SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Downloaden Sie, um offline zu lesen
Mathematical Induction
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25
             32
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                       RHS  52
             32                            25
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                       RHS  52
             32                            25
                        LHS  RHS
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                       RHS  52
             32                            25
                      LHS  RHS
                 Hence the result is true for n = 5
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                       RHS  52
             32                            25
                      LHS  RHS
                 Hence the result is true for n = 5

Step 2: Assume the result is true for n = k, where k is a positive
        integer > 4
        i.e. 2k  k 2
Mathematical Induction
e.g.v  Prove 2n  n 2 for n  4
Step 1: Prove the result is true for n = 5
        LHS  25                            RHS  52
             32                                 25
                      LHS  RHS
                 Hence the result is true for n = 5

Step 2: Assume the result is true for n = k, where k is a positive
        integer > 4
        i.e. 2k  k 2
Step 3: Prove the result is true for n = k + 1
                         k 1
                                 k  1
                                        2
        i.e. Prove : 2
Proof:
Proof:
         2 k 1
Proof:
         2 k 1  2 2k
Proof:
         2 k 1  2 2k
                 2k 2
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k     k  4
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
                  k 2  2k  8
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
                  k 2  2k  8    k  4
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
                  k 2  2k  8    k  4
                  k 2  2k  1
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k         k  4
                 k 2  2k  2k
                  k 2  2k  8    k  4
                  k 2  2k  1
                  k  1
                          2
Proof:
         2 k 1  2 2k
                 2k 2
                 k2  k2
                 k2  k k
                 k 2  4k           k  4
                 k 2  2k  2k
                  k 2  2k  8      k  4
                  k 2  2k  1
                  k  1
                          2


                  2  k  1
                     k 1       2
Proof:
      2 k 1  2 2k
              2k 2
              k2  k2
              k2  k k
              k 2  4k            k  4
              k 2  2k  2k
               k 2  2k  8       k  4
               k 2  2k  1
               k  1
                       2


               2  k  1
                  k 1       2


  Hence the result is true for n = k + 1 if it is also true for n = k
Proof:
       2 k 1  2 2k
               2k 2
               k2  k2
               k2  k k
               k 2  4k            k  4
               k 2  2k  2k
                k 2  2k  8       k  4
                k 2  2k  1
                k  1
                        2


                2  k  1
                   k 1       2


   Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 5, then the result is true for
        all positive integral values of n > 4 by induction .
Proof:
       2 k 1  2 2k
               2k 2
               k2  k2
               k2  k k
               k 2  4k            k  4             Exercise 6N;
               k 2  2k  2k                            6 abc, 8a, 15
                k 2  2k  8       k  4
                k 2  2k  1
                k  1
                        2


                2  k  1
                   k 1       2


   Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 5, then the result is true for
        all positive integral values of n > 4 by induction .

Weitere ähnliche Inhalte

Ähnlich wie 11X1 T14 10 mathematical induction 3 (2010)

11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
Nigel Simmons
 
11X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 211X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 2
Nigel Simmons
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
Nigel Simmons
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)
Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
Nigel Simmons
 
X2 t08 02 induction (2012)
X2 t08 02 induction (2012)X2 t08 02 induction (2012)
X2 t08 02 induction (2012)
Nigel Simmons
 
X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)
Nigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
Nigel Simmons
 
12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)
Nigel Simmons
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
Nigel Simmons
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)
Nigel Simmons
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
Nigel Simmons
 

Ähnlich wie 11X1 T14 10 mathematical induction 3 (2010) (15)

11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
 
11X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 211X1 T10 09 mathematical induction 2
11X1 T10 09 mathematical induction 2
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)11X1 T14 09 mathematical induction 2 (2010)
11X1 T14 09 mathematical induction 2 (2010)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
 
X2 t08 02 induction (2012)
X2 t08 02 induction (2012)X2 t08 02 induction (2012)
X2 t08 02 induction (2012)
 
X2 T08 02 induction (2011)
X2 T08 02 induction (2011)X2 T08 02 induction (2011)
X2 T08 02 induction (2011)
 
X2 harder induction
X2 harder inductionX2 harder induction
X2 harder induction
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)12 x1 t08 03 binomial theorem (2013)
12 x1 t08 03 binomial theorem (2013)
 
