SlideShare ist ein Scribd-Unternehmen logo
1 von 24
Downloaden Sie, um offline zu lesen
Less	
  Grammar,	
  More	
  Features
David	
  Hall,	
  Greg	
  Durre6	
  and	
  Dan	
  Klein
@	
  Berkeley
能地	
  宏	
  (@nozyh)
NII
この論文の主張
‣ 低レイヤー	
  NLP	
  タスクの曖昧性を解消するには、単語の表層から
の素性があれば十分
評判分析
Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank
Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng and Christopher Potts
Stanford University, Stanford, CA 94305, USA
richard@socher.org,{aperelyg,jcchuang,ang}@cs.stanford.edu
{jeaneis,manning,cgpotts}@stanford.edu
Abstract
Semantic word spaces have been very use-
ful but cannot express the meaning of longer
phrases in a principled way. Further progress
towards understanding compositionality in
tasks such as sentiment detection requires
richer supervised training and evaluation re-
sources and more powerful models of com-
position. To remedy this, we introduce a
Sentiment Treebank. It includes fine grained
sentiment labels for 215,154 phrases in the
parse trees of 11,855 sentences and presents
new challenges for sentiment composition-
ality. To address them, we introduce the
Recursive Neural Tensor Network. When
–
0
0
This
0
film
–
–
–
0
does
0
n’t
0
+
care
+
0
about
+
+
+
+
+
cleverness
0
,
0
wit
0
or
+
0
0
any
0
0
other
+
kind
+
0
of
+
+
intelligent
+ +
humor
0
.
Figure 1: Example of the Recursive Neural Tensor Net-
work accurately predicting 5 sentiment classes, very neg-
ative to very positive (– –, –, 0, +, + +), at every node of a
parse tree and capturing the negation and its scope in this
Sochar	
  et	
  al.’13
Deep	
  Learning	
  以上の性能
構文解析
多くの言語で	
  Berkeley	
  parser	
  以上
句構造構文解析
‣ 文の背後にある木構造を推定する
-­‐ あらゆる上位レイヤーの処理でボトルネック?
-­‐ 目的は曖昧性の解消
目的は曖昧性の解消
He	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  chops.cks
N
S
PPNP
V
VP
VP
P
NP
He	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  chops.cks
N
S
PPNP
V
NP
VP
P
NP
目的は曖昧性の解消
‣ どちらの構造も、文法的には正しい
-­‐ 人間の解釈は左側なので、左側の構造を推定することが目的
He	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  chops,cks
N
S
PPNP
V
VP
VP
P
NP
He	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  chops,cks
N
S
PPNP
V
NP
VP
P
NP
He	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  chops,cks
N
S
PPNP
V
VP
VP
P
NP
He	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  chops,cks
N
S
PPNP
V
NP
VP
P
NP
Naive	
  PCFG	
  では性能が低い
VP	
  -­‐>	
  V	
  NP 0.2
NP	
  -­‐>	
  NP	
  PP 0.15
VP	
  -­‐>	
  VP	
  PP 0.1
0.1	
  ×	
  0.2	
  =	
  0.02 0.2	
  ×	
  0.15	
  =	
  0.03
PCFG	
  は曖昧性の解消には不十分
F1-­‐Score:	
  72.1 Treebank	
  から確率値を推定
He	
  	
  	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  chops,cks
S
PP
V
VP
N
NP
VP
P
NP
Head	
  lexicalizaWon
Eisner’96;	
  Collins’97
[I]
[eat]
[I]
[sushi]
[sushi]
[eat]
[eat]
[with]
[eat]
•	
  葉ノードの情報を伝播させる
•	
  (eats,	
  with)	
  の関係を捉えられる
•	
  ルールの数が膨大
•	
  多言語への拡張性	
  (headの情報に依存)
欠点:
Latent	
  annotaWon	
  (state	
  spliang)
Matsuzaki	
  et	
  al.’05;	
  Petrov	
  et	
  al.’06
He	
  	
  	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  chops,cks
S
PP-­‐1
V-­‐1
VP-­‐2
N-­‐3
NP-­‐4
VP-­‐3
P-­‐1
NP-­‐2
•	
  各ノードに存在する隠れ状態を推定
•	
  現在の	
  Berkeley	
  Parser	
  の実装;	
  	
  F1-­‐score:	
  90.2
これまでの手法のまとめ
‣ これまでの手法は基本的に、	
  CFG	
  のルールを増やすことで、
大域的な情報を取り出してきた
‣ lexicalizaWon:	
  部分木に	
  head	
  の情報を付与する
-­‐ shic-­‐reduce	
  系の手法も当てはまる	
  	
  	
  	
  Zhang	
  and	
  Clark’09;	
  Zhu	
  et	
  al.’13
‣ ノードに粗い情報を付与する
-­‐ 言語学的な分析に基づく	
  	
  
	
  	
  Klein	
  and	
  Manning’03	
  (Stanford	
  parser)
-­‐ 隠れ変数として	
  EM	
  で推定	
  	
  	
  
	
  	
  Petrov	
  et	
  al.’06	
  (Berkeley	
  parser)
VP	
  [eat]
VP	
  [eat] PP	
  [with]
VP	
  ^S
VP PP	
  ^VP
VP-­‐3
VP-­‐2 PP-­‐1
本研究のアプローチ
‣ アノテーションを最低限にした状態で、構文解析の精度をあげる
ことは果たして可能か?
-­‐ 曖昧性の解消を行う際、ノードに情報を付与することは本当に必要なのか
‣ モチベーション
-­‐ lexicalized	
  parser	
  は	
  head	
  の情報が必要だが、言語によっては	
  head	
  の情報
が利用できないことがある(リソース不足により)
-­‐ Berkeley	
  parser	
  は、単語の表層の情報をあまり使わない
-­‐ morphological	
  rich	
  language	
  に弱い(チューニングが必要)
-­‐ 実験によって、本手法が多言語の解析により有効であることを示す
本研究のアプローチ
‣ 曖昧性の解消の多くは、ルールの貼るスパンの回りの表層を見る
ので十分なのではないか?
He	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  chops,cks
N
S
PPNP
V
NP
VP
P
NP
He	
  	
  	
  	
