SlideShare ist ein Scribd-Unternehmen logo
1 von 54
Double Angles
Double Angles sin 2 sin   
Double Angles sin 2 sin   
sin cos cos sin    
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
cos cos sin sin    
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
cos cos sin sin    
2 2
cos2 cos sin   
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
cos cos sin sin    
2 2
cos2 cos sin   
 2 2
cos 1 cos   
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
cos cos sin sin    
2 2
cos2 cos sin   
 2 2
cos 1 cos   
2
cos2 2cos 1  
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
cos cos sin sin    
2 2
cos2 cos sin   
 2 2
cos 1 cos   
2
cos2 2cos 1  
 2
2 1 sin 1  
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
cos cos sin sin    
2 2
cos2 cos sin   
 2 2
cos 1 cos   
2
cos2 2cos 1  
 2
2 1 sin 1  
2
cos2 1 2sin  
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
cos cos sin sin    
2 2
cos2 cos sin   
 2 2
cos 1 cos   
2
cos2 2cos 1  
 2
2 1 sin 1  
2
cos2 1 2sin  
 tan 2 tan   
Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
cos cos sin sin    
2 2
cos2 cos sin   
 2 2
cos 1 cos   
2
cos2 2cos 1  
 2
2 1 sin 1  
2
cos2 1 2sin  
 tan 2 tan   
tan tan
1 tan tan
 
 



Double Angles sin 2 sin   
sin cos cos sin    
sin 2 2sin cos  
 cos2 cos   
cos cos sin sin    
2 2
cos2 cos sin   
 2 2
cos 1 cos   
2
cos2 2cos 1  
 2
2 1 sin 1  
2
cos2 1 2sin  
 tan 2 tan   
tan tan
1 tan tan
 
 



2
2tan
tan 2
1 tan





Double Angles  cossin22sin 
Double Angles  cossin22sin 
 22
sincos2cos 
Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
 
Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
    2cos1
2
1
cos2

Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
    2cos1
2
1
cos2

2
sin21
Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
    2cos1
2
1
cos2

2
sin21   2cos1
2
1
sin2

Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
    2cos1
2
1
cos2

2
sin21   2cos1
2
1
sin2



 2
tan1
tan2
2tan


Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
    2cos1
2
1
cos2

2
sin21   2cos1
2
1
sin2



 2
tan1
tan2
2tan


 
2
e.g. i If cos , find tan 2
3
 
Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
    2cos1
2
1
cos2

2
sin21   2cos1
2
1
sin2



 2
tan1
tan2
2tan


 
2
e.g. i If cos , find tan 2
3
 

2
3
5
Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
    2cos1
2
1
cos2

2
sin21   2cos1
2
1
sin2



 2
tan1
tan2
2tan


 
2
e.g. i If cos , find tan 2
3
 

2
3
5


 2
tan1
tan2
2tan


Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
    2cos1
2
1
cos2

2
sin21   2cos1
2
1
sin2



 2
tan1
tan2
2tan


 
2
e.g. i If cos , find tan 2
3
 

2
3
5


 2
tan1
tan2
2tan

 2
5
2
2
tan 2
5
1
2

 
 
 
 
 
 
Double Angles  cossin22sin 
 22
sincos2cos 
1cos2 2
    2cos1
2
1
cos2

2
sin21   2cos1
2
1
sin2



 2
tan1
tan2
2tan


 
2
e.g. i If cos , find tan 2
3
 

2
3
5


 2
tan1
tan2
2tan

 2
5
2
2
tan 2
5
1
2

 
 
 
 
 
 
5
1
4


4 5 
 
5 5
ii Find the exact value of sin cos
12 12
 
 
5 5
ii Find the exact value of sin cos
12 12
 
5 5
sin cos
12 12
  1 5 5
= 2sin cos
2 12 12
  
 
 
 
5 5
ii Find the exact value of sin cos
12 12
 
5 5
sin cos
12 12
  1 5 5
= 2sin cos
2 12 12
  
 
 
1 5
= sin 2
2 12
  
 
 
5 5
ii Find the exact value of sin cos
12 12
 
5 5
sin cos
12 12
  1 5 5
= 2sin cos
2 12 12
  
 
 
1 5
= sin 2
2 12
  
 
1 5
= sin
2 6

 
5 5
ii Find the exact value of sin cos
12 12
 
5 5
sin cos
12 12
  1 5 5
= 2sin cos
2 12 12
  
 
 