X2 t08 02 induction (2013)
X2 t08 02 induction (2013)X2 t08 02 induction (2013)
X2 t08 02 induction (2013)
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 

Mehr von Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Kürzlich hochgeladen

SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
CaitlinCummins3
 
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
Krashi Coaching
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
heathfieldcps1
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
中 央社
 

Kürzlich hochgeladen (20)

Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
 
Championnat de France de Tennis de table/
Championnat de France de Tennis de table/Championnat de France de Tennis de table/
Championnat de France de Tennis de table/
 
“O BEIJO” EM ARTE .
“O BEIJO” EM ARTE                       .“O BEIJO” EM ARTE                       .
“O BEIJO” EM ARTE .
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
 
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
MSc Ag Genetics & Plant Breeding: Insights from Previous Year JNKVV Entrance ...
 
philosophy and it's principles based on the life
philosophy and it's principles based on the lifephilosophy and it's principles based on the life
philosophy and it's principles based on the life
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
 
Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17
 
PSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptxPSYPACT- Practicing Over State Lines May 2024.pptx
PSYPACT- Practicing Over State Lines May 2024.pptx
 
Software testing for project report .pdf
Software testing for project report .pdfSoftware testing for project report .pdf
Software testing for project report .pdf
 
IPL Online Quiz by Pragya; Question Set.
IPL Online Quiz by Pragya; Question Set.IPL Online Quiz by Pragya; Question Set.
IPL Online Quiz by Pragya; Question Set.
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
An Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptxAn Overview of the Odoo 17 Discuss App.pptx
An Overview of the Odoo 17 Discuss App.pptx
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. Henry
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptxREPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
 
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
Basic Civil Engineering notes on Transportation Engineering, Modes of Transpo...
 
Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
 Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
Envelope of Discrepancy in Orthodontics: Enhancing Precision in Treatment
 
Navigating the Misinformation Minefield: The Role of Higher Education in the ...
Navigating the Misinformation Minefield: The Role of Higher Education in the ...Navigating the Misinformation Minefield: The Role of Higher Education in the ...
Navigating the Misinformation Minefield: The Role of Higher Education in the ...
 
size separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceuticssize separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceutics
 

11X1 T14 10 mathematical induction 3 (2010)

  • 2. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4
  • 3. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5
  • 4. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25  32
  • 5. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25
  • 6. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25  LHS  RHS
  • 7. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25  LHS  RHS Hence the result is true for n = 5
  • 8. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25  LHS  RHS Hence the result is true for n = 5 Step 2: Assume the result is true for n = k, where k is a positive integer > 4 i.e. 2k  k 2
  • 9. Mathematical Induction e.g.v  Prove 2n  n 2 for n  4 Step 1: Prove the result is true for n = 5 LHS  25 RHS  52  32  25  LHS  RHS Hence the result is true for n = 5 Step 2: Assume the result is true for n = k, where k is a positive integer > 4 i.e. 2k  k 2 Step 3: Prove the result is true for n = k + 1 k 1  k  1 2 i.e. Prove : 2
  • 11. Proof: 2 k 1
  • 12. Proof: 2 k 1  2 2k
  • 13. Proof: 2 k 1  2 2k  2k 2
  • 14. Proof: 2 k 1  2 2k  2k 2  k2  k2
  • 15. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k
  • 16. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k
  • 17. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4
  • 18. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k
  • 19. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8
  • 20. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4
  • 21. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1
  • 22. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1  k  1 2
  • 23. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1  k  1 2  2  k  1 k 1 2
  • 24. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1  k  1 2  2  k  1 k 1 2 Hence the result is true for n = k + 1 if it is also true for n = k
  • 25. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4  k 2  2k  2k  k 2  2k  8  k  4  k 2  2k  1  k  1 2  2  k  1 k 1 2 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 5, then the result is true for all positive integral values of n > 4 by induction .
  • 26. Proof: 2 k 1  2 2k  2k 2  k2  k2  k2  k k  k 2  4k  k  4 Exercise 6N;  k 2  2k  2k 6 abc, 8a, 15  k 2  2k  8  k  4  k 2  2k  1  k  1 2  2  k  1 k 1 2 Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 5, then the result is true for all positive integral values of n > 4 by induction .