  eats	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  chops,cks
N
S
PPNP
V
VP
VP
P
NP
[FIRSTWORD=eats	
  ×	
  RULE=VP→V	
  PP]
[SPANLENGTH=5	
  ×	
  RULE=VP→V	
  PP]
[LASTWORD=chop..	
  ×	
  RULE=VP→V	
  PP] [LASTWORD=chop..	
  ×	
  RULE=VP→V	
  NP]
[SPANLENGTH=5	
  ×	
  RULE=VP→V	
  NP]
[FIRSTWORD=eats	
  ×	
  RULE=VP→V	
  NP]
負の重みが学習されて欲しい
Result	
  Overview
n  40
0.1
0.5
0.2
0.9
0.3
reebank develop-
40, for different
d on top of the X-
y span feature is
ules and rule par-
nchored rule pro-
ing an annotation
does is refine the
Test  40 Test all
Berkeley 90.6 90.1
This work 89.9 89.2
Table 3: Final Parseval results for the v = 1, h = 0
parser on Section 23 of the Penn Treebank.
5.2 Lexical Annotation
Another commonly-used kind of structural an-
notation is lexicalization (Eisner, 1996; Collins,
1997; Charniak, 1997). By annotating grammar
nonterminals with their headwords, the idea is to
better model phenomena that depend heavily on
the semantics of the words involved, such as coor-
dination and PP attachment.
Table 2 shows results from lexicalizing the X-
Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg
Dev, all lengths
Berkeley 78.24 69.17 79.74 81.74 87.83 83.90 70.97 84.11 74.50 78.91
Berkeley-Rep 78.70 84.33 79.68 82.74 89.55 89.08 82.84 87.12 75.52 83.28
Our work 78.89 83.74 79.40 83.28 88.06 87.44 81.85 91.10 75.95 83.30
Test, all lengths
Berkeley 79.19 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.18 78.53
Berkeley-Tags 78.66 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 80.89
Our work 78.75 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.17
Table 4: Results for the nine treebanks in the SPMRL 2013 Shared Task; all values are F-scores for
sentences of all lengths using the version of evalb distributed with the shared task. Berkeley-Rep is
the best single parser from (Bj¨orkelund et al., 2013); we only compare to this parser on the development
Berkeley-­‐Rep:	
  Berkeley	
  parser	
  で、低頻度語を言語毎にチューニング
した素性表現で置き換える
多言語データ:	
  SPMPL	
  2013	
  Shared	
  Task
モデル:CRF	
  Parsing
Finkel	
  et	
  al.’07
ng comes
tput be a
es a min-
ure a ba-
but relies
ive accu-
e the fea-
all back-
, such as
ured by a
, are nat-
on. The
s are ade-
on, which
e reflexes
will often
wer seems
Finkel et al. (2008) and Petrov and Klein (2008a).
Formally, we define the probability of a tree T
conditioned on a sentence w as
p(T|w) / exp ✓|
X
r2T
f(r, w)
!
(1)
where the feature domains r range over the (an-
chored) rules used in the tree. An anchored rule
r is the conjunction of an unanchored grammar
rule rule(r) and the start, stop, and split indexes
where that rule is anchored, which we refer to as
span(r). It is important to note that the richness of
the backbone grammar is reflected in the structure
of the trees T, while the features that condition di-
rectly on the input enter the equation through the
anchoring span(r). To optimize model parame-
ters, we use the Adagrad algorithm of Duchi et al.
I	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  eat	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  sushi	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  chops.cks
S
PP
V
VP
N
NP
VP
P
NP
Inside-­‐Outsideで周辺確率を計算
AdaGrad	
  +	
  L2	
  (オンライン学習)
素性の抽出
averted financial disaster
VP
NPVBD
JJ NN
PARENT = VP
FIRSTWORD = averted
LENGTH = 3
RULE = VP → VBD NP
PARENT = VP
Span properties
Rule backoffs
Features
...
5 6 7 8
... LASTWORD = disaster
FIRSTWORD = averted
LASTWORD = disaster PARENT = VP
FIRSTWORD = averted RULE = VP → VBD NP
Figure 1: Features computed over the application
of the rule VP ! VBD NP over the anchored
span averted financial disaster with the shown in-
for parsing – if nothing else, parsing comes
a structural requirement that the output be a
-formed, nested tree. Our parser uses a min-
PCFG backbone grammar to ensure a ba-
evel of structural well-formedness, but relies
ly on features of surface spans to drive accu-
Formally, our model is a CRF where the fea-
factor over anchored rules of a small back-
grammar, as shown in Figure 1.
ome aspects of the parsing problem, such as
ree constraint, are clearly best captured by a
G. Others, such as heaviness effects, are nat-
y captured using surface information. The
question is whether surface features are ade-
e for key effects like subcategorization, which
deep definitions but regular surface reflexes
the preposition selected by a verb will often
rly follow it). Empirically, the answer seems
yes, and our system produces strong results,
up to 90.5 F1 on English parsing. Our parser
so able to generalize well across languages
Finkel et al. (2008) and Petrov and Klein (
Formally, we define the probability of a
conditioned on a sentence w as
p(T|w) / exp ✓|
X
r2T
f(r, w)
!
where the feature domains r range over t
chored) rules used in the tree. An anchor
r is the conjunction of an unanchored gr
rule rule(r) and the start, stop, and split
where that rule is anchored, which we ref
span(r). It is important to note that the rich
the backbone grammar is reflected in the st
of the trees T, while the features that condi
rectly on the input enter the equation thro
anchoring span(r). To optimize model p
ters, we use the Adagrad algorithm of Duc
(2010) with L2 regularization.
We start with a simple X-bar grammar
only symbols are NP, NP-bar, VP, and so o
base model has no surface features: form
0
0
1
0
…
0
1
0
1
10.3
-­‐1.2
3.2
0.01
…
0.3
0.1
-­‐20.1
10.1
内積でスコア計算
PCFG	
  のルール確率に対応	
   	
  CKY	
  チャートのスコアに
どのような素性が有効か
Features Section F1
RULE 4 73.0
+ SPAN FIRST WORD + SPAN LAST WORD + LENGTH 4.1 85.0
+ WORD BEFORE SPAN + WORD AFTER SPAN 4.2 89.0
+ WORD BEFORE SPLIT + WORD AFTER SPLIT 4.3 89.7
+ SPAN SHAPE 4.4 89.9
1: Results for the Penn Treebank development set, reported in F1 on sentences of length
ction 22, for a number of incrementally growing feature sets. We show that each feature
ted in Section 4 adds benefit over the previous, and in combination they produce a reaso
yet simple parser.
atures are bucketed together. During train-
ere are no collisions between positive fea-
which generally receive positive weight, and
fixes of the current word up to length 5, regar
of frequency.
Subsequent lines in Table 1 indicate addi
長さ40以下、WSJ	
  Sec.	
  22	
  	
  (development)
ほとんどの意味は直感的に分かる
以下、具体例でどのような文に役立つか説明
Word	
  before/acer	
  span
no read messages in his inbox
VP
VBP NNS
VP → no VBP NNS
gure 2: An example showing the utility of span
ntext. The ambiguity about whether read is an
jective or a verb is resolved when we construct
VP and notice that the word proceeding it is un-
ely.
NP → (NP ... impact) PP)
( CEO of Enron )
PRN
(XxX)
Figure 4: Computation o
two examples. Parenthe
punctuation-heavy, short
being explicitly modeled
stance of this feature tem
that is more likely to tak
no	
  	
  	
  read	
  	
  	
  messages	
  	
  	
  in	
  ...
JJ NNS
NP
read	
  の品詞は	
  VBP	
  か	
  JJ	
  か?
read	
  messages	
  を張るルールを決める際、VP	
  の前に	
  no	
  は来ない、
という情報が手がかりになる(負の重みが学習されてほしい)
Word	
  before/acer	
  split
adjective or a verb is resolved when we construct
a VP and notice that the word proceeding it is un-
likely.
has an impact on the market
PPNP
NP
NP → (NP ... impact) PP)
Figure 3: An example showing split point features
disambiguating a PP attachment. Because impact
is likely to take a PP, the monolexical indicator
feature that conjoins impact with the appropriate
rule will help us parse this example correctly.
lengths 1, 2, 3, 4, 5, 10, 20, and 21 words.
punctuation
being expli
stance of th
that is mor
and so we
and encour
generally u
attachment
of the noun
example, c
indicator o
diately afte
tures with i
with a rule
split point.
4.4 Span
We add on
PP	
  a6achment
impact	
  は修飾を受けやすい名詞	
   	
