  5
as it is a cubic it must have a real factor
3
2
1  1
1


 1 5
 2 x3  3x 2  8 x  5
P   2    3   8 
 2  2
 2
 2
  2 x  1  x 2  2 x  5 
1 3
   45
4 4
0
ii  z 4  z 2  12  0

z  3z  4  0
factorised over Real numbers
z  3 z  3z  4  0
z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
2

2

2

z   3 or z  2i
If (x – a) is a factor of P(x), then P(a) = 0
b
If (ax – b) is a factor of P(x), then P  = 0
a

iii  Factorise 2 x 3  3x 2  8 x  5
as it is a cubic it must have a real factor
3
2
1  1
1


 1 5
 2 x3  3x 2  8 x  5
P   2    3   8 
 2  2
 2
 2
  2 x  1  x 2  2 x  5 
1 3
   45
2
 2 x  1  x  1  4
4 4
0




ii  z 4  z 2  12  0

z  3z  4  0
factorised over Real numbers
z  3 z  3z  4  0
z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
2

2

2

z   3 or z  2i
If (x – a) is a factor of P(x), then P(a) = 0
b
If (ax – b) is a factor of P(x), then P  = 0
a

iii  Factorise 2 x 3  3x 2  8 x  5
as it is a cubic it must have a real factor
3
2
1  1
1


 1 5
 2 x3  3x 2  8 x  5
P   2    3   8 
 2  2
 2
 2
  2 x  1  x 2  2 x  5 
1 3
   45
2
 2 x  1  x  1  4
4 4
 2 x  1 x  1  2i  x  1  2i 
0




(iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros,
find these zeros and factorise P(x) over the complex field.
(iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros,
find these zeros and factorise P(x) over the complex field.

 1   4 1   8 1   5 1   1  3
P       
 2   16   8   4  2
0
 2 x  1 is a factor
(iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros,
find these zeros and factorise P(x) over the complex field.
 1   4 1   8 1   5 1   1  3
P       
 2   16   8   4  2
0
 2 x  1 is a factor
P x   2 x  12 x 3

 3
(iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros,
find these zeros and factorise P(x) over the complex field.
 1   4 1   8 1   5 1   1  3
P       
 2   16   8   4  2
0
 2 x  1 is a factor
P x   2 x  12 x 3

 5 x  3
(iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros,
find these zeros and factorise P(x) over the complex field.
 1   4 1   8 1   5 1   1  3
P       
 2   16   8   4  2
0
 2 x  1 is a factor
P x   2 x  12 x 3 5x 2  5 x  3
(iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros,
find these zeros and factorise P(x) over the complex field.
 1   4 1   8 1   5 1   1  3
P       
 2   16   8   4  2
0
 2 x  1 is a factor
P x   2 x  12 x 3 5x 2  5 x  3

 3    27   9   3 
P    2
  5   5    3
 2  8   4  2
0
(iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros,
find these zeros and factorise P(x) over the complex field.
 1   4 1   8 1   5 1   1  3
P       
 2   16   8   4  2
0
 2 x  1 is a factor
P x   2 x  12 x 3 5x 2  5 x  3

 3    27   9   3 
P    2
  5   5    3
 2  8   4  2
0
 2 x  3 is a factor

3
1
 rational zeros are and 2
2
P x   4 x 4  8 x 3  5 x 2  x  3
P x   4 x 4  8 x 3  5 x 2  x  3
  2 x  1 2 x  3  x 2

 1
P x   4 x 4  8 x 3  5 x 2  x  3
  2 x  1 2 x  3  x 2

 1

1 3  2 x  6 x
1 2 x  1  2 x
P x   4 x 4  8 x 3  5 x 2  x  3
  2 x  1 2 x  3  x 2

 1

1 3  2 x  6 x
1 2 x  1  2 x
4x
 1 3  ? x  3 x
P x   4 x 4  8 x 3  5 x 2  x  3
  2 x  1 2 x  3  x 2 x

 1

1 3  2 x  6 x
1 2 x  1  2 x
4x
 1 3  ? x  3 x
P x   4 x 4  8 x 3  5 x 2  x  3
  2 x  1 2 x  3  x 2 x
 1
2

