SlideShare ist ein Scribd-Unternehmen logo
1 von 31
The t results
The t results
Let tan
2
t


The t results
Let tan
2
t


2
2tan
2tan
1 tan
2





2
1
2
tan
t
t


The t results
Let tan
2
t


2
2tan
2tan
1 tan
2





2
1
2
tan
t
t



t2
2
1 t
The t results
Let tan
2
t


2
2tan
2tan
1 tan
2





2
1
2
tan
t
t



t2
2
1 t
2
1 t
   
222 2
2 1h t t  
2 2 4
4 1 2t t t   
4 2
2 1t t  
 
22
1t 
The t results
Let tan
2
t


2
2tan
2tan
1 tan
2





2
1
2
tan
t
t



t2
2
1 t
2
1 t
   
222 2
2 1h t t  
2 2 4
4 1 2t t t   
4 2
2 1t t  
 
22
1t ;
2
tanIf

t
2
1
2
tan
t
t


The t results
Let tan
2
t


2
2tan
2tan
1 tan
2





2
1
2
tan
t
t



t2
2
1 t
2
1 t
   
222 2
2 1h t t  
2 2 4
4 1 2t t t   
4 2
2 1t t  
 
22
1t ;
2
tanIf

t
2
1
2
tan
t
t

 2
1
2
sin
t
t


The t results
Let tan
2
t


2
2tan
2tan
1 tan
2





2
1
2
tan
t
t



t2
2
1 t
2
1 t
   
222 2
2 1h t t  
2 2 4
4 1 2t t t   
4 2
2 1t t  
 
22
1t ;
2
tanIf

t
2
1
2
tan
t
t

 2
1
2
sin
t
t

 2
2
1
1
cos
t
t



The t results
Let tan
2
t


2
2tan
2tan
1 tan
2





2
1
2
tan
t
t



t2
2
1 t
2
1 t
   
222 2
2 1h t t  
2 2 4
4 1 2t t t   
4 2
2 1t t  
 
22
1t ;
2
tanIf

t
2
1
2
tan
t
t

 2
1
2
sin
t
t

 2
2
1
1
cos
t
t



Note:
If tan ;t  2
2
tan 2
1
t
t
 

The t results
Let tan
2
t


2
2tan
2tan
1 tan
2





2
1
2
tan
t
t



t2
2
1 t
2
1 t
   
222 2
2 1h t t  
2 2 4
4 1 2t t t   
4 2
2 1t t  
 
22
1t ;
2
tanIf

t
2
1
2
tan
t
t

 2
1
2
sin
t
t

 2
2
1
1
cos
t
t



Note:
If tan ;t  2
2
tan 2
1
t
t
 

If tan 2 ;t  2
2
tan 4
1
t
t
 

 
1 cos
e.g. i Show that , where tan
sin 2
x x
t t
x

 
 
1 cos
e.g. i Show that , where tan
sin 2
x x
t t
x

 
1 cos
sin
x
x

2
2
2
1
1
1
2
1
t
t
t
t




is double ,
2
so results can be used for sin ,cos
x
x
t x x
 
 
 
 
 
1 cos
e.g. i Show that , where tan
sin 2
x x
t t
x

 
1 cos
sin
x
x

2
2
2
1
1
1
2
1
t
t
t
t




is double ,
2
so results can be used for sin ,cos
x
x
t x x
 
 
 
 
 2 2
1 1
2
t t
t
  

 
1 cos
e.g. i Show that , where tan
sin 2
x x
t t
x

 
1 cos
sin
x
x

2
2
2
1
1
1
2
1
t
t
t
t




is double ,
2
so results can be used for sin ,cos
x
x
t x x
 
 
 
 
 2 2
1 1
2
t t
t
  

2
2
2
t
t

t
  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
2
2tan75
1 tan 75

 2
2
1
t
t


  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
2
2tan75
1 tan 75

 2
2
1
t
t


sin
  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
2
2tan75
1 tan 75

 2
2
1
t
t


sin
sin150 
1
2

  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
2
2tan75
1 tan 75

 2
2
1
t
t


sin
sin150 
1
2

 
1 sin cos
iii Prove tan
1 sin cos 2
  
 
 