  大きい重みが学習されて欲しい
各句の	
  head	
  は、前後両端のどちらかに来やすいという情報を利用
(多くの言語で成り立つ;日本語の文節の	
  head	
  は右端)
Span	
  shape
box
e utility of span
ether read is an
en we construct
ceeding it is un-
( CEO of Enron )
PRN
(XxX)
said , “ Too bad , ”
VP
x,“Xx,”
Figure 4: Computation of span shape features on
two examples. Parentheticals, quotes, and other
punctuation-heavy, short constituents benefit from
being explicitly modeled by a descriptor like this.
stance of this feature template. impact is a noun
that is more likely to take a PP than other nouns,
and so we expect this feature to have high weight
先頭の大文字、括弧を抽出する
(英語の場合)named	
  enWty	
  の判別、括弧の一致など
Less	
  Grammar	
  の意味について
‣ 言語学を捨てて機械学習だけで問題が解決できる、ということ
ではない
-­‐ ここでの	
  Grammar	
  は、用いる	
  CFG	
  ルールのサイズのこと
-­‐ 本論文の主張は、表層から意味のある素性を抽出すれば、小さな文法
でも十分である、というもの
-­‐ 用いている機械学習はシンプル(CRF	
  +	
  SGD)
‣ 設計に必要な言語学的知識は、既存手法のほうが少ない?
-­‐ Berkeley	
  parser:	
  確率モデルで	
  EM	
  で	
  spliang	
  (全自動)
-­‐ shic-­‐reduce:	
  突っ込める素性はとにかく突っ込む
余談:この研究の方向性
‣ EMNLP	
  2013	
  の共参照の論文と方向性が同じに見える
-­‐ 共参照解析は、menWon	
  間の表層から取り出した素性のみに基づく
識別モデルを用いることで、最高精度を達成できる
(WordNet	
  等の外部知識は必要ではない)
-­‐ Berkeley	
  coreference	
  はツール公開中で、Stanford	
  より高い精度(のはず)
Easy	
  Victories	
  and	
  Uphill	
  Ba6les	
  in	
  Coreference	
  ResoluWon
Greg	
  Durre6	
  and	
  Dan	
  Klein	
  (Berkeley)
[Barack$Obama]1$met$with$[David$Cameron]2$.$[He]1$said$...
[with$X%−%.%Y]
[with$X%−%Y%said]
...
Centering
with%[X]%. .%[X]%said
NLP	
  の多くの解析タスクは、
単語の表層からうまく素性を
選べば高精度が達成できる
SenWment	
  analysis
‣ Mechanical	
  turk	
  を使って木構造の上に5段階のラベルを付与した
‣ Neural	
  net	
  で既存手法より良いことを示した	
  (去年の	
  EMNLP)
ing,cgpotts}@stanford.edu
-
r
s
n
s
-
-
a
d
e
s
-
e
–
0
0
This
0
film
–
–
–
0
does
0
n’t
0
+
care
+
0
about
+
+
+
+
+
cleverness
0
,
0
wit
0
or
+
0
0
any
0
0
other
+
kind
+
0
of
+
+
intelligent
+ +
humor
0
.
Figure 1: Example of the Recursive Neural Tensor Net-
work accurately predicting 5 sentiment classes, very neg-
ative to very positive (– –, –, 0, +, + +), at every node of a
parse tree and capturing the negation and its scope in this
Sochar	
  et	
  al.’13
本研究の手法がそのまま適応できる
‣ 木構造が与えられた上で、各スパンを5段階に分類
-­‐ 構造を固定して	
  Inside-­‐Outside,	
  CKY	
  を走らせる
While “ Gangs ” is never lethargic , it is hindered by its plot .
4 1
2
2 → (4 While...) 1
Figure 5: An example of a sentence from the Stan-
ford Sentiment Treebank which shows the utility
of our span features for this task. The presence
7.1 Ada
Our parse
parser tha
the treeb
with the
with very
terminals
fective an
are not us
One s
analysis a
スパンの先頭の語が論理関係であることが多い;	
  but	
  など
Neural	
  net	
  よりも高い性能
Root All Spans
Non-neutral Dev (872 trees)
Stanford CoreNLP current 50.7 80.8
This work 53.1 80.5
Non-neutral Test (1821 trees)
Stanford CoreNLP current 49.1 80.2
Stanford EMNLP 2013 45.7 80.7
This work 49.6 80.4
Table 5: Fine-grained sentiment analysis results
on the Stanford Sentiment Treebank of Socher et
al. (2013). We compare against the printed num-
bers in Socher et al. (2013) as well as the per-
formance of the corresponding release, namely
the sentiment component in the latest version of
the Stanford CoreNLP at the time of this writ-
References
Anders Bj¨orke
Thomas M
(Re)ranking
Results from
ceedings of
ing of Morp
Rens Bod. 1
Stochastic
Conference
for Comput
Peter F Brow
Vincent J D
Class-based
Computatio
参考:今年の	
  ACL	
  で別の論文
Nal	
  Kalchbrenner,	
  Edward	
  GrefensteJe,	
  Phil	
  Blunsom:	
  
	
  	
  A	
  ConvoluRonal	
  Neural	
  Network	
  for	
  Modelling	
  Sentences
Neural	
  net	
  で、木構造を仮定せずに、senWment	
  を分類する
Test	
  set	
  で、48.5	
  point	
  (Stanford	
  current	
  より少し低い)
まとめ
‣ 構文解析で精度を出すためには、ノードに情報を付与し、
ルールを増やすことが必要と信じられていていた
‣ ルールの数を最小にした構文解析
-­‐ 言語/文法への依存性が小さい	
   	
  多言語への拡張性が高い
-­‐ 素性を少し変更することで、他のタスクにも適応できる	
  (SenWment)
‣ Parser	
  は公開中	
  (epic	
  parser)
‣ 得るべき教訓(?)
-­‐ 単語の表層から得られる情報は	
  (やっぱり)	
  非常に強力
-­‐ 意味のある素性を抽出できれば、複雑な手法に匹敵する精度を出せる
h6ps://github.com/dlwh/epic

Weitere ähnliche Inhalte

Was ist angesagt?

Lean Logic for Lean Times: Entailment and Contradiction Revisited
Lean Logic for Lean Times: Entailment and Contradiction RevisitedLean Logic for Lean Times: Entailment and Contradiction Revisited
Lean Logic for Lean Times: Entailment and Contradiction RevisitedValeria de Paiva
 
Lean Logic for Lean Times: Varieties of Natural Logic
Lean Logic for Lean Times: Varieties of Natural LogicLean Logic for Lean Times: Varieties of Natural Logic
Lean Logic for Lean Times: Varieties of Natural LogicValeria de Paiva
 
L03 ai - knowledge representation using logic
L03 ai - knowledge representation using logicL03 ai - knowledge representation using logic
L03 ai - knowledge representation using logicManjula V
 
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...Koji Matsuda
 
Definite Clause Grammars For Language Analysis
Definite Clause Grammars For Language AnalysisDefinite Clause Grammars For Language Analysis
Definite Clause Grammars For Language AnalysisRePierre
 
Predicate calculus
Predicate calculusPredicate calculus
Predicate calculusRajendran
 
Dependent Types in Natural Language Semantics
Dependent Types in Natural Language SemanticsDependent Types in Natural Language Semantics
Dependent Types in Natural Language SemanticsDaisuke BEKKI
 
