SlideShare ist ein Scribd-Unternehmen logo
1 von 55
Downloaden Sie, um offline zu lesen
Tangents & Normals
     (ii) Using Cartesian
Tangents & Normals
              (ii) Using Cartesian
(1) Tangent
Tangents & Normals
                  (ii) Using Cartesian
(1) Tangent
         y    x 2  4ay




                 x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent
         y          x 2  4ay



              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent
         y          x 2  4ay



              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a



              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                   x2
         y          x 2  4ay              y
                                              4a
                                          dy x
                                            
                                          dx 2a
              P( x1 , y1 )

                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                   x2
         y          x 2  4ay              y
                                              4a
                                          dy x
                                            
                                          dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                   x2
         y          x 2  4ay              y
                                              4a
                                          dy x
                                            
                                          dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                  x1
                                       slope of tangent is
                                                            2a
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
                                          2ay  2ay1  xx1  x12
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
                                          2ay  2ay1  xx1  x12
                                          2ay  2ay1  xx1  4ay1
Tangents & Normals
                             (ii) Using Cartesian
(1) Tangent                                    x2
         y          x 2  4ay               y
                                               4a
                                           dy x
                                             
                                           dx 2a
                                                   dy x1
              P( x1 , y1 )            when x  x1 , 
                                                   dx 2a
                         x                                      x1
                                       slope of tangent is
                                                               2a
                                                   x
                                          y  y1  1  x  x1 
                                                   2a
                                          2ay  2ay1  xx1  x12
                                          2ay  2ay1  xx1  4ay1
                                                    xx1  2a y  y1 
(2) Normal
(2) Normal
        y    x 2  4ay




                x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )

                        x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )

                        x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                        x
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
                                             2a
                                   y  y1        x  x1 
                                             x1
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
                                             2a
                                   y  y1        x  x1 
                                             x1
                                    x1 y  x1 y1  2ax  2ax1
(2) Normal
        y          x 2  4ay



             P( x1 , y1 )                                          x1
                               1 Show the slope of tangent at P is
                                                                   2a
                                                        2a
                        x      2  slope of normal is 
                                                        x1
                                             2a
                                   y  y1        x  x1 
                                             x1
                                    x1 y  x1 y1  2ax  2ax1
                                    2ax  x1 y  2ax1  x1 y1
(3) Line cutting/touching/missing parabola
(3) Line cutting/touching/missing parabola
        y          x 2  4ay




                       x
(3) Line cutting/touching/missing parabola
        y          x 2  4ay




                       x
(3) Line cutting/touching/missing parabola
        y          x 2  4ay




                       x
(3) Line cutting/touching/missing parabola
        y          x 2  4ay
                           y  mx  b



                       x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay      parabola and tangent meet when;
                           y  mx  b



                       x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b       x 2  4a  mx  b 




                        x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b       x 2  4a  mx  b 
                                            x 2  4amx  4ab  0


                        x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0

                        x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                                  16a 2 m 2  16ab
                                                  16a  am 2  b 
        two solutions (cuts) when am2  b  0
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
        two solutions (cuts) when am2  b  0
         one solution (touches) when am2  b  0
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
        two solutions (cuts) when am2  b  0
         one solution (touches) when am2  b  0        (common idea)
(3) Line cutting/touching/missing parabola
         y           x 2  4ay         parabola and tangent meet when;
                             y  mx  b        x 2  4a  mx  b 
                                             x 2  4amx  4ab  0
                                      two solutions (cuts) when   0
                                   one solution (touches) when   0
                          x         no solutions (misses) when   0
                                              b2  4ac
                                                4am   4 1 4ab 
                                                        2


                                               16a 2 m 2  16ab
                                               16a  am 2  b 
        two solutions (cuts) when am2  b  0
         one solution (touches) when am2  b  0        (common idea)
          no solutions (misses) when am2  b  0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
             2  3m  b
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
             2  3m  b
               b  2  3m
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                b  2  3m
        tangents are y  mx  2  3m
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                 b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
              x 2  4  mx  2  3m 
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                 b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
              x 2  4  mx  2  3m 
              x 2  4mx  12m  8  0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
              2  3m  b
                 b  2  3m
        tangents are y  mx  2  3m
             x2  4 y
              x 2  4  mx  2  3m 
              x 2  4mx  12m  8  0
              line is a tangent if   0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
                    m  1 or m  2
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0
               line is a tangent if   0
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
                   m  1 or m  2
     tangents are y  x  1 and y  2 x  4
e.g. Find the equation of the two tangents to the parabola x 2  4 y
     passing through the point (3,2).
      tangent will be of the form y = mx + b
               2  3m  b
                  b  2  3m
        tangents are y  mx  2  3m
              x2  4 y
              x 2  4  mx  2  3m 
               x 2  4mx  12m  8  0        Exercise 9G; 1ac, 2ac,
                                                   3a, 4, 7, 9, 11, 12,
               line is a tangent if   0
                                                     13, 15, 17, 18
            4m   4 112m  8  0
                    2