1  3
 2 x  12 x  3 x    
2  4


1 3  2 x  6 x
1 2 x  1  2 x
4x
 1 3  ? x  3 x
P x   4 x 4  8 x 3  5 x 2  x  3
1 3  2 x  6 x
  2 x  1 2 x  3  x 2 x
 1
1 2 x  1  2 x
2

1  3
4x
 2 x  12 x  3 x    
2  4
 1 3  ? x  3 x

1
3 
1
3 

 2 x  12 x  3 x  
i  x  
i
2 2 
2 2 

P x   4 x 4  8 x 3  5 x 2  x  3
1 3  2 x  6 x
  2 x  1 2 x  3  x 2 x
 1
1 2 x  1  2 x
2

1  3
4x
 2 x  12 x  3 x    
2  4
 1 3  ? x  3 x

1
3 
1
3 

 2 x  12 x  3 x  
i  x  
i
2 2 
2 2 


Cambridge: Exercise 5A; 1b, 2, 3, 5, 6, 7b, 8, 9, 10, 12 to 15

Weitere ähnliche Inhalte

Was ist angesagt?

Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookRushane Barnes
 
11X1 T17 07 approximations
11X1 T17 07 approximations11X1 T17 07 approximations
11X1 T17 07 approximationsNigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integralNigel Simmons
 
119 Powerpoint 2.6
119 Powerpoint 2.6119 Powerpoint 2.6
119 Powerpoint 2.6Jeneva Clark
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 
11X1 T10 07 sum and product of roots (2010)
11X1 T10 07 sum and product of roots (2010)11X1 T10 07 sum and product of roots (2010)
11X1 T10 07 sum and product of roots (2010)Nigel Simmons
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)sanjay gupta
 
maths revision to help you
 maths revision to help you maths revision to help you
maths revision to help youJakeHornsby3219
 
4.5 Multiplication Of Two Matrices
4.5 Multiplication Of Two Matrices4.5 Multiplication Of Two Matrices
4.5 Multiplication Of Two Matrices豪 鱟灊
 

Was ist angesagt? (16)

Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
 
11X1 T17 07 approximations
11X1 T17 07 approximations11X1 T17 07 approximations
11X1 T17 07 approximations
 
11X1 T14 04 areas
11X1 T14 04 areas11X1 T14 04 areas
11X1 T14 04 areas
 
0406 ch 4 day 6
0406 ch 4 day 60406 ch 4 day 6
0406 ch 4 day 6
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integral
 
119 Powerpoint 2.6
119 Powerpoint 2.6119 Powerpoint 2.6
119 Powerpoint 2.6
 
Domain alg worked
Domain alg workedDomain alg worked
Domain alg worked
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 
11X1 T10 07 sum and product of roots (2010)
11X1 T10 07 sum and product of roots (2010)11X1 T10 07 sum and product of roots (2010)
11X1 T10 07 sum and product of roots (2010)
 
Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)Multiple Choice Questions_Successive Differentiation (CALCULUS)
Multiple Choice Questions_Successive Differentiation (CALCULUS)
 
maths revision to help you
 maths revision to help you maths revision to help you
maths revision to help you
 
A0212010109
A0212010109A0212010109
A0212010109
 
Ακολουθίες - Α.Π - Γ.Π 2021
Ακολουθίες - Α.Π - Γ.Π 2021Ακολουθίες - Α.Π - Γ.Π 2021
Ακολουθίες - Α.Π - Γ.Π 2021
 
4.5 Multiplication Of Two Matrices
4.5 Multiplication Of Two Matrices4.5 Multiplication Of Two Matrices
4.5 Multiplication Of Two Matrices
 
relations-function
relations-functionrelations-function
relations-function
 

Andere mochten auch

Relations and functions
Relations and functions Relations and functions
Relations and functions Seyid Kadher
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
Relations & functions
Relations & functionsRelations & functions
Relations & functionsindu thakur
 
Relations and functions
Relations and functions Relations and functions
Relations and functions Leslie Amoguis
 
Relations and Functions
Relations and FunctionsRelations and Functions
Relations and Functionstoni dimella
 
