SlideShare ist ein Scribd-Unternehmen logo
1 von 57
Downloaden Sie, um offline zu lesen
Calculating Coefficients
without Pascal’s Triangle
Calculating Coefficients
without Pascal’s Triangle
                      n!
         n
             Ck 
                  k!n  k !
Calculating Coefficients
 without Pascal’s Triangle
                       n!
          n
              Ck 
                   k!n  k !

Proof
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
        LHS  nC0
            1
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
                                                             n!
        LHS  nC0                                     RHS 
                                                            0!n!
            1
                                                            n!
                                                          
                                                            n!
                                                          1
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
                                                             n!
        LHS  nC0                                     RHS 
                                                            0!n!
            1
                                                            n!
                                                          
                                                            n!
                                LHS  RHS                1
Calculating Coefficients
  without Pascal’s Triangle
                                            n!
                               n
                                   Ck 
                                        k!n  k !

Proof
Step 1: Prove true for k = 0
                                                            n!
        LHS  nC0                                    RHS 
                                                           0!n!
            1
                                                           n!
                                                         
                                                           n!
                           LHS  RHS                    1
                     Hence the result is true for k = 0
Step 2 : Assume the result is true for k  r where r is an integer  0
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                           n!
                    i.e.n Cr 1 
                                  r  1!n  r  1!
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                           n!
                    i.e.n Cr 1 
                                  r  1!n  r  1!
Proof
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
       n
         Cr 1  n1Cr 1  nCr
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
       n
         Cr 1  n1Cr 1  nCr
                        n  1!          n!
                                    
                    r  1!n  r ! r!n  r!
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
       n
         Cr 1  n1Cr 1  nCr
                       n  1!          n!
                                   
                   r  1!n  r ! r!n  r!
                   n  1!n!r  1
                 
                     r  1!n  r !
Step 2 : Assume the result is true for k  r where r is an integer  0
                                     n!
                      i.e.n Cr 
                                 r!n  r !
Step 3 : Prove the result is true for k  r  1
                                              n!
                       i.e.n Cr 1 
                                     r  1!n  r  1!
Proof
       n 1
           Cr 1  nCr  nCr 1
       n
         Cr 1  n1Cr 1  nCr
                       n  1!          n!
                                   
                   r  1!n  r ! r!n  r!
                   n  1!n!r  1
                 
                     r  1!n  r !
                   n!n  1  r  1
                 
                    r  1!n  r !
n!n  1  r  1

    r  1!n  r !
n!n  1  r  1

  r  1!n  r !
     n!n  r 

  r  1!n  r !
n!n  1  r  1

  r  1!n  r !
     n!n  r 

  r  1!n  r !
             n!

    r  1!n  r  1!
n!n  1  r  1

  r  1!n  r !
     n!n  r 

  r  1!n  r !
             n!

    r  1!n  r  1!
Hence the result is true for k = r + 1 if it is also true for k = r
n!n  1  r  1
   
      r  1!n  r !
         n!n  r 
    
      r  1!n  r !
                 n!
    
        r  1!n  r  1!
   Hence the result is true for k = r + 1 if it is also true for k = r

Step 4: Hence the result is true for all positive integral values of n
        by induction
The Binomial Theorem
The Binomial Theorem
  1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
The Binomial Theorem
  1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
             n
            nCk x k
            k 0
The Binomial Theorem
  1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
              n
            nCk x k
             k 0
                n!
 where Ck 
         n
                        and n is a positive integer
            k!n  k !
The Binomial Theorem
    1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                n
              nCk x k
               k 0
                   n!
  where Ck 
           n
                           and n is a positive integer
               k!n  k !
NOTE: there are (n + 1) terms
The Binomial Theorem
          1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                        n!
       where Ck   n
                                and n is a positive integer
                    k!n  k !
     NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                      n

                                           k 0
The Binomial Theorem
           1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                         n!
        where Ck  n
                                 and n is a positive integer
                     k!n  k !
      NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                      n