1 5
= sin 2
2 12
  
 
1 5
= sin
2 6

1 1
=
2 2

1
=
4
 
2
iii If cos , find the exact value of sin
3 2

 
 
2
iii If cos , find the exact value of sin
3 2

 
 2 1
sin 1 cos2
2
  
 
2
iii If cos , find the exact value of sin
3 2

 
 2 1
sin 1 cos2
2
  
 2 1
sin 1 cos
2 2

  
 
2
iii If cos , find the exact value of sin
3 2

 
 2 1
sin 1 cos2
2
  
 2 1
sin 1 cos
2 2

  
1 2
1
2 3
   
 
 
2
iii If cos , find the exact value of sin
3 2

 
 2 1
sin 1 cos2
2
  
 2 1
sin 1 cos
2 2

  
1 2
1
2 3
   
 
1
6

 
2
iii If cos , find the exact value of sin
3 2

 
 2 1
sin 1 cos2
2
  
 2 1
sin 1 cos
2 2

  
1 2
1
2 3
   
 
1
6

1
sin
2 6

 
 
1 cos2
iv Prove tan
1 cos2
x
x
x



 
1 cos2
iv Prove tan
1 cos2
x
x
x



1 cos2
1 cos2
x
x


 
 
2
2
1 1 2sin
1 2cos 1
x
x
 

 
 
1 cos2
iv Prove tan
1 cos2
x
x
x



1 cos2
1 cos2
x
x


 
 
2
2
1 1 2sin
1 2cos 1
x
x
 

 
2
2
2sin
2cos
x
x

 
1 cos2
iv Prove tan
1 cos2
x
x
x



1 cos2
1 cos2
x
x


 
 
2
2
1 1 2sin
1 2cos 1
x
x
 

 
2
2
2sin
2cos
x
x

2
2
sin
cos
x
x

 
1 cos2
iv Prove tan
1 cos2
x
x
x



1 cos2
1 cos2
x
x


 
 
2
2
1 1 2sin
1 2cos 1
x
x
 

 
2
2
2sin
2cos
x
x

2
2
sin
cos
x
x

2
tan x
 
1 cos2
iv Prove tan
1 cos2
x
x
x



1 cos2
1 cos2
x
x


 
 
2
2
1 1 2sin
1 2cos 1
x
x
 

 
2
2
2sin
2cos
x
x

2
2
sin
cos
x
x

2
tan x
tan x
1996 Extension 1 HSC Q4a)
sin3 cos3
(v) Prove that 2
sin cos
 
 
 
1996 Extension 1 HSC Q4a)
sin3 cos3
(v) Prove that 2
sin cos
 
 
 
sin3 cos3
sin cos
 
 

sin3 cos cos3 sin
sin cos
   
 


1996 Extension 1 HSC Q4a)
sin3 cos3
(v) Prove that 2
sin cos
 
 
 
sin3 cos3
sin cos
 
 

 


cossin2
3sin2 

sin3 cos cos3 sin
sin cos
   
 


1996 Extension 1 HSC Q4a)
sin3 cos3
(v) Prove that 2
sin cos
 
 
 
sin3 cos3
sin cos
 
 

 


cossin2
3sin2 



2sin
2sin2

sin3 cos cos3 sin
sin cos
   
 


1996 Extension 1 HSC Q4a)
sin3 cos3
(v) Prove that 2
sin cos
 
 
 
sin3 cos3
sin cos
 
 

 


cossin2
3sin2 



2sin
2sin2

2
sin3 cos cos3 sin
sin cos
   
 