 
  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
2
2tan75
1 tan 75

 2
2
1
t
t


sin
sin150 
1
2

 
1 sin cos
iii Prove tan
1 sin cos 2
  
 
 

 
Let tan ;
2
t


1 sin cos
1 sin cos
 
 
 
 
2
2 2
2
2 2
2 1
1
1 1
2 1
1
1 1
t t
t t
t t
t t

 
 

 
 
  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
2
2tan75
1 tan 75

 2
2
1
t
t


sin
sin150 
1
2

 
1 sin cos
iii Prove tan
1 sin cos 2
  
 
 

 
Let tan ;
2
t


1 sin cos
1 sin cos
 
 
 
 
2
2 2
2
2 2
2 1
1
1 1
2 1
1
1 1
t t
t t
t t
t t

 
 

 
 
 2 2
2 2
1 2 1
1 2 1
t t t
t t t
   

   
  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
2
2tan75
1 tan 75

 2
2
1
t
t


sin
sin150 
1
2

 
1 sin cos
iii Prove tan
1 sin cos 2
  
 
 

 
Let tan ;
2
t


1 sin cos
1 sin cos
 
 
 
 
2
2 2
2
2 2
2 1
1
1 1
2 1
1
1 1
t t
t t
t t
t t

 
 

 
 
 2 2
2 2
1 2 1
1 2 1
t t t
t t t
   

   
2
2 2
2 2
t t
t



  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
2
2tan75
1 tan 75

 2
2
1
t
t


sin
sin150 
1
2

 
1 sin cos
iii Prove tan
1 sin cos 2
  
 
 

 
Let tan ;
2
t


1 sin cos
1 sin cos
 
 
 
 
2
2 2
2
2 2
2 1
1
1 1
2 1
1
1 1
t t
t t
t t
t t

 
 

 
 
 2 2
2 2
1 2 1
1 2 1
t t t
t t t
   

   
2
2 2
2 2
t t
t



 
 
2 1
2 1
t t
t



  2
2tan75
ii Use tan to simplify
2 1 tan 75
t





Let tan75 ;t  
i.e. 75
2

 
150  
2
2tan75
1 tan 75

 2
2
1
t
t


sin
sin150 
1
2

 
1 sin cos
iii Prove tan
1 sin cos 2
  
 
 

 
Let tan ;
2
t


1 sin cos
1 sin cos
 
 
 
 
2
2 2
2
2 2
2 1
1
1 1
2 1
1
1 1
t t
t t
t t
t t

 
 

 
 
 2 2
2 2
1 2 1
1 2 1
t t t
t t t
   

   
2
2 2
2 2
t t
t



 
 
2 1
2 1
t t
t



t tan
2


2005 Extension 1 HSC Q4b)
(iv) By making the substitution tan or otherwise,
2
show that cosec cot cot
2
t


 

 
2005 Extension 1 HSC Q4b)
(iv) By making the substitution tan or otherwise,
2
show that cosec cot cot
2
t


 

 
cosec cot 
2 2
1 1
2 2
t t
t t
 
 
2005 Extension 1 HSC Q4b)
(iv) By making the substitution tan or otherwise,
2
show that cosec cot cot
2
t


 

 
cosec cot 
t
t
1
2
2


2 2
1 1
2 2
t t
t t
 
 
2005 Extension 1 HSC Q4b)
(iv) By making the substitution tan or otherwise,
2
show that cosec cot cot
2
t


 

 
cosec cot 
t
t
1
2
2


2
cot


2 2
1 1
2 2
t t
t t
 
 
2005 Extension 1 HSC Q4b)
(iv) By making the substitution tan or otherwise,
2
show that cosec cot cot
2
t


 

 
cosec cot 
t
t
1
2
2


2
cot


2 2
1 1
2 2
t t
t t
 
 
Exercise 2B; 1def, 3ace, 4bcf, 5aceg, 6, 8bd, 10a

Weitere ähnliche Inhalte

Andere mochten auch

11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)
Nigel Simmons
 
11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)
Nigel Simmons
 
11 x1 t07 02 triangle theorems (2013)
11 x1 t07 02 triangle theorems (2013)11 x1 t07 02 triangle theorems (2013)
11 x1 t07 02 triangle theorems (2013)
Nigel Simmons
 