                                           k 0

e.g . Evaluate 11C4
The Binomial Theorem
          1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                        n!
       where Ck   n
                                and n is a positive integer
                    k!n  k !
     NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                      n

                                           k 0
                                     11!
                                C4 
              11              11
e.g . Evaluate C4
                                     4!7!
The Binomial Theorem
          1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                        n!
       where Ck   n
                                and n is a positive integer
                    k!n  k !
     NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                      n

                                           k 0
                                     11!
                                C4 
              11              11
e.g . Evaluate C4
                                     4!7!
                                     1110  9  8
                                   
                                      4  3  2 1
The Binomial Theorem
          1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                        n!
       where Ck   n
                                and n is a positive integer
                    k!n  k !
     NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                      n

                                           k 0
                                     11!
                                C4 
              11              11
e.g . Evaluate C4
                                     4!7!
                                     1110  9  8
                                   
                                      4  3  2 1
The Binomial Theorem
          1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                        n!
       where Ck   n
                                and n is a positive integer
                    k!n  k !
     NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                      n

                                           k 0
                                     11!
                                C4 
              11              11
e.g . Evaluate C4
                                     4!7!       3
                                     1110  9  8
                                   
                                      4  3  2 1
The Binomial Theorem
          1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
                        n
                     nCk x k
                       k 0
                        n!
       where Ck   n
                                and n is a positive integer
                    k!n  k !
     NOTE: there are (n + 1) terms

This extends to;                            n
                              a  b    n C k a n  k b k
                                      n

                                           k 0
                                     11!
                                C4 
              11              11
e.g . Evaluate C4
                                     4!7!       3
                                     1110  9  8
                                   
                                      4  3  2 1
                                    330
(ii) Find the value of n so that;
(ii) Find the value of n so that;
 a) nC5  nC8
(ii) Find the value of n so that;
 a) nC5  nC8
     n
         Ck  nCnk
(ii) Find the value of n so that;
 a) nC5  nC8
     n
         Ck  nCnk
     8  n  5
      n  13
(ii) Find the value of n so that;
 a) nC5  nC8                       b) nC7  nC8  20C8
     n
         Ck  nCnk
     8  n  5
      n  13
(ii) Find the value of n so that;
 a) nC5  nC8                       b) nC7  nC8  20C8
                                      n 1
     n
         Ck  Cnk
             n
                                         Ck  n1Ck 1  nCk
     8  n  5
      n  13
(ii) Find the value of n so that;
 a) nC5  nC8                       b) nC7  nC8  20C8
                                      n 1
     n
         Ck  Cnk
             n
                                         Ck  n1Ck 1  nCk
     8  n  5                                 n  19
      n  13
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                              Ck  n1Ck 1  nCk
     8  n  5                                      n  19
      n  13
                                                       11
                                              5a  3 
iii  Find the 5th term in the expansion of         
                                                   b
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                              Ck  n1Ck 1  nCk
     8  n  5                                      n  19
      n  13
                                                       11
                                              5a  3 
iii  Find the 5th term in the expansion of         
                                                   b
                                   k
                       11 k  3 
      Tk 1 11Ck 5a    
                              b
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                              Ck  n1Ck 1  nCk
     8  n  5                                      n  19
      n  13
                                                       11
                                              5a  3 
iii  Find the 5th term in the expansion of         
                                                   b
                                   k
                       11 k  3 
      Tk 1 11Ck 5a    
                              b
                           4
         11         3
     T5  C4 5a   
                     7

                    b
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                              Ck  n1Ck 1  nCk
     8  n  5                                      n  19
      n  13
                                                       11
                                              5a  3 
iii  Find the 5th term in the expansion of         
                                                   b
                                   k
                       11 k  3 
      Tk 1 11Ck 5a    
                              b
                             4
         11         3
     T5  C4 5a   
                     7