                     16m2  48m  32  0
                          m2  3m  2  0
                    m  1 m  2   0
                   m  1 or m  2
     tangents are y  x  1 and y  2 x  4

Weitere ähnliche Inhalte

Was ist angesagt?

Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 
2010 mathematics hsc solutions
2010 mathematics hsc solutions2010 mathematics hsc solutions
2010 mathematics hsc solutionsjharnwell
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivativessahil9100
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular functionAPEX INSTITUTE
 
Monte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLPMonte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLPSSA KPI
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Applied Calculus Chapter 4 multiple integrals
Applied Calculus Chapter  4 multiple integralsApplied Calculus Chapter  4 multiple integrals
Applied Calculus Chapter 4 multiple integralsJ C
 
Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Leonid Zhukov
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-noteotpeng
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2zukun
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230samhui48
 

Was ist angesagt? (16)

Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
2010 mathematics hsc solutions
2010 mathematics hsc solutions2010 mathematics hsc solutions
2010 mathematics hsc solutions
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Inverse circular function
Inverse circular functionInverse circular function
Inverse circular function
 
Monte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLPMonte-Carlo method for Two-Stage SLP
Monte-Carlo method for Two-Stage SLP
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lagrange
LagrangeLagrange
Lagrange
 
Applied Calculus Chapter 4 multiple integrals
Applied Calculus Chapter  4 multiple integralsApplied Calculus Chapter  4 multiple integrals
Applied Calculus Chapter 4 multiple integrals
 
Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.
 
Lista exercintegrais
Lista exercintegraisLista exercintegrais
Lista exercintegrais
 
Section7 stochastic
Section7 stochasticSection7 stochastic
Section7 stochastic
 
15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note15815265 form-4-amat-formulae-and-note
15815265 form-4-amat-formulae-and-note
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2CVPR2010: higher order models in computer vision: Part 1, 2
CVPR2010: higher order models in computer vision: Part 1, 2
 
Formula List Math 1230
Formula List Math 1230Formula List Math 1230
Formula List Math 1230
 

Andere mochten auch

11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)Nigel Simmons
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)Nigel Simmons
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain ruleNigel Simmons
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)Nigel Simmons
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)Nigel Simmons
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)Nigel Simmons
 

Andere mochten auch (7)

11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain rule
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
 

Ähnlich wie 11 x1 t11 06 tangents & normals ii (2012)

11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals I11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals INigel Simmons
 
11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals I11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals INigel Simmons
 
11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)Nigel Simmons
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)Nigel Simmons
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)Nigel Simmons
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic conceptsphysics101
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt projectcea0001
 
Particle filter
Particle filterParticle filter
Particle filterbugway
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)Nigel Simmons
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)Nigel Simmons
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
study Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian Filtersstudy Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian FiltersChiamin Hsu
 

Ähnlich wie 11 x1 t11 06 tangents & normals ii (2012) (20)

11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals I11X1 T12 05 tangents & normals I
11X1 T12 05 tangents & normals I
 
11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals I11X1 T11 05 tangents and normals I
11X1 T11 05 tangents and normals I
 
11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)11 x1 t11 05 tangents & normals i (2012)
11 x1 t11 05 tangents & normals i (2012)
 
sol pg 89
sol pg 89 sol pg 89
sol pg 89
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic concepts
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Cea0001 ppt project
Cea0001 ppt projectCea0001 ppt project
Cea0001 ppt project
 
Particle filter
Particle filterParticle filter
Particle filter
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
study Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian Filtersstudy Accelerating Spatially Varying Gaussian Filters
study Accelerating Spatially Varying Gaussian Filters
 