Composing (Im)politeness in Dependent Type Semantics
Composing (Im)politeness in Dependent Type SemanticsComposing (Im)politeness in Dependent Type Semantics
Composing (Im)politeness in Dependent Type SemanticsDaisuke BEKKI
 
(Deep) Neural Networks在 NLP 和 Text Mining 总结
(Deep) Neural Networks在 NLP 和 Text Mining 总结(Deep) Neural Networks在 NLP 和 Text Mining 总结
(Deep) Neural Networks在 NLP 和 Text Mining 总结君 廖
 
Predicate Logic
Predicate LogicPredicate Logic
Predicate Logicgiki67
 
Jarrar.lecture notes.aai.2011s.ch7.p logic
Jarrar.lecture notes.aai.2011s.ch7.p logicJarrar.lecture notes.aai.2011s.ch7.p logic
Jarrar.lecture notes.aai.2011s.ch7.p logicPalGov
 
Sk t academy lecture note
Sk t academy lecture noteSk t academy lecture note
Sk t academy lecture noteSusang Kim
 

Was ist angesagt? (20)

Word2Vec
Word2VecWord2Vec
Word2Vec
 
Lean Logic for Lean Times: Entailment and Contradiction Revisited
Lean Logic for Lean Times: Entailment and Contradiction RevisitedLean Logic for Lean Times: Entailment and Contradiction Revisited
Lean Logic for Lean Times: Entailment and Contradiction Revisited
 
Lean Logic for Lean Times: Varieties of Natural Logic
Lean Logic for Lean Times: Varieties of Natural LogicLean Logic for Lean Times: Varieties of Natural Logic
Lean Logic for Lean Times: Varieties of Natural Logic
 
Tutorial on word2vec
Tutorial on word2vecTutorial on word2vec
Tutorial on word2vec
 
Logic agent
Logic agentLogic agent
Logic agent
 
L03 ai - knowledge representation using logic
L03 ai - knowledge representation using logicL03 ai - knowledge representation using logic
L03 ai - knowledge representation using logic
 
Exempler approach
Exempler approachExempler approach
Exempler approach
 
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
 
First order logic
First order logicFirst order logic
First order logic
 
Definite Clause Grammars For Language Analysis
Definite Clause Grammars For Language AnalysisDefinite Clause Grammars For Language Analysis
Definite Clause Grammars For Language Analysis
 
Predicate calculus
Predicate calculusPredicate calculus
Predicate calculus
 
Dscrete structure
Dscrete  structureDscrete  structure
Dscrete structure
 
Predicate logic
 Predicate logic Predicate logic
Predicate logic
 
Dependent Types in Natural Language Semantics
Dependent Types in Natural Language SemanticsDependent Types in Natural Language Semantics
Dependent Types in Natural Language Semantics
 
Composing (Im)politeness in Dependent Type Semantics
Composing (Im)politeness in Dependent Type SemanticsComposing (Im)politeness in Dependent Type Semantics
Composing (Im)politeness in Dependent Type Semantics
 
(Deep) Neural Networks在 NLP 和 Text Mining 总结
(Deep) Neural Networks在 NLP 和 Text Mining 总结(Deep) Neural Networks在 NLP 和 Text Mining 总结
(Deep) Neural Networks在 NLP 和 Text Mining 总结
 
AI Lecture 6 (logical agents)
AI Lecture 6 (logical agents)AI Lecture 6 (logical agents)
AI Lecture 6 (logical agents)
 
Predicate Logic
Predicate LogicPredicate Logic
Predicate Logic
 
Jarrar.lecture notes.aai.2011s.ch7.p logic
Jarrar.lecture notes.aai.2011s.ch7.p logicJarrar.lecture notes.aai.2011s.ch7.p logic
Jarrar.lecture notes.aai.2011s.ch7.p logic
 
Sk t academy lecture note
Sk t academy lecture noteSk t academy lecture note
Sk t academy lecture note
 

Andere mochten auch

Acl読み会2014
Acl読み会2014Acl読み会2014
Acl読み会2014tempra28
 
ACL2014読み会:Fast and Robust Neural Network Joint Models for Statistical Machin...
ACL2014読み会:Fast and Robust Neural Network Joint Models for Statistical Machin...ACL2014読み会:Fast and Robust Neural Network Joint Models for Statistical Machin...
ACL2014読み会:Fast and Robust Neural Network Joint Models for Statistical Machin...Hiroyuki TOKUNAGA
 
最近のTransition based parsing
最近のTransition based parsing最近のTransition based parsing
最近のTransition based parsingnozyh
 
Learning to automatically solve algebra word problems
Learning to automatically solve algebra word problemsLearning to automatically solve algebra word problems
Learning to automatically solve algebra word problemsNaoaki Okazaki
 
ACL2014 Reading: [Zhang+] "Kneser-Ney Smoothing on Expected Count" and [Pickh...
ACL2014 Reading: [Zhang+] "Kneser-Ney Smoothing on Expected Count" and [Pickh...ACL2014 Reading: [Zhang+] "Kneser-Ney Smoothing on Expected Count" and [Pickh...
ACL2014 Reading: [Zhang+] "Kneser-Ney Smoothing on Expected Count" and [Pickh...Shuyo Nakatani
 
ACL読み会2014@PFI "Two Knives Cut Better Than One: Chinese Word Segmentation w...
ACL読み会2014@PFI  "Two Knives Cut Better Than One: Chinese Word Segmentation w...ACL読み会2014@PFI  "Two Knives Cut Better Than One: Chinese Word Segmentation w...
ACL読み会2014@PFI "Two Knives Cut Better Than One: Chinese Word Segmentation w...Preferred Networks
 
ACL読み会@PFI “How to make words with vectors: Phrase generation in distributio...
ACL読み会@PFI “How to make words with vectors: Phrase generation in distributio...ACL読み会@PFI “How to make words with vectors: Phrase generation in distributio...
ACL読み会@PFI “How to make words with vectors: Phrase generation in distributio...Yuya Unno
 
意味表現の学習
意味表現の学習意味表現の学習
意味表現の学習nozyh
 
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
DeconvNet, DecoupledNet, TransferNet in Image SegmentationDeconvNet, DecoupledNet, TransferNet in Image Segmentation
DeconvNet, DecoupledNet, TransferNet in Image SegmentationNamHyuk Ahn
 
Tutorial-DeepLearning-PCSJ-IMPS2016
Tutorial-DeepLearning-PCSJ-IMPS2016Tutorial-DeepLearning-PCSJ-IMPS2016
Tutorial-DeepLearning-PCSJ-IMPS2016Takayoshi Yamashita
 
NIPS読み会2013: One-shot learning by inverting a compositional causal process
NIPS読み会2013: One-shot learning by inverting  a compositional causal processNIPS読み会2013: One-shot learning by inverting  a compositional causal process
NIPS読み会2013: One-shot learning by inverting a compositional causal processnozyh
 
論文紹介: Fast R-CNN&Faster R-CNN
論文紹介: Fast R-CNN&Faster R-CNN論文紹介: Fast R-CNN&Faster R-CNN
論文紹介: Fast R-CNN&Faster R-CNNTakashi Abe
 
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Daiki Shimada
 
SSD: Single Shot MultiBox Detector (ECCV2016)
SSD: Single Shot MultiBox Detector (ECCV2016)SSD: Single Shot MultiBox Detector (ECCV2016)
SSD: Single Shot MultiBox Detector (ECCV2016)Takanori Ogata
 
論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative ModelsSeiya Tokui
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーDeep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーnlab_utokyo
 

Andere mochten auch (20)

Acl読み会2014
Acl読み会2014Acl読み会2014
Acl読み会2014
 
ACL2014読み会:Fast and Robust Neural Network Joint Models for Statistical Machin...
ACL2014読み会:Fast and Robust Neural Network Joint Models for Statistical Machin...ACL2014読み会:Fast and Robust Neural Network Joint Models for Statistical Machin...
ACL2014読み会:Fast and Robust Neural Network Joint Models for Statistical Machin...
 