Math functions, relations, domain & range
Math functions, relations, domain & rangeMath functions, relations, domain & range
Math functions, relations, domain & rangeRenee Scott
 
How to factor
How to factorHow to factor
How to factor41053380
 
Khalilah power point 11 16-10
Khalilah power point 11 16-10Khalilah power point 11 16-10
Khalilah power point 11 16-1041053380
 
Polynomial power point
Polynomial power pointPolynomial power point
Polynomial power point41053380
 
Social Studies Review, Unit 1
Social Studies Review,  Unit 1Social Studies Review,  Unit 1
Social Studies Review, Unit 1rfant
 
Module 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation NotesModule 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation Notestoni dimella
 
практична робота №6
практична робота №6практична робота №6
практична робота №6Sasha Sasha
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
Relations and functions
Relations and functionsRelations and functions
Relations and functionsThabani Masoka
 
Relations & Functions
Relations & FunctionsRelations & Functions
Relations & FunctionsJ Edwards
 
Instruments and Techniques used in Guidance
Instruments and Techniques used in GuidanceInstruments and Techniques used in Guidance
Instruments and Techniques used in GuidanceJeric De Vera
 

Andere mochten auch (20)

Relations and functions
Relations and functions Relations and functions
Relations and functions
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)11 X1 T02 06 relations and functions (2010)
11 X1 T02 06 relations and functions (2010)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
Relations & functions
Relations & functionsRelations & functions
Relations & functions
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
 
Relations and Functions
Relations and FunctionsRelations and Functions
Relations and Functions
 
Math functions, relations, domain & range
Math functions, relations, domain & rangeMath functions, relations, domain & range
Math functions, relations, domain & range
 
How to factor
How to factorHow to factor
How to factor
 
Khalilah power point 11 16-10
Khalilah power point 11 16-10Khalilah power point 11 16-10
Khalilah power point 11 16-10
 
Polynomial power point
Polynomial power pointPolynomial power point
Polynomial power point
 
Linear Function
Linear FunctionLinear Function
Linear Function
 
Social Studies Review, Unit 1
Social Studies Review,  Unit 1Social Studies Review,  Unit 1
Social Studies Review, Unit 1
 
Module 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation NotesModule 1 Lesson 1 Remediation Notes
Module 1 Lesson 1 Remediation Notes
 
практична робота №6
практична робота №6практична робота №6
практична робота №6
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
 
Relations & Functions
Relations & FunctionsRelations & Functions
Relations & Functions
 
Instruments and Techniques used in Guidance
Instruments and Techniques used in GuidanceInstruments and Techniques used in Guidance
Instruments and Techniques used in Guidance
 

Ähnlich wie X2 t02 01 factorising complex expressions (2013)

X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)Nigel Simmons
 
X2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsX2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsNigel Simmons
 
11 x1 t15 05 polynomial results (2013)
11 x1 t15 05 polynomial results (2013)11 x1 t15 05 polynomial results (2013)
11 x1 t15 05 polynomial results (2013)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)Nigel Simmons
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9Jimbo Lamb
 
11 x1 t15 05 polynomial results (2012)
11 x1 t15 05 polynomial results (2012)11 x1 t15 05 polynomial results (2012)
11 x1 t15 05 polynomial results (2012)Nigel Simmons
 
11X1 T15 05 polynomial results (2011)
11X1 T15 05 polynomial results (2011)11X1 T15 05 polynomial results (2011)
11X1 T15 05 polynomial results (2011)Nigel Simmons
 
11X1 T13 05 polynomial results
11X1 T13 05 polynomial results11X1 T13 05 polynomial results
11X1 T13 05 polynomial resultsNigel Simmons
 
11X1 T16 05 polynomial results
11X1 T16 05 polynomial results11X1 T16 05 polynomial results
11X1 T16 05 polynomial resultsNigel Simmons
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminantswartzje
 
3.2 properties of division and roots t
3.2 properties of division and roots t3.2 properties of division and roots t
3.2 properties of division and roots tmath260
 

Ähnlich wie X2 t02 01 factorising complex expressions (2013) (20)

X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
X2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsX2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressions
 