Mehr von Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Kürzlich hochgeladen

Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 

Kürzlich hochgeladen (20)

Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 

11 x1 t11 06 tangents & normals ii (2012)

  • 1. Tangents & Normals (ii) Using Cartesian
  • 2. Tangents & Normals (ii) Using Cartesian (1) Tangent
  • 3. Tangents & Normals (ii) Using Cartesian (1) Tangent y x 2  4ay x
  • 4. Tangents & Normals (ii) Using Cartesian (1) Tangent y x 2  4ay P( x1 , y1 ) x
  • 5. Tangents & Normals (ii) Using Cartesian (1) Tangent y x 2  4ay P( x1 , y1 ) x
  • 6. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a P( x1 , y1 ) x
  • 7. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a P( x1 , y1 ) x
  • 8. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x
  • 9. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a
  • 10. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a
  • 11. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a 2ay  2ay1  xx1  x12
  • 12. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a 2ay  2ay1  xx1  x12 2ay  2ay1  xx1  4ay1
  • 13. Tangents & Normals (ii) Using Cartesian (1) Tangent x2 y x 2  4ay y 4a dy x  dx 2a dy x1 P( x1 , y1 ) when x  x1 ,  dx 2a x x1  slope of tangent is 2a x y  y1  1  x  x1  2a 2ay  2ay1  xx1  x12 2ay  2ay1  xx1  4ay1 xx1  2a y  y1 
  • 15. (2) Normal y x 2  4ay x
  • 16. (2) Normal y x 2  4ay P( x1 , y1 ) x
  • 17. (2) Normal y x 2  4ay P( x1 , y1 ) x
  • 18. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a x
  • 19. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1
  • 20. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1  2a y  y1   x  x1  x1
  • 21. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1  2a y  y1   x  x1  x1 x1 y  x1 y1  2ax  2ax1
  • 22. (2) Normal y x 2  4ay P( x1 , y1 ) x1 1 Show the slope of tangent at P is 2a 2a x 2  slope of normal is  x1  2a y  y1   x  x1  x1 x1 y  x1 y1  2ax  2ax1 2ax  x1 y  2ax1  x1 y1
  • 24. (3) Line cutting/touching/missing parabola y x 2  4ay x
  • 25. (3) Line cutting/touching/missing parabola y x 2  4ay x
  • 26. (3) Line cutting/touching/missing parabola y x 2  4ay x
  • 27. (3) Line cutting/touching/missing parabola y x 2  4ay y  mx  b x
  • 28. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x
  • 29. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x
  • 30. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 x
  • 31. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 x
  • 32. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x
  • 33. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0
  • 34. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac
  • 35. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2
  • 36. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b 
  • 37. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0
  • 38. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0 one solution (touches) when am2  b  0
  • 39. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0 one solution (touches) when am2  b  0 (common idea)
  • 40. (3) Line cutting/touching/missing parabola y x 2  4ay parabola and tangent meet when; y  mx  b x 2  4a  mx  b  x 2  4amx  4ab  0 two solutions (cuts) when   0 one solution (touches) when   0 x no solutions (misses) when   0   b2  4ac   4am   4 1 4ab  2  16a 2 m 2  16ab  16a  am 2  b   two solutions (cuts) when am2  b  0 one solution (touches) when am2  b  0 (common idea) no solutions (misses) when am2  b  0
  • 41. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2).
  • 42. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b
  • 43. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b
  • 44. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m
  • 45. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m
  • 46. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y
  • 47. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m 
  • 48. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0
  • 49. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0
  • 50. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2
  • 51. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0
  • 52. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0
  • 53. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0 m  1 or m  2
  • 54. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 line is a tangent if   0  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0 m  1 or m  2  tangents are y  x  1 and y  2 x  4
  • 55. e.g. Find the equation of the two tangents to the parabola x 2  4 y passing through the point (3,2). tangent will be of the form y = mx + b  2  3m  b b  2  3m tangents are y  mx  2  3m x2  4 y x 2  4  mx  2  3m  x 2  4mx  12m  8  0 Exercise 9G; 1ac, 2ac, 3a, 4, 7, 9, 11, 12, line is a tangent if   0 13, 15, 17, 18  4m   4 112m  8  0 2 16m2  48m  32  0 m2  3m  2  0  m  1 m  2   0 m  1 or m  2  tangents are y  x  1 and y  2 x  4