                    b
            11
            C 4 5 7 34 a 7
          
                b4
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                                Ck  n1Ck 1  nCk
     8  n  5                                        n  19
      n  13
                                                         11
                                              5a  3 
iii  Find the 5th term in the expansion of         
                                                   b
                                   k
                       11 k  3 
      Tk 1 11Ck 5a    
                              b
                             4
         11         3
     T5  C4 5a   
                     7

                    b
            11
            C 4 5 7 34 a 7
                                unsimplified
                b4
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                                Ck  n1Ck 1  nCk
     8  n  5                                        n  19
      n  13
                                                         11
                                              5a  3 
iii  Find the 5th term in the expansion of         
                                                   b
                                   k
                       11 k  3 
      Tk 1 11Ck 5a    
                              b
                             4
         11         3
     T5  C4 5a   
                     7
                                                        330  78125  81a 7
                    b                               
                                                                b4
            11
            C 4 5 7 34 a 7
                                unsimplified
                b4
(ii) Find the value of n so that;
 a) nC5  nC8                            b) nC7  nC8  20C8
                                           n 1
     n
         Ck  Cnk
             n
                                                Ck  n1Ck 1  nCk
     8  n  5                                        n  19
      n  13
                                                         11
                                              5a  3 
iii  Find the 5th term in the expansion of         
                                                   b
                                   k
                       11 k  3 
      Tk 1 11Ck 5a    
                              b
                             4
         11         3
     T5  C4 5a   
                     7
                                                        330  78125  81a 7
                    b                               
                                                                b4
            11
            C 4 5 7 34 a 7                              2088281250a 7
                                unsimplified         
                b4                                             b4
9
                                           x2  1 
iv  Obtain the term independent of x in  3      
                                               2x 
9

iv  Obtain the term independent of x in  3 x2  1 
                                                      
                                           k
                                                  2x 
              Tk 1  Ck 3 x    
                             2 9 k 
                     9                1 
                                     2x 
9

iv  Obtain the term independent of x in  3 x2  1 
                                                      
                                           k
                                                  2x 
              Tk 1  Ck 3 x    
                             2 9 k 
                     9                1 
                                     2x 
      term independent of x means term with x 0
9

iv  Obtain the term independent of x in  3 x2  1 
                                                      
                                           k
                                                  2x 
              Tk 1  Ck 3 x    
                             2 9 k 
                     9                1 
                                     2x 
      term independent of x means term with x 0
                      x  x 
                         2 9 k   1 k
                                          x0
9

iv  Obtain the term independent of x in  3 x2  1 
                                                      
                                           k
                                                  2x 
              Tk 1  Ck 3 x    
                             2 9 k 
                     9                1 
                                     2x 
      term independent of x means term with x 0
                      x  x 
                         2 9 k   1 k
                                          x0
                        x182 k  x k  x 0
                            18  3k  0
                                     k 6
9

iv  Obtain the term independent of x in  3 x2  1 
                                                      
                                           k
                                                  2x 
              Tk 1  Ck 3 x    
                             2 9 k 
                     9                1 
                                     2x 
      term independent of x means term with x 0
                          x  x 
                               2 9 k   1 k
                                                x0
                               x182 k  x k  x 0
                                   18  3k  0
                              6             k 6
T7  C6 3 x
     9
                
               2 3    1 
                         
                      2x 
9

iv  Obtain the term independent of x in  3 x2  1 
                                                      
                                           k
                                                  2x 
              Tk 1  Ck 3 x    
                             2 9 k 
                     9                1 
                                     2x 
      term independent of x means term with x 0
                          x  x 
                               2 9 k   1 k
                                                x0
                               x182 k  x k  x 0
                                   18  3k  0
                              6             k 6
T7  C6 3 x
     9
                
               2 3    1 
                         
                      2x 
     9
    C6 33
    6
     2
9

iv  Obtain the term independent of x in  3 x2  1 
                                                      
                                           k
                                                  2x 
              Tk 1  Ck 3 x    
                             2 9 k 
                     9                1 
                                     2x 
      term independent of x means term with x 0
                          x  x 
                               2 9 k   1 k
                                                x0
                               x182 k  x k  x 0
                                   18  3k  0
                              6             k 6
T7  C6 3 x
     9
                