1994 Extension 1 HSC Q2a)
2
(vi) Prove the following identity;
2tan
sin 2
1 tan
A
A
A


1994 Extension 1 HSC Q2a)
2
(vi) Prove the following identity;
2tan
sin 2
1 tan
A
A
A


2
2tan
1 tan
A
A
2
2
2sin
cos
sin
1
cos
A
A
A
A


1994 Extension 1 HSC Q2a)
2
(vi) Prove the following identity;
2tan
sin 2
1 tan
A
A
A


2
2tan
1 tan
A
A
AA
AA
22
sincos
cossin2


2
2
2sin
cos
sin
1
cos
A
A
A
A


1994 Extension 1 HSC Q2a)
2
(vi) Prove the following identity;
2tan
sin 2
1 tan
A
A
A


2
2tan
1 tan
A
A
AA
AA
22
sincos
cossin2


1
2sin A

2
2
2sin
cos
sin
1
cos
A
A
A
A


1994 Extension 1 HSC Q2a)
2
(vi) Prove the following identity;
2tan
sin 2
1 tan
A
A
A


2
2tan
1 tan
A
A
AA
AA
22
sincos
cossin2


1
2sin A

A2sin
2
2
2sin
cos
sin
1
cos
A
A
A
A


1994 Extension 1 HSC Q2a)
2
(vi) Prove the following identity;
2tan
sin 2
1 tan
A
A
A


2
2tan
1 tan
A
A
AA
AA
22
sincos
cossin2


1
2sin A

A2sin
2
2
2sin
cos
sin
1
cos
A
A
A
A


Book2
Exercise 2A; 2ade, 3bde, 5adej, 7, 8adg, 10ab, 11, 13ck, 16, 19*

Weitere ähnliche Inhalte

Andere mochten auch

11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)
Nigel Simmons
 
11 x1 t07 03 congruent triangles (2013)
11 x1 t07 03 congruent triangles (2013)11 x1 t07 03 congruent triangles (2013)
11 x1 t07 03 congruent triangles (2013)
Nigel Simmons
 
11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)
Nigel Simmons
 
11 x1 t07 05 similar triangles (2013)
11 x1 t07 05 similar triangles (2013)11 x1 t07 05 similar triangles (2013)
11 x1 t07 05 similar triangles (2013)
Nigel Simmons
 
11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)
Nigel Simmons
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)
Nigel Simmons
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
Nigel Simmons
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Triangles
jtentinger
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
Nigel Simmons
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
Nigel Simmons
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)
Nigel Simmons
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
Nigel Simmons
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
Nigel Simmons
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
Nigel Simmons
 

Andere mochten auch (15)

11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)
 
11 x1 t07 03 congruent triangles (2013)
11 x1 t07 03 congruent triangles (2013)11 x1 t07 03 congruent triangles (2013)
11 x1 t07 03 congruent triangles (2013)
 
11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)11 x1 t08 02 sum & difference of angles (2012)
11 x1 t08 02 sum & difference of angles (2012)
 
11 x1 t07 05 similar triangles (2013)
11 x1 t07 05 similar triangles (2013)11 x1 t07 05 similar triangles (2013)
11 x1 t07 05 similar triangles (2013)
 
11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)
 
11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)11 x1 t05 01 division of an interval (2013)
11 x1 t05 01 division of an interval (2013)
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
 
Geo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and TrianglesGeo 3-5 Parallel Lines and Triangles
Geo 3-5 Parallel Lines and Triangles
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
 
11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)11 x1 t08 03 angle between two lines (2013)
11 x1 t08 03 angle between two lines (2013)
 
11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)11 x1 t08 04 double angles (2012)
11 x1 t08 04 double angles (2012)
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
 
11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines11 X1 T05 07 Angle Between Two Lines
11 X1 T05 07 Angle Between Two Lines
 
11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)11 x1 t08 01 radian measure (13)
11 x1 t08 01 radian measure (13)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Mehr von Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

Mehr von Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

11 x1 t08 04 double angles (2013)