最近のTransition based parsing
最近のTransition based parsing最近のTransition based parsing
最近のTransition based parsing
 
Learning to automatically solve algebra word problems
Learning to automatically solve algebra word problemsLearning to automatically solve algebra word problems
Learning to automatically solve algebra word problems
 
ACL2014 Reading: [Zhang+] "Kneser-Ney Smoothing on Expected Count" and [Pickh...
ACL2014 Reading: [Zhang+] "Kneser-Ney Smoothing on Expected Count" and [Pickh...ACL2014 Reading: [Zhang+] "Kneser-Ney Smoothing on Expected Count" and [Pickh...
ACL2014 Reading: [Zhang+] "Kneser-Ney Smoothing on Expected Count" and [Pickh...
 
ACL読み会2014@PFI "Two Knives Cut Better Than One: Chinese Word Segmentation w...
ACL読み会2014@PFI  "Two Knives Cut Better Than One: Chinese Word Segmentation w...ACL読み会2014@PFI  "Two Knives Cut Better Than One: Chinese Word Segmentation w...
ACL読み会2014@PFI "Two Knives Cut Better Than One: Chinese Word Segmentation w...
 
ACL読み会@PFI “How to make words with vectors: Phrase generation in distributio...
ACL読み会@PFI “How to make words with vectors: Phrase generation in distributio...ACL読み会@PFI “How to make words with vectors: Phrase generation in distributio...
ACL読み会@PFI “How to make words with vectors: Phrase generation in distributio...
 
意味表現の学習
意味表現の学習意味表現の学習
意味表現の学習
 
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
DeconvNet, DecoupledNet, TransferNet in Image SegmentationDeconvNet, DecoupledNet, TransferNet in Image Segmentation
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
 
Tutorial-DeepLearning-PCSJ-IMPS2016
Tutorial-DeepLearning-PCSJ-IMPS2016Tutorial-DeepLearning-PCSJ-IMPS2016
Tutorial-DeepLearning-PCSJ-IMPS2016
 
Semantic segmentation
Semantic segmentationSemantic segmentation
Semantic segmentation
 
20150930
2015093020150930
20150930
 
NIPS読み会2013: One-shot learning by inverting a compositional causal process
NIPS読み会2013: One-shot learning by inverting  a compositional causal processNIPS読み会2013: One-shot learning by inverting  a compositional causal process
NIPS読み会2013: One-shot learning by inverting a compositional causal process
 
論文紹介: Fast R-CNN&Faster R-CNN
論文紹介: Fast R-CNN&Faster R-CNN論文紹介: Fast R-CNN&Faster R-CNN
論文紹介: Fast R-CNN&Faster R-CNN
 
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
 
CVPR 2016 まとめ v1
CVPR 2016 まとめ v1CVPR 2016 まとめ v1
CVPR 2016 まとめ v1
 
SSD: Single Shot MultiBox Detector (ECCV2016)
SSD: Single Shot MultiBox Detector (ECCV2016)SSD: Single Shot MultiBox Detector (ECCV2016)
SSD: Single Shot MultiBox Detector (ECCV2016)
 
論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models論文紹介 Semi-supervised Learning with Deep Generative Models
論文紹介 Semi-supervised Learning with Deep Generative Models
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーDeep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
 
ECCV 2016 まとめ
ECCV 2016 まとめECCV 2016 まとめ
ECCV 2016 まとめ
 

Ähnlich wie ACL読み会2014@PFI "Less Grammar, More Features"

Segmenting dna sequence into words
Segmenting dna sequence into wordsSegmenting dna sequence into words
Segmenting dna sequence into wordsLiang Wang
 
Introduction to Tree-LSTMs
Introduction to Tree-LSTMsIntroduction to Tree-LSTMs
Introduction to Tree-LSTMsDaniel Perez
 
ACL-WMT Poster.A Description of Tunable Machine Translation Evaluation System...
ACL-WMT Poster.A Description of Tunable Machine Translation Evaluation System...ACL-WMT Poster.A Description of Tunable Machine Translation Evaluation System...
ACL-WMT Poster.A Description of Tunable Machine Translation Evaluation System...Lifeng (Aaron) Han
 
MT SUMMIT2013 poster boaster slides.Language-independent Model for Machine Tr...
MT SUMMIT2013 poster boaster slides.Language-independent Model for Machine Tr...MT SUMMIT2013 poster boaster slides.Language-independent Model for Machine Tr...
MT SUMMIT2013 poster boaster slides.Language-independent Model for Machine Tr...Lifeng (Aaron) Han
 
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
Prediction of transcription factor binding to DNA using rule induction methods
Prediction of transcription factor binding to DNA using rule induction methodsPrediction of transcription factor binding to DNA using rule induction methods
Prediction of transcription factor binding to DNA using rule induction methodsziggurat
 
Understanding Natural Languange with Corpora-based Generation of Dependency G...
Understanding Natural Languange with Corpora-based Generation of Dependency G...Understanding Natural Languange with Corpora-based Generation of Dependency G...
Understanding Natural Languange with Corpora-based Generation of Dependency G...Edmond Lepedus
 
Evaluation in Information Retrieval
Evaluation in Information RetrievalEvaluation in Information Retrieval
Evaluation in Information RetrievalDishant Ailawadi
 
Improving Machine Learning Approaches to Coreference Resolution
Improving Machine Learning Approaches to Coreference ResolutionImproving Machine Learning Approaches to Coreference Resolution
Improving Machine Learning Approaches to Coreference Resolutionbutest
 
Bioinformatica 10-11-2011-t5-database searching
Bioinformatica 10-11-2011-t5-database searchingBioinformatica 10-11-2011-t5-database searching
Bioinformatica 10-11-2011-t5-database searchingProf. Wim Van Criekinge
 
NIPS2007: structured prediction
NIPS2007: structured predictionNIPS2007: structured prediction
NIPS2007: structured predictionzukun
 
Deep Reinforcement Learning with Distributional Semantic Rewards for Abstract...
Deep Reinforcement Learning with Distributional Semantic Rewards for Abstract...Deep Reinforcement Learning with Distributional Semantic Rewards for Abstract...
Deep Reinforcement Learning with Distributional Semantic Rewards for Abstract...Deren Lei
 
An incremental algorithm for transition-based CCG parsing
An incremental algorithm for transition-based CCG parsingAn incremental algorithm for transition-based CCG parsing
An incremental algorithm for transition-based CCG parsingAkira Miyazawa
 
Harnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic RulesHarnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic RulesSho Takase
 
深層意味表現学習 (Deep Semantic Representations)
深層意味表現学習 (Deep Semantic Representations)深層意味表現学習 (Deep Semantic Representations)
深層意味表現学習 (Deep Semantic Representations)Danushka Bollegala
 

Ähnlich wie ACL読み会2014@PFI "Less Grammar, More Features" (20)

Segmenting dna sequence into words
Segmenting dna sequence into wordsSegmenting dna sequence into words
Segmenting dna sequence into words
 
Introduction to Tree-LSTMs
Introduction to Tree-LSTMsIntroduction to Tree-LSTMs
Introduction to Tree-LSTMs
 
ACL-WMT Poster.A Description of Tunable Machine Translation Evaluation System...
ACL-WMT Poster.A Description of Tunable Machine Translation Evaluation System...ACL-WMT Poster.A Description of Tunable Machine Translation Evaluation System...
ACL-WMT Poster.A Description of Tunable Machine Translation Evaluation System...
 