11 x1 t15 05 polynomial results (2013)
11 x1 t15 05 polynomial results (2013)11 x1 t15 05 polynomial results (2013)
11 x1 t15 05 polynomial results (2013)
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
 
11 x1 t15 05 polynomial results (2012)
11 x1 t15 05 polynomial results (2012)11 x1 t15 05 polynomial results (2012)
11 x1 t15 05 polynomial results (2012)
 
11X1 T15 05 polynomial results (2011)
11X1 T15 05 polynomial results (2011)11X1 T15 05 polynomial results (2011)
11X1 T15 05 polynomial results (2011)
 
11X1 T13 05 polynomial results
11X1 T13 05 polynomial results11X1 T13 05 polynomial results
11X1 T13 05 polynomial results
 
11X1 T16 05 polynomial results
11X1 T16 05 polynomial results11X1 T16 05 polynomial results
11X1 T16 05 polynomial results
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
 
Taylor series in 1 and 2 variable
Taylor series in 1 and 2 variableTaylor series in 1 and 2 variable
Taylor series in 1 and 2 variable
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
Quadratic Equation and discriminant
Quadratic Equation and discriminantQuadratic Equation and discriminant
Quadratic Equation and discriminant
 
Alg2 lesson 7-6
Alg2 lesson 7-6Alg2 lesson 7-6
Alg2 lesson 7-6
 
3.2 properties of division and roots t
3.2 properties of division and roots t3.2 properties of division and roots t
3.2 properties of division and roots t
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 

Kürzlich hochgeladen

The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 

Kürzlich hochgeladen (20)

The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 

X2 t02 01 factorising complex expressions (2013)