  • 2. Double Angles sin 2 sin   
  • 3. Double Angles sin 2 sin    sin cos cos sin    
  • 4. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos  
  • 5. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos   
  • 6. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos    cos cos sin sin    
  • 7. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos    cos cos sin sin     2 2 cos2 cos sin   
  • 8. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos    cos cos sin sin     2 2 cos2 cos sin     2 2 cos 1 cos   
  • 9. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos    cos cos sin sin     2 2 cos2 cos sin     2 2 cos 1 cos    2 cos2 2cos 1  
  • 10. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos    cos cos sin sin     2 2 cos2 cos sin     2 2 cos 1 cos    2 cos2 2cos 1    2 2 1 sin 1  
  • 11. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos    cos cos sin sin     2 2 cos2 cos sin     2 2 cos 1 cos    2 cos2 2cos 1    2 2 1 sin 1   2 cos2 1 2sin  
  • 12. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos    cos cos sin sin     2 2 cos2 cos sin     2 2 cos 1 cos    2 cos2 2cos 1    2 2 1 sin 1   2 cos2 1 2sin    tan 2 tan   
  • 13. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos    cos cos sin sin     2 2 cos2 cos sin     2 2 cos 1 cos    2 cos2 2cos 1    2 2 1 sin 1   2 cos2 1 2sin    tan 2 tan    tan tan 1 tan tan       
  • 14. Double Angles sin 2 sin    sin cos cos sin     sin 2 2sin cos    cos2 cos    cos cos sin sin     2 2 cos2 cos sin     2 2 cos 1 cos    2 cos2 2cos 1    2 2 1 sin 1   2 cos2 1 2sin    tan 2 tan    tan tan 1 tan tan        2 2tan tan 2 1 tan     
  • 15. Double Angles  cossin22sin 
  • 16. Double Angles  cossin22sin   22 sincos2cos 
  • 17. Double Angles  cossin22sin   22 sincos2cos  1cos2 2  
  • 18. Double Angles  cossin22sin   22 sincos2cos  1cos2 2     2cos1 2 1 cos2 
  • 19. Double Angles  cossin22sin   22 sincos2cos  1cos2 2     2cos1 2 1 cos2  2 sin21
  • 20. Double Angles  cossin22sin   22 sincos2cos  1cos2 2     2cos1 2 1 cos2  2 sin21   2cos1 2 1 sin2 
  • 21. Double Angles  cossin22sin   22 sincos2cos  1cos2 2     2cos1 2 1 cos2  2 sin21   2cos1 2 1 sin2     2 tan1 tan2 2tan  
  • 22. Double Angles  cossin22sin   22 sincos2cos  1cos2 2     2cos1 2 1 cos2  2 sin21   2cos1 2 1 sin2     2 tan1 tan2 2tan     2 e.g. i If cos , find tan 2 3  
  • 23. Double Angles  cossin22sin   22 sincos2cos  1cos2 2     2cos1 2 1 cos2  2 sin21   2cos1 2 1 sin2     2 tan1 tan2 2tan     2 e.g. i If cos , find tan 2 3    2 3 5
  • 24. Double Angles  cossin22sin   22 sincos2cos  1cos2 2     2cos1 2 1 cos2  2 sin21   2cos1 2 1 sin2     2 tan1 tan2 2tan     2 e.g. i If cos , find tan 2 3    2 3 5    2 tan1 tan2 2tan  
  • 25. Double Angles  cossin22sin   22 sincos2cos  1cos2 2     2cos1 2 1 cos2  2 sin21   2cos1 2 1 sin2     2 tan1 tan2 2tan     2 e.g. i If cos , find tan 2 3    2 3 5    2 tan1 tan2 2tan   2 5 2 2 tan 2 5 1 2             
  • 26. Double Angles  cossin22sin   22 sincos2cos  1cos2 2     2cos1 2 1 cos2  2 sin21   2cos1 2 1 sin2     2 tan1 tan2 2tan     2 e.g. i If cos , find tan 2 3    2 3 5    2 tan1 tan2 2tan   2 5 2 2 tan 2 5 1 2              5 1 4   4 5 
  • 27.   5 5 ii Find the exact value of sin cos 12 12  
  • 28.   5 5 ii Find the exact value of sin cos 12 12   5 5 sin cos 12 12   1 5 5 = 2sin cos 2 12 12       
  • 29.   5 5 ii Find the exact value of sin cos 12 12   5 5 sin cos 12 12   1 5 5 = 2sin cos 2 12 12        1 5 = sin 2 2 12     