MT SUMMIT2013 poster boaster slides.Language-independent Model for Machine Tr...
MT SUMMIT2013 poster boaster slides.Language-independent Model for Machine Tr...MT SUMMIT2013 poster boaster slides.Language-independent Model for Machine Tr...
MT SUMMIT2013 poster boaster slides.Language-independent Model for Machine Tr...
 
2224d_final
2224d_final2224d_final
2224d_final
 
Conll
ConllConll
Conll
 
AI Lesson 12
AI Lesson 12AI Lesson 12
AI Lesson 12
 
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
文法および流暢性を考慮した頑健なテキスト誤り訂正 (第15回ステアラボ人工知能セミナー)
 
Prediction of transcription factor binding to DNA using rule induction methods
Prediction of transcription factor binding to DNA using rule induction methodsPrediction of transcription factor binding to DNA using rule induction methods
Prediction of transcription factor binding to DNA using rule induction methods
 
Understanding Natural Languange with Corpora-based Generation of Dependency G...
Understanding Natural Languange with Corpora-based Generation of Dependency G...Understanding Natural Languange with Corpora-based Generation of Dependency G...
Understanding Natural Languange with Corpora-based Generation of Dependency G...
 
AI applications in education, Pascal Zoleko, Flexudy
AI applications in education, Pascal Zoleko, FlexudyAI applications in education, Pascal Zoleko, Flexudy
AI applications in education, Pascal Zoleko, Flexudy
 
Presentation
PresentationPresentation
Presentation
 
Evaluation in Information Retrieval
Evaluation in Information RetrievalEvaluation in Information Retrieval
Evaluation in Information Retrieval
 
Improving Machine Learning Approaches to Coreference Resolution
Improving Machine Learning Approaches to Coreference ResolutionImproving Machine Learning Approaches to Coreference Resolution
Improving Machine Learning Approaches to Coreference Resolution
 
Bioinformatica 10-11-2011-t5-database searching
Bioinformatica 10-11-2011-t5-database searchingBioinformatica 10-11-2011-t5-database searching
Bioinformatica 10-11-2011-t5-database searching
 
NIPS2007: structured prediction
NIPS2007: structured predictionNIPS2007: structured prediction
NIPS2007: structured prediction
 
Deep Reinforcement Learning with Distributional Semantic Rewards for Abstract...
Deep Reinforcement Learning with Distributional Semantic Rewards for Abstract...Deep Reinforcement Learning with Distributional Semantic Rewards for Abstract...
Deep Reinforcement Learning with Distributional Semantic Rewards for Abstract...
 
An incremental algorithm for transition-based CCG parsing
An incremental algorithm for transition-based CCG parsingAn incremental algorithm for transition-based CCG parsing
An incremental algorithm for transition-based CCG parsing
 
Harnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic RulesHarnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic Rules
 
深層意味表現学習 (Deep Semantic Representations)
深層意味表現学習 (Deep Semantic Representations)深層意味表現学習 (Deep Semantic Representations)
深層意味表現学習 (Deep Semantic Representations)
 

Kürzlich hochgeladen

Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Bhuvaneswari Subramani
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 

Kürzlich hochgeladen (20)

Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 

ACL読み会2014@PFI "Less Grammar, More Features"