11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)
Nigel Simmons
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)
Nigel Simmons
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
Nigel Simmons
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Triangles
jtentinger
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
Nigel Simmons
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
Nigel Simmons
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)
Nigel Simmons
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
Nigel Simmons
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
Nigel Simmons
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
Nigel Simmons
 

Andere mochten auch (14)

11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)
 
11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)11 x1 t05 06 line through pt of intersection (2013)
11 x1 t05 06 line through pt of intersection (2013)
 
11 x1 t07 02 triangle theorems (2013)
11 x1 t07 02 triangle theorems (2013)11 x1 t07 02 triangle theorems (2013)
11 x1 t07 02 triangle theorems (2013)
 
11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)11 x1 t07 01 angle theorems (2013)
11 x1 t07 01 angle theorems (2013)
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Triangles
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Mehr von Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

11 x1 t08 05 t results (2013)

  • 2. The t results Let tan 2 t  
  • 3. The t results Let tan 2 t   2 2tan 2tan 1 tan 2      2 1 2 tan t t  
  • 4. The t results Let tan 2 t   2 2tan 2tan 1 tan 2      2 1 2 tan t t    t2 2 1 t
  • 5. The t results Let tan 2 t   2 2tan 2tan 1 tan 2      2 1 2 tan t t    t2 2 1 t 2 1 t     222 2 2 1h t t   2 2 4 4 1 2t t t    4 2 2 1t t     22 1t 
  • 6. The t results Let tan 2 t   2 2tan 2tan 1 tan 2      2 1 2 tan t t    t2 2 1 t 2 1 t     222 2 2 1h t t   2 2 4 4 1 2t t t    4 2 2 1t t     22 1t ; 2 tanIf  t 2 1 2 tan t t  
  • 7. The t results Let tan 2 t   2 2tan 2tan 1 tan 2      2 1 2 tan t t    t2 2 1 t 2 1 t     222 2 2 1h t t   2 2 4 4 1 2t t t    4 2 2 1t t     22 1t ; 2 tanIf  t 2 1 2 tan t t   2 1 2 sin t t  
  • 8. The t results Let tan 2 t   2 2tan 2tan 1 tan 2      2 1 2 tan t t    t2 2 1 t 2 1 t     222 2 2 1h t t   2 2 4 4 1 2t t t    4 2 2 1t t     22 1t ; 2 tanIf  t 2 1 2 tan t t   2 1 2 sin t t   2 2 1 1 cos t t   
  • 9. The t results Let tan 2 t   2 2tan 2tan 1 tan 2      2 1 2 tan t t    t2 2 1 t 2 1 t     222 2 2 1h t t   2 2 4 4 1 2t t t    4 2 2 1t t     22 1t ; 2 tanIf  t 2 1 2 tan t t   2 1 2 sin t t   2 2 1 1 cos t t    Note: If tan ;t  2 2 tan 2 1 t t   
  • 10. The t results Let tan 2 t   2 2tan 2tan 1 tan 2      2 1 2 tan t t    t2 2 1 t 2 1 t     222 2 2 1h t t   2 2 4 4 1 2t t t    4 2 2 1t t     22 1t ; 2 tanIf  t 2 1 2 tan t t   2 1 2 sin t t   2 2 1 1 cos t t    Note: If tan ;t  2 2 tan 2 1 t t    If tan 2 ;t  2 2 tan 4 1 t t   
  • 11.   1 cos e.g. i Show that , where tan sin 2 x x t t x   
  • 12.   1 cos e.g. i Show that , where tan sin 2 x x t t x    1 cos sin x x  2 2 2 1 1 1 2 1 t t t t     is double , 2 so results can be used for sin ,cos x x t x x        
  • 13.   1 cos e.g. i Show that , where tan sin 2 x x t t x    1 cos sin x x  2 2 2 1 1 1 2 1 t t t t     is double , 2 so results can be used for sin ,cos x x t x x          2 2 1 1 2 t t t    
  • 14.   1 cos e.g. i Show that , where tan sin 2 x x t t x    1 cos sin x x  2 2 2 1 1 1 2 1 t t t t     is double , 2 so results can be used for sin ,cos x x t x x          2 2 1 1 2 t t t     2 2 2 t t  t
  • 15.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t     
  • 16.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t  
  • 17.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150  
  • 18.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150   2 2tan75 1 tan 75   2 2 1 t t  
  • 19.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150   2 2tan75 1 tan 75   2 2 1 t t   sin
  • 20.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150   2 2tan75 1 tan 75   2 2 1 t t   sin sin150  1 2 
  • 21.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150   2 2tan75 1 tan 75   2 2 1 t t   sin sin150  1 2    1 sin cos iii Prove tan 1 sin cos 2          
  • 22.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150   2 2tan75 1 tan 75   2 2 1 t t   sin sin150  1 2    1 sin cos iii Prove tan 1 sin cos 2           Let tan ; 2 t   1 sin cos 1 sin cos         2 2 2 2 2 2 2 1 1 1 1 2 1 1 1 1 t t t t t t t t          
  • 23.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150   2 2tan75 1 tan 75   2 2 1 t t   sin sin150  1 2    1 sin cos iii Prove tan 1 sin cos 2           Let tan ; 2 t   1 sin cos 1 sin cos         2 2 2 2 2 2 2 1 1 1 1 2 1 1 1 1 t t t t t t t t            2 2 2 2 1 2 1 1 2 1 t t t t t t         
  • 24.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150   2 2tan75 1 tan 75   2 2 1 t t   sin sin150  1 2    1 sin cos iii Prove tan 1 sin cos 2           Let tan ; 2 t   1 sin cos 1 sin cos         2 2 2 2 2 2 2 1 1 1 1 2 1 1 1 1 t t t t t t t t            2 2 2 2 1 2 1 1 2 1 t t t t t t          2 2 2 2 2 t t t   
  • 25.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150   2 2tan75 1 tan 75   2 2 1 t t   sin sin150  1 2    1 sin cos iii Prove tan 1 sin cos 2           Let tan ; 2 t   1 sin cos 1 sin cos         2 2 2 2 2 2 2 1 1 1 1 2 1 1 1 1 t t t t t t t t            2 2 2 2 1 2 1 1 2 1 t t t t t t          2 2 2 2 2 t t t        2 1 2 1 t t t   
  • 26.   2 2tan75 ii Use tan to simplify 2 1 tan 75 t      Let tan75 ;t   i.e. 75 2    150   2 2tan75 1 tan 75   2 2 1 t t   sin sin150  1 2    1 sin cos iii Prove tan 1 sin cos 2           Let tan ; 2 t   1 sin cos 1 sin cos         2 2 2 2 2 2 2 1 1 1 1 2 1 1 1 1 t t t t t t t t            2 2 2 2 1 2 1 1 2 1 t t t t t t          2 2 2 2 2 t t t        2 1 2 1 t t t    t tan 2  
  • 27. 2005 Extension 1 HSC Q4b) (iv) By making the substitution tan or otherwise, 2 show that cosec cot cot 2 t       
  • 28. 2005 Extension 1 HSC Q4b) (iv) By making the substitution tan or otherwise, 2 show that cosec cot cot 2 t        cosec cot  2 2 1 1 2 2 t t t t    
  • 29. 2005 Extension 1 HSC Q4b) (iv) By making the substitution tan or otherwise, 2 show that cosec cot cot 2 t        cosec cot  t t 1 2 2   2 2 1 1 2 2 t t t t    
  • 30. 2005 Extension 1 HSC Q4b) (iv) By making the substitution tan or otherwise, 2 show that cosec cot cot 2 t        cosec cot  t t 1 2 2   2 cot   2 2 1 1 2 2 t t t t    
  • 31. 2005 Extension 1 HSC Q4b) (iv) By making the substitution tan or otherwise, 2 show that cosec cot cot 2 t        cosec cot  t t 1 2 2   2 cot   2 2 1 1 2 2 t t t t     Exercise 2B; 1def, 3ace, 4bcf, 5aceg, 6, 8bd, 10a