  • 30.   5 5 ii Find the exact value of sin cos 12 12   5 5 sin cos 12 12   1 5 5 = 2sin cos 2 12 12        1 5 = sin 2 2 12      1 5 = sin 2 6 
  • 31.   5 5 ii Find the exact value of sin cos 12 12   5 5 sin cos 12 12   1 5 5 = 2sin cos 2 12 12        1 5 = sin 2 2 12      1 5 = sin 2 6  1 1 = 2 2  1 = 4
  • 32.   2 iii If cos , find the exact value of sin 3 2   
  • 33.   2 iii If cos , find the exact value of sin 3 2     2 1 sin 1 cos2 2   
  • 34.   2 iii If cos , find the exact value of sin 3 2     2 1 sin 1 cos2 2     2 1 sin 1 cos 2 2    
  • 35.   2 iii If cos , find the exact value of sin 3 2     2 1 sin 1 cos2 2     2 1 sin 1 cos 2 2     1 2 1 2 3      
  • 36.   2 iii If cos , find the exact value of sin 3 2     2 1 sin 1 cos2 2     2 1 sin 1 cos 2 2     1 2 1 2 3       1 6 
  • 37.   2 iii If cos , find the exact value of sin 3 2     2 1 sin 1 cos2 2     2 1 sin 1 cos 2 2     1 2 1 2 3       1 6  1 sin 2 6   
  • 38.   1 cos2 iv Prove tan 1 cos2 x x x   
  • 39.   1 cos2 iv Prove tan 1 cos2 x x x    1 cos2 1 cos2 x x       2 2 1 1 2sin 1 2cos 1 x x     
  • 40.   1 cos2 iv Prove tan 1 cos2 x x x    1 cos2 1 cos2 x x       2 2 1 1 2sin 1 2cos 1 x x      2 2 2sin 2cos x x 
  • 41.   1 cos2 iv Prove tan 1 cos2 x x x    1 cos2 1 cos2 x x       2 2 1 1 2sin 1 2cos 1 x x      2 2 2sin 2cos x x  2 2 sin cos x x 
  • 42.   1 cos2 iv Prove tan 1 cos2 x x x    1 cos2 1 cos2 x x       2 2 1 1 2sin 1 2cos 1 x x      2 2 2sin 2cos x x  2 2 sin cos x x  2 tan x
  • 43.   1 cos2 iv Prove tan 1 cos2 x x x    1 cos2 1 cos2 x x       2 2 1 1 2sin 1 2cos 1 x x      2 2 2sin 2cos x x  2 2 sin cos x x  2 tan x tan x
  • 44. 1996 Extension 1 HSC Q4a) sin3 cos3 (v) Prove that 2 sin cos      
  • 45. 1996 Extension 1 HSC Q4a) sin3 cos3 (v) Prove that 2 sin cos       sin3 cos3 sin cos      sin3 cos cos3 sin sin cos        
  • 46. 1996 Extension 1 HSC Q4a) sin3 cos3 (v) Prove that 2 sin cos       sin3 cos3 sin cos          cossin2 3sin2   sin3 cos cos3 sin sin cos        
  • 47. 1996 Extension 1 HSC Q4a) sin3 cos3 (v) Prove that 2 sin cos       sin3 cos3 sin cos          cossin2 3sin2     2sin 2sin2  sin3 cos cos3 sin sin cos        
  • 48. 1996 Extension 1 HSC Q4a) sin3 cos3 (v) Prove that 2 sin cos       sin3 cos3 sin cos          cossin2 3sin2     2sin 2sin2  2 sin3 cos cos3 sin sin cos        
  • 49. 1994 Extension 1 HSC Q2a) 2 (vi) Prove the following identity; 2tan sin 2 1 tan A A A  
  • 50. 1994 Extension 1 HSC Q2a) 2 (vi) Prove the following identity; 2tan sin 2 1 tan A A A   2 2tan 1 tan A A 2 2 2sin cos sin 1 cos A A A A  
  • 51. 1994 Extension 1 HSC Q2a) 2 (vi) Prove the following identity; 2tan sin 2 1 tan A A A   2 2tan 1 tan A A AA AA 22 sincos cossin2   2 2 2sin cos sin 1 cos A A A A  
  • 52. 1994 Extension 1 HSC Q2a) 2 (vi) Prove the following identity; 2tan sin 2 1 tan A A A   2 2tan 1 tan A A AA AA 22 sincos cossin2   1 2sin A  2 2 2sin cos sin 1 cos A A A A  
  • 53. 1994 Extension 1 HSC Q2a) 2 (vi) Prove the following identity; 2tan sin 2 1 tan A A A   2 2tan 1 tan A A AA AA 22 sincos cossin2   1 2sin A  A2sin 2 2 2sin cos sin 1 cos A A A A  
  • 54. 1994 Extension 1 HSC Q2a) 2 (vi) Prove the following identity; 2tan sin 2 1 tan A A A   2 2tan 1 tan A A AA AA 22 sincos cossin2   1 2sin A  A2sin 2 2 2sin cos sin 1 cos A A A A   Book2 Exercise 2A; 2ade, 3bde, 5adej, 7, 8adg, 10ab, 11, 13ck, 16, 19*