  • 1. Less  Grammar,  More  Features David  Hall,  Greg  Durre6  and  Dan  Klein @  Berkeley 能地  宏  (@nozyh) NII
  • 2. この論文の主張 ‣ 低レイヤー  NLP  タスクの曖昧性を解消するには、単語の表層から の素性があれば十分 評判分析 Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng and Christopher Potts Stanford University, Stanford, CA 94305, USA richard@socher.org,{aperelyg,jcchuang,ang}@cs.stanford.edu {jeaneis,manning,cgpotts}@stanford.edu Abstract Semantic word spaces have been very use- ful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation re- sources and more powerful models of com- position. To remedy this, we introduce a Sentiment Treebank. It includes fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment composition- ality. To address them, we introduce the Recursive Neural Tensor Network. When – 0 0 This 0 film – – – 0 does 0 n’t 0 + care + 0 about + + + + + cleverness 0 , 0 wit 0 or + 0 0 any 0 0 other + kind + 0 of + + intelligent + + humor 0 . Figure 1: Example of the Recursive Neural Tensor Net- work accurately predicting 5 sentiment classes, very neg- ative to very positive (– –, –, 0, +, + +), at every node of a parse tree and capturing the negation and its scope in this Sochar  et  al.’13 Deep  Learning  以上の性能 構文解析 多くの言語で  Berkeley  parser  以上
  • 4. 目的は曖昧性の解消 He        eats                sushi          with              chops.cks N S PPNP V VP VP P NP He        eats                sushi          with              chops.cks N S PPNP V NP VP P NP
  • 5. 目的は曖昧性の解消 ‣ どちらの構造も、文法的には正しい -­‐ 人間の解釈は左側なので、左側の構造を推定することが目的 He        eats                sushi          with              chops,cks N S PPNP V VP VP P NP He        eats                sushi          with              chops,cks N S PPNP V NP VP P NP
  • 6. He        eats                sushi          with              chops,cks N S PPNP V VP VP P NP He        eats                sushi          with              chops,cks N S PPNP V NP VP P NP Naive  PCFG  では性能が低い VP  -­‐>  V  NP 0.2 NP  -­‐>  NP  PP 0.15 VP  -­‐>  VP  PP 0.1 0.1  ×  0.2  =  0.02 0.2  ×  0.15  =  0.03 PCFG  は曖昧性の解消には不十分 F1-­‐Score:  72.1 Treebank  から確率値を推定
  • 7. He            eats                      sushi                        with            chops,cks S PP V VP N NP VP P NP Head  lexicalizaWon Eisner’96;  Collins’97 [I] [eat] [I] [sushi] [sushi] [eat] [eat] [with] [eat] •  葉ノードの情報を伝播させる •  (eats,  with)  の関係を捉えられる •  ルールの数が膨大 •  多言語への拡張性  (headの情報に依存) 欠点:
  • 8. Latent  annotaWon  (state  spliang) Matsuzaki  et  al.’05;  Petrov  et  al.’06 He            eats                      sushi                        with            chops,cks S PP-­‐1 V-­‐1 VP-­‐2 N-­‐3 NP-­‐4 VP-­‐3 P-­‐1 NP-­‐2 •  各ノードに存在する隠れ状態を推定 •  現在の  Berkeley  Parser  の実装;    F1-­‐score:  90.2
  • 9. これまでの手法のまとめ ‣ これまでの手法は基本的に、  CFG  のルールを増やすことで、 大域的な情報を取り出してきた ‣ lexicalizaWon:  部分木に  head  の情報を付与する -­‐ shic-­‐reduce  系の手法も当てはまる        Zhang  and  Clark’09;  Zhu  et  al.’13 ‣ ノードに粗い情報を付与する -­‐ 言語学的な分析に基づく        Klein  and  Manning’03  (Stanford  parser) -­‐ 隠れ変数として  EM  で推定          Petrov  et  al.’06  (Berkeley  parser) VP  [eat] VP  [eat] PP  [with] VP  ^S VP PP  ^VP VP-­‐3 VP-­‐2 PP-­‐1
  • 10. 本研究のアプローチ ‣ アノテーションを最低限にした状態で、構文解析の精度をあげる ことは果たして可能か? -­‐ 曖昧性の解消を行う際、ノードに情報を付与することは本当に必要なのか ‣ モチベーション -­‐ lexicalized  parser  は  head  の情報が必要だが、言語によっては  head  の情報 が利用できないことがある(リソース不足により) -­‐ Berkeley  parser  は、単語の表層の情報をあまり使わない -­‐ morphological  rich  language  に弱い(チューニングが必要) -­‐ 実験によって、本手法が多言語の解析により有効であることを示す
  • 11. 本研究のアプローチ ‣ 曖昧性の解消の多くは、ルールの貼るスパンの回りの表層を見る ので十分なのではないか? He        eats                sushi          with              chops,cks N S PPNP V NP VP P NP He        eats                sushi          with              chops,cks N S PPNP V VP VP P NP [FIRSTWORD=eats  ×  RULE=VP→V  PP] [SPANLENGTH=5  ×  RULE=VP→V  PP] [LASTWORD=chop..  ×  RULE=VP→V  PP] [LASTWORD=chop..  ×  RULE=VP→V  NP] [SPANLENGTH=5  ×  RULE=VP→V  NP] [FIRSTWORD=eats  ×  RULE=VP→V  NP] 負の重みが学習されて欲しい
  • 12. Result  Overview n  40 0.1 0.5 0.2 0.9 0.3 reebank develop- 40, for different d on top of the X- y span feature is ules and rule par- nchored rule pro- ing an annotation does is refine the Test  40 Test all Berkeley 90.6 90.1 This work 89.9 89.2 Table 3: Final Parseval results for the v = 1, h = 0 parser on Section 23 of the Penn Treebank. 5.2 Lexical Annotation Another commonly-used kind of structural an- notation is lexicalization (Eisner, 1996; Collins, 1997; Charniak, 1997). By annotating grammar nonterminals with their headwords, the idea is to better model phenomena that depend heavily on the semantics of the words involved, such as coor- dination and PP attachment. Table 2 shows results from lexicalizing the X- Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg Dev, all lengths Berkeley 78.24 69.17 79.74 81.74 87.83 83.90 70.97 84.11 74.50 78.91 Berkeley-Rep 78.70 84.33 79.68 82.74 89.55 89.08 82.84 87.12 75.52 83.28 Our work 78.89 83.74 79.40 83.28 88.06 87.44 81.85 91.10 75.95 83.30 Test, all lengths Berkeley 79.19 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.18 78.53 Berkeley-Tags 78.66 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 80.89 Our work 78.75 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.17 Table 4: Results for the nine treebanks in the SPMRL 2013 Shared Task; all values are F-scores for sentences of all lengths using the version of evalb distributed with the shared task. Berkeley-Rep is the best single parser from (Bj¨orkelund et al., 2013); we only compare to this parser on the development Berkeley-­‐Rep:  Berkeley  parser  で、低頻度語を言語毎にチューニング した素性表現で置き換える 多言語データ:  SPMPL  2013  Shared  Task
  • 13. モデル:CRF  Parsing Finkel  et  al.’07 ng comes tput be a es a min- ure a ba- but relies ive accu- e the fea- all back- , such as ured by a , are nat- on. The s are ade- on, which e reflexes will often wer seems Finkel et al. (2008) and Petrov and Klein (2008a). Formally, we define the probability of a tree T conditioned on a sentence w as p(T|w) / exp ✓| X r2T f(r, w) ! (1) where the feature domains r range over the (an- chored) rules used in the tree. An anchored rule r is the conjunction of an unanchored grammar rule rule(r) and the start, stop, and split indexes where that rule is anchored, which we refer to as span(r). It is important to note that the richness of the backbone grammar is reflected in the structure of the trees T, while the features that condition di- rectly on the input enter the equation through the anchoring span(r). To optimize model parame- ters, we use the Adagrad algorithm of Duchi et al. I                    eat                      sushi                      with                      chops.cks S PP V VP N NP VP P NP Inside-­‐Outsideで周辺確率を計算 AdaGrad  +  L2  (オンライン学習)
