SlideShare ist ein Scribd-Unternehmen logo
1 von 59
Downloaden Sie, um offline zu lesen
強化学習 その1
2017-01-13 @ 機械学習勉強会
サイボウズ・ラボ 西尾泰和
このスライドの目的
大規模なデータを占有してない企業にとって
強化学習の考え方が有用なので
基礎からきちんと理解したい。
そのために機械学習勉強会の何回かに分けて
強化学習の話を連載する。
2
参考文献
2016年10月に左の本が出た。
これを読んでいく。
右下の本が長らくバイブル
だったが2000年(原著1998年)
発行。
3
http://amzn.to/2josIJ1
http://amzn.to/2jCnYQg
今後の予定
第1回:
序章
1章 強化学習の基礎的理論
1節 強化学習とは
第2回: 2節 強化学習の構成要素
第3回: 3節 価値反復に基づくアルゴリズム
第4回: 4節 方策勾配に基づくアルゴリズム
第5回: 5節 部分観測マルコフ決定過程
4
強化学習とは何か?
「十分なデータを持っておらず、
データの収集にコストがかかる世界において、
データをどのように収集するか」
が強化学習である。
5
p. i 「はじめに」より引用
強化学習とは何か?
強化学習以外の機械学習では
「まずデータをたくさん集めましょう」
からスタートする。
データがないと門前払い。
強化学習は「データの足りない対象」から
どうデータを収集するかの学問。
6
データは差別化の源泉
「データを持っていること」は参入障壁として機
能して、営利企業の利潤を守る。
データが公開されると参入障壁がなくなり、
競争が起き、レッドオーシャン化する。
競争は過熱しやすく、KPIの設定が適切でない場
合には経営上正しくない解に落ちてしまう。
優勝賞金1億円のコンペをしたNetflixは、
優勝したアルゴリズムを結局使っていない。
7
https://www.techdirt.com/blog/innovation/articles/20120409/03412518422/why-
netflix-never-implemented-algorithm-that-won-netflix-1-million-challenge.shtml
ニッチトップ戦略
「データを持っていること」が参入障壁。
既に膨大なデータを占有できている一部の企業
(GoogleとかFacebookとか)以外は
まだ十分なデータがないニッチを見つけ、
コストを掛けてデータを収集することで
参入障壁を築き利潤を守る戦略を取るしかない。
8
強化学習とは何か?(再掲)
「十分なデータを持っておらず、
データの収集にコストがかかる世界において、
データをどのように収集するか」
が強化学習である。*
→これを学んでいく必要があるのではないか?
9
* p. i 「はじめに」より引用
強化学習の枠組み
何かが何かに働きかけて、
その結果として観測データが得られる。
例: ECサイトがデザインAの画面を顧客に見せて
顧客が購入したかどうかのデータが得られる。
働きかけを行動(action)
行動する主体(ECサイト)をエージェント(agent)
行動される客体(顧客)を環境(environment)
と呼ぶ。
10
「顧客がエージェント」とか勘違いしないように注意が必要
方策(policy)
エージェントは行動を「決める」必要がある。
「決め方」は
過去の観測結果を入力とし、
行動を出力とする関数だ、
と考えこれを方策(policy)と呼ぶ。
11
報酬(reward)
学習して「よりよく」していくためには
「よい」の定義が必要。
強化学習は観測結果に対してスカラー値の
報酬(reward) を対応付ける方法はgivenとし
「行動の選択を通じて報酬を最大化する」
という枠組みで問題を解こうとする。
報酬には即時報酬(immediate reward)と
遅延報酬(delayed reward)がある。
後者が問題を複雑にする。
12
探索と利用のトレードオフ
環境に関して完全な事前知識があるなら
(顧客にどんなページを見せたらどう行動するか
が既知なら)最適な行動を決定をするのは簡単。
強化学習では、環境に対する事前知識は不完全と
仮定する。不完全な知識を元に行動しながらデー
タを収集し、最適な行動を見つけていく。
「今までの経験から最も期待値の高い行動」を
選べばいい……本当にそう?
13
探索と利用のトレードオフ
「過去の経験から一番いいと思う行動」ばかりを
していたのでは、もっとよい行動を見つけること
ができない。(探索が足りない)
もっといいものがあるかも!と「未経験の行動」
ばかりをしていたのでは、過去の経験が生かせな
い。(利用が足りない)
これを探索と利用のトレードオフ(exploration-
exploitation tradeoff)と呼ぶ。
14
なんかエンジニアの生存戦略みたいな話だ
多腕バンディット問題
探索と利用のトレードオフを理解するために具体
的な問題について考えてみよう。
多腕バンディット問題(Multi-armed Bandit)は
強化学習の問題の中でかなり簡単な部類
• 遅延報酬はなく即時報酬だけ
• 環境は行動によって変化しない
問題設定:スロットマシンがいくつかある。
どのスロットマシンで