  • 2. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs.
  • 3. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field
  • 4. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field
  • 5. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root
  • 6. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root e.g . i  x 2  2 x  2
  • 7. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root e.g . i  x 2  2 x  2   x  12  1
  • 8. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root e.g . i  x 2  2 x  2   x  12  1   x  1  i  x  1  i 
  • 9. ii  z 4  z 2  12  0
  • 10. ii  z 4  z 2  12  0 z 2  3z 2  4   0
  • 11. ii  z 4  z 2  12  0 z  3z  4  0 z  3 z  3z  4  0 2 2 2 factorised over Real numbers
  • 12. ii  z 4  z 2  12  0 z  3z  4  0 factorised over Real numbers z  3 z  3z  4  0 z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers 2 2 2
  • 13. ii  z 4  z 2  12  0 z  3z  4  0 factorised over Real numbers z  3 z  3z  4  0 z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers 2 2 2 z   3 or z  2i
  • 14. ii  z 4  z 2  12  0 z  3z  4  0 factorised over Real numbers z  3 z  3z  4  0 z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers 2 2 2 z   3 or z  2i If (x – a) is a factor of P(x), then P(a) = 0 b If (ax – b) is a factor of P(x), then P  = 0 a
  • 15. ii  z 4  z 2  12  0 z  3z  4  0 factorised over Real numbers z  3 z  3z  4  0 z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers 2 2 2 z   3 or z  2i If (x – a) is a factor of P(x), then P(a) = 0 b If (ax – b) is a factor of P(x), then P  = 0 a iii  Factorise 2 x 3  3x 2  8 x  5
  • 16. ii  z 4  z 2  12  0 z  3z  4  0 factorised over Real numbers z  3 z  3z  4  0 z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers 2 2 2 z   3 or z  2i If (x – a) is a factor of P(x), then P(a) = 0 b If (ax – b) is a factor of P(x), then P  = 0 a iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor
  • 17. ii  z 4  z 2  12  0 z  3z  4  0 factorised over Real numbers z  3 z  3z  4  0 z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers 2 2 2 z   3 or z  2i If (x – a) is a factor of P(x), then P(a) = 0 b If (ax – b) is a factor of P(x), then P  = 0 a iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2 1  1 1    1 5 P   2    3   8   2  2  2  2 1 3    45 4 4 0
  • 18. ii  z 4  z 2  12  0 z  3z  4  0 factorised over Real numbers z  3 z  3z  4  0 z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers 2 2 2 z   3 or z  2i If (x – a) is a factor of P(x), then P(a) = 0 b If (ax – b) is a factor of P(x), then P  = 0 a iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2 1  1 1    1 5  2 x3  3x 2  8 x  5 P   2    3   8   2  2  2  2   2 x  1  x 2  2 x  5  1 3    45 4 4 0
  • 19. ii  z 4  z 2  12  0 z  3z  4  0 factorised over Real numbers z  3 z  3z  4  0 z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers 2 2 2 z   3 or z  2i If (x – a) is a factor of P(x), then P(a) = 0 b If (ax – b) is a factor of P(x), then P  = 0 a iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2 1  1 1    1 5  2 x3  3x 2  8 x  5 P   2    3   8   2  2  2  2   2 x  1  x 2  2 x  5  1 3    45 2  2 x  1  x  1  4 4 4 0  
  • 20. ii  z 4  z 2  12  0 z  3z  4  0 factorised over Real numbers z  3 z  3z  4  0 z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers 2 2 2 z   3 or z  2i If (x – a) is a factor of P(x), then P(a) = 0 b If (ax – b) is a factor of P(x), then P  = 0 a iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2 1  1 1    1 5  2 x3  3x 2  8 x  5 P   2    3   8   2  2  2  2   2 x  1  x 2  2 x  5  1 3    45 2  2 x  1  x  1  4 4 4  2 x  1 x  1  2i  x  1  2i  0  
  • 21. (iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.
  • 22. (iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.  1   4 1   8 1   5 1   1  3 P         2   16   8   4  2 0  2 x  1 is a factor
  • 23. (iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.  1   4 1   8 1   5 1   1  3 P         2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3  3
  • 24. (iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.  1   4 1   8 1   5 1   1  3 P         2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3  5 x  3
  • 25. (iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.  1   4 1   8 1   5 1   1  3 P         2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3 5x 2  5 x  3
  • 26. (iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.  1   4 1   8 1   5 1   1  3 P         2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3 5x 2  5 x  3  3    27   9   3  P    2   5   5    3  2  8   4  2 0
  • 27. (iv) Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.  1   4 1   8 1   5 1   1  3 P         2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3 5x 2  5 x  3  3    27   9   3  P    2   5   5    3  2  8   4  2 0  2 x  3 is a factor 3 1  rational zeros are and 2 2
  • 28. P x   4 x 4  8 x 3  5 x 2  x  3
  • 29. P x   4 x 4  8 x 3  5 x 2  x  3   2 x  1 2 x  3  x 2  1
  • 30. P x   4 x 4  8 x 3  5 x 2  x  3   2 x  1 2 x  3  x 2  1 1 3  2 x  6 x 1 2 x  1  2 x
  • 31. P x   4 x 4  8 x 3  5 x 2  x  3   2 x  1 2 x  3  x 2  1 1 3  2 x  6 x 1 2 x  1  2 x 4x  1 3  ? x  3 x
  • 32. P x   4 x 4  8 x 3  5 x 2  x  3   2 x  1 2 x  3  x 2 x  1 1 3  2 x  6 x 1 2 x  1  2 x 4x  1 3  ? x  3 x
  • 33. P x   4 x 4  8 x 3  5 x 2  x  3   2 x  1 2 x  3  x 2 x  1 2  1  3  2 x  12 x  3 x     2  4  1 3  2 x  6 x 1 2 x  1  2 x 4x  1 3  ? x  3 x
  • 34. P x   4 x 4  8 x 3  5 x 2  x  3 1 3  2 x  6 x   2 x  1 2 x  3  x 2 x  1 1 2 x  1  2 x 2  1  3 4x  2 x  12 x  3 x     2  4  1 3  ? x  3 x  1 3  1 3    2 x  12 x  3 x   i  x   i 2 2  2 2  
  • 35. P x   4 x 4  8 x 3  5 x 2  x  3 1 3  2 x  6 x   2 x  1 2 x  3  x 2 x  1 1 2 x  1  2 x 2  1  3 4x  2 x  12 x  3 x     2  4  1 3  ? x  3 x  1 3  1 3    2 x  12 x  3 x   i  x   i 2 2  2 2   Cambridge: Exercise 5A; 1b, 2, 3, 5, 6, 7b, 8, 9, 10, 12 to 15