  • 14. 素性の抽出 averted financial disaster VP NPVBD JJ NN PARENT = VP FIRSTWORD = averted LENGTH = 3 RULE = VP → VBD NP PARENT = VP Span properties Rule backoffs Features ... 5 6 7 8 ... LASTWORD = disaster FIRSTWORD = averted LASTWORD = disaster PARENT = VP FIRSTWORD = averted RULE = VP → VBD NP Figure 1: Features computed over the application of the rule VP ! VBD NP over the anchored span averted financial disaster with the shown in- for parsing – if nothing else, parsing comes a structural requirement that the output be a -formed, nested tree. Our parser uses a min- PCFG backbone grammar to ensure a ba- evel of structural well-formedness, but relies ly on features of surface spans to drive accu- Formally, our model is a CRF where the fea- factor over anchored rules of a small back- grammar, as shown in Figure 1. ome aspects of the parsing problem, such as ree constraint, are clearly best captured by a G. Others, such as heaviness effects, are nat- y captured using surface information. The question is whether surface features are ade- e for key effects like subcategorization, which deep definitions but regular surface reflexes the preposition selected by a verb will often rly follow it). Empirically, the answer seems yes, and our system produces strong results, up to 90.5 F1 on English parsing. Our parser so able to generalize well across languages Finkel et al. (2008) and Petrov and Klein ( Formally, we define the probability of a conditioned on a sentence w as p(T|w) / exp ✓| X r2T f(r, w) ! where the feature domains r range over t chored) rules used in the tree. An anchor r is the conjunction of an unanchored gr rule rule(r) and the start, stop, and split where that rule is anchored, which we ref span(r). It is important to note that the rich the backbone grammar is reflected in the st of the trees T, while the features that condi rectly on the input enter the equation thro anchoring span(r). To optimize model p ters, we use the Adagrad algorithm of Duc (2010) with L2 regularization. We start with a simple X-bar grammar only symbols are NP, NP-bar, VP, and so o base model has no surface features: form 0 0 1 0 … 0 1 0 1 10.3 -­‐1.2 3.2 0.01 … 0.3 0.1 -­‐20.1 10.1 内積でスコア計算 PCFG  のルール確率に対応    CKY  チャートのスコアに
  • 15. どのような素性が有効か Features Section F1 RULE 4 73.0 + SPAN FIRST WORD + SPAN LAST WORD + LENGTH 4.1 85.0 + WORD BEFORE SPAN + WORD AFTER SPAN 4.2 89.0 + WORD BEFORE SPLIT + WORD AFTER SPLIT 4.3 89.7 + SPAN SHAPE 4.4 89.9 1: Results for the Penn Treebank development set, reported in F1 on sentences of length ction 22, for a number of incrementally growing feature sets. We show that each feature ted in Section 4 adds benefit over the previous, and in combination they produce a reaso yet simple parser. atures are bucketed together. During train- ere are no collisions between positive fea- which generally receive positive weight, and fixes of the current word up to length 5, regar of frequency. Subsequent lines in Table 1 indicate addi 長さ40以下、WSJ  Sec.  22    (development) ほとんどの意味は直感的に分かる 以下、具体例でどのような文に役立つか説明
  • 16. Word  before/acer  span no read messages in his inbox VP VBP NNS VP → no VBP NNS gure 2: An example showing the utility of span ntext. The ambiguity about whether read is an jective or a verb is resolved when we construct VP and notice that the word proceeding it is un- ely. NP → (NP ... impact) PP) ( CEO of Enron ) PRN (XxX) Figure 4: Computation o two examples. Parenthe punctuation-heavy, short being explicitly modeled stance of this feature tem that is more likely to tak no      read      messages      in  ... JJ NNS NP read  の品詞は  VBP  か  JJ  か? read  messages  を張るルールを決める際、VP  の前に  no  は来ない、 という情報が手がかりになる(負の重みが学習されてほしい)
  • 17. Word  before/acer  split adjective or a verb is resolved when we construct a VP and notice that the word proceeding it is un- likely. has an impact on the market PPNP NP NP → (NP ... impact) PP) Figure 3: An example showing split point features disambiguating a PP attachment. Because impact is likely to take a PP, the monolexical indicator feature that conjoins impact with the appropriate rule will help us parse this example correctly. lengths 1, 2, 3, 4, 5, 10, 20, and 21 words. punctuation being expli stance of th that is mor and so we and encour generally u attachment of the noun example, c indicator o diately afte tures with i with a rule split point. 4.4 Span We add on PP  a6achment impact  は修飾を受けやすい名詞    大きい重みが学習されて欲しい 各句の  head  は、前後両端のどちらかに来やすいという情報を利用 (多くの言語で成り立つ;日本語の文節の  head  は右端)
  • 18. Span  shape box e utility of span ether read is an en we construct ceeding it is un- ( CEO of Enron ) PRN (XxX) said , “ Too bad , ” VP x,“Xx,” Figure 4: Computation of span shape features on two examples. Parentheticals, quotes, and other punctuation-heavy, short constituents benefit from being explicitly modeled by a descriptor like this. stance of this feature template. impact is a noun that is more likely to take a PP than other nouns, and so we expect this feature to have high weight 先頭の大文字、括弧を抽出する (英語の場合)named  enWty  の判別、括弧の一致など
  • 19. Less  Grammar  の意味について ‣ 言語学を捨てて機械学習だけで問題が解決できる、ということ ではない -­‐ ここでの  Grammar  は、用いる  CFG  ルールのサイズのこと -­‐ 本論文の主張は、表層から意味のある素性を抽出すれば、小さな文法 でも十分である、というもの -­‐ 用いている機械学習はシンプル(CRF  +  SGD) ‣ 設計に必要な言語学的知識は、既存手法のほうが少ない? -­‐ Berkeley  parser:  確率モデルで  EM  で  spliang  (全自動) -­‐ shic-­‐reduce:  突っ込める素性はとにかく突っ込む
  • 20. 余談:この研究の方向性 ‣ EMNLP  2013  の共参照の論文と方向性が同じに見える -­‐ 共参照解析は、menWon  間の表層から取り出した素性のみに基づく 識別モデルを用いることで、最高精度を達成できる (WordNet  等の外部知識は必要ではない) -­‐ Berkeley  coreference  はツール公開中で、Stanford  より高い精度(のはず) Easy  Victories  and  Uphill  Ba6les  in  Coreference  ResoluWon Greg  Durre6  and  Dan  Klein  (Berkeley) [Barack$Obama]1$met$with$[David$Cameron]2$.$[He]1$said$... [with$X%−%.%Y] [with$X%−%Y%said] ... Centering with%[X]%. .%[X]%said NLP  の多くの解析タスクは、 単語の表層からうまく素性を 選べば高精度が達成できる
  • 21. SenWment  analysis ‣ Mechanical  turk  を使って木構造の上に5段階のラベルを付与した ‣ Neural  net  で既存手法より良いことを示した  (去年の  EMNLP) ing,cgpotts}@stanford.edu - r s n s - - a d e s - e – 0 0 This 0 film – – – 0 does 0 n’t 0 + care + 0 about + + + + + cleverness 0 , 0 wit 0 or + 0 0 any 0 0 other + kind + 0 of + + intelligent + + humor 0 . Figure 1: Example of the Recursive Neural Tensor Net- work accurately predicting 5 sentiment classes, very neg- ative to very positive (– –, –, 0, +, + +), at every node of a parse tree and capturing the negation and its scope in this Sochar  et  al.’13
  • 22. 本研究の手法がそのまま適応できる ‣ 木構造が与えられた上で、各スパンを5段階に分類 -­‐ 構造を固定して  Inside-­‐Outside,  CKY  を走らせる While “ Gangs ” is never lethargic , it is hindered by its plot . 4 1 2 2 → (4 While...) 1 Figure 5: An example of a sentence from the Stan- ford Sentiment Treebank which shows the utility of our span features for this task. The presence 7.1 Ada Our parse parser tha the treeb with the with very terminals fective an are not us One s analysis a スパンの先頭の語が論理関係であることが多い;  but  など
  • 23. Neural  net  よりも高い性能 Root All Spans Non-neutral Dev (872 trees) Stanford CoreNLP current 50.7 80.8 This work 53.1 80.5 Non-neutral Test (1821 trees) Stanford CoreNLP current 49.1 80.2 Stanford EMNLP 2013 45.7 80.7 This work 49.6 80.4 Table 5: Fine-grained sentiment analysis results on the Stanford Sentiment Treebank of Socher et al. (2013). We compare against the printed num- bers in Socher et al. (2013) as well as the per- formance of the corresponding release, namely the sentiment component in the latest version of the Stanford CoreNLP at the time of this writ- References Anders Bj¨orke Thomas M (Re)ranking Results from ceedings of ing of Morp Rens Bod. 1 Stochastic Conference for Comput Peter F Brow Vincent J D Class-based Computatio 参考:今年の  ACL  で別の論文 Nal  Kalchbrenner,  Edward  GrefensteJe,  Phil  Blunsom:      A  ConvoluRonal  Neural  Network  for  Modelling  Sentences Neural  net  で、木構造を仮定せずに、senWment  を分類する Test  set  で、48.5  point  (Stanford  current  より少し低い)
  • 24. まとめ ‣ 構文解析で精度を出すためには、ノードに情報を付与し、 ルールを増やすことが必要と信じられていていた ‣ ルールの数を最小にした構文解析 -­‐ 言語/文法への依存性が小さい    多言語への拡張性が高い -­‐ 素性を少し変更することで、他のタスクにも適応できる  (SenWment) ‣ Parser  は公開中  (epic  parser) ‣ 得るべき教訓(?) -­‐ 単語の表層から得られる情報は  (やっぱり)  非常に強力 -­‐ 意味のある素性を抽出できれば、複雑な手法に匹敵する精度を出せる h6ps://github.com/dlwh/epic