               2 3    1 
                         
                      2x 
     9
    C6 33
    6
     2                                  Exercise 5D; 2, 3, 5, 7, 9, 10ac, 12ac, 13,
                                                   14, 15ac, 19, 25

Weitere ähnliche Inhalte

Mehr von Nigel Simmons

11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
Nigel Simmons
 

Mehr von Nigel Simmons (20)

11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 

Kürzlich hochgeladen

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Krashi Coaching
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
SoniaTolstoy
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Kürzlich hochgeladen (20)

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 

12 x1 t08 03 binomial theorem (12)

  • 2. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k !
  • 3. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof
  • 4. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0
  • 5. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0 LHS  nC0 1
  • 6. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0 n! LHS  nC0 RHS  0!n! 1 n!  n! 1
  • 7. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0 n! LHS  nC0 RHS  0!n! 1 n!  n!  LHS  RHS 1
  • 8. Calculating Coefficients without Pascal’s Triangle n! n Ck  k!n  k ! Proof Step 1: Prove true for k = 0 n! LHS  nC0 RHS  0!n! 1 n!  n!  LHS  RHS 1 Hence the result is true for k = 0
  • 9. Step 2 : Assume the result is true for k  r where r is an integer  0
  • 10. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r !
  • 11. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1
  • 12. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1!
  • 13. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof
  • 14. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1
  • 15. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1 n Cr 1  n1Cr 1  nCr
  • 16. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1 n Cr 1  n1Cr 1  nCr n  1! n!   r  1!n  r ! r!n  r!
  • 17. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1 n Cr 1  n1Cr 1  nCr n  1! n!   r  1!n  r ! r!n  r! n  1!n!r  1  r  1!n  r !
  • 18. Step 2 : Assume the result is true for k  r where r is an integer  0 n! i.e.n Cr  r!n  r ! Step 3 : Prove the result is true for k  r  1 n! i.e.n Cr 1  r  1!n  r  1! Proof n 1 Cr 1  nCr  nCr 1 n Cr 1  n1Cr 1  nCr n  1! n!   r  1!n  r ! r!n  r! n  1!n!r  1  r  1!n  r ! n!n  1  r  1  r  1!n  r !
  • 19. n!n  1  r  1  r  1!n  r !
  • 20. n!n  1  r  1  r  1!n  r ! n!n  r   r  1!n  r !
  • 21. n!n  1  r  1  r  1!n  r ! n!n  r   r  1!n  r ! n!  r  1!n  r  1!
  • 22. n!n  1  r  1  r  1!n  r ! n!n  r   r  1!n  r ! n!  r  1!n  r  1! Hence the result is true for k = r + 1 if it is also true for k = r
  • 23. n!n  1  r  1  r  1!n  r ! n!n  r   r  1!n  r ! n!  r  1!n  r  1! Hence the result is true for k = r + 1 if it is also true for k = r Step 4: Hence the result is true for all positive integral values of n by induction
  • 25. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
  • 26. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0
  • 27. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k !
  • 28. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms
  • 29. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0
  • 30. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 e.g . Evaluate 11C4
  • 31. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! C4  11 11 e.g . Evaluate C4 4!7!
  • 32. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! C4  11 11 e.g . Evaluate C4 4!7! 1110  9  8  4  3  2 1
  • 33. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! C4  11 11 e.g . Evaluate C4 4!7! 1110  9  8  4  3  2 1
  • 34. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! C4  11 11 e.g . Evaluate C4 4!7! 3 1110  9  8  4  3  2 1
  • 35. The Binomial Theorem 1  x n  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n n   nCk x k k 0 n! where Ck  n and n is a positive integer k!n  k ! NOTE: there are (n + 1) terms This extends to; n a  b    n C k a n  k b k n k 0 11! C4  11 11 e.g . Evaluate C4 4!7! 3 1110  9  8  4  3  2 1  330
  • 36. (ii) Find the value of n so that;
  • 37. (ii) Find the value of n so that; a) nC5  nC8
  • 38. (ii) Find the value of n so that; a) nC5  nC8 n Ck  nCnk
  • 39. (ii) Find the value of n so that; a) nC5  nC8 n Ck  nCnk 8  n  5 n  13
  • 40. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n Ck  nCnk 8  n  5 n  13
  • 41. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  13
  • 42. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13
  • 43. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11  5a  3  iii  Find the 5th term in the expansion of    b
  • 44. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11  5a  3  iii  Find the 5th term in the expansion of    b k 11 k  3  Tk 1 11Ck 5a      b
  • 45. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11  5a  3  iii  Find the 5th term in the expansion of    b k 11 k  3  Tk 1 11Ck 5a      b 4 11  3 T5  C4 5a    7  b
  • 46. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11  5a  3  iii  Find the 5th term in the expansion of    b k 11 k  3  Tk 1 11Ck 5a      b 4 11  3 T5  C4 5a    7  b 11 C 4 5 7 34 a 7  b4
  • 47. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11  5a  3  iii  Find the 5th term in the expansion of    b k 11 k  3  Tk 1 11Ck 5a      b 4 11  3 T5  C4 5a    7  b 11 C 4 5 7 34 a 7  unsimplified b4
  • 48. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11  5a  3  iii  Find the 5th term in the expansion of    b k 11 k  3  Tk 1 11Ck 5a      b 4 11  3 T5  C4 5a    7 330  78125  81a 7  b  b4 11 C 4 5 7 34 a 7  unsimplified b4
  • 49. (ii) Find the value of n so that; a) nC5  nC8 b) nC7  nC8  20C8 n 1 n Ck  Cnk n Ck  n1Ck 1  nCk 8  n  5 n  19 n  13 11  5a  3  iii  Find the 5th term in the expansion of    b k 11 k  3  Tk 1 11Ck 5a      b 4 11  3 T5  C4 5a    7 330  78125  81a 7  b  b4 11 C 4 5 7 34 a 7 2088281250a 7  unsimplified  b4 b4
  • 50. 9  x2  1  iv  Obtain the term independent of x in  3   2x 
  • 51. 9 iv  Obtain the term independent of x in  3 x2  1   k  2x  Tk 1  Ck 3 x     2 9 k  9 1   2x 
  • 52. 9 iv  Obtain the term independent of x in  3 x2  1   k  2x  Tk 1  Ck 3 x     2 9 k  9 1   2x  term independent of x means term with x 0
  • 53. 9 iv  Obtain the term independent of x in  3 x2  1   k  2x  Tk 1  Ck 3 x     2 9 k  9 1   2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0
  • 54. 9 iv  Obtain the term independent of x in  3 x2  1   k  2x  Tk 1  Ck 3 x     2 9 k  9 1   2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0 x182 k  x k  x 0 18  3k  0 k 6
  • 55. 9 iv  Obtain the term independent of x in  3 x2  1   k  2x  Tk 1  Ck 3 x     2 9 k  9 1   2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0 x182 k  x k  x 0 18  3k  0 6 k 6 T7  C6 3 x 9  2 3  1     2x 
  • 56. 9 iv  Obtain the term independent of x in  3 x2  1   k  2x  Tk 1  Ck 3 x     2 9 k  9 1   2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0 x182 k  x k  x 0 18  3k  0 6 k 6 T7  C6 3 x 9  2 3  1     2x  9 C6 33  6 2
  • 57. 9 iv  Obtain the term independent of x in  3 x2  1   k  2x  Tk 1  Ck 3 x     2 9 k  9 1   2x  term independent of x means term with x 0 x  x  2 9 k 1 k  x0 x182 k  x k  x 0 18  3k  0 6 k 6 T7  C6 3 x 9  2 3  1     2x  9 C6 33  6 2 Exercise 5D; 2, 3, 5, 7, 9, 10ac, 12ac, 13, 14, 15ac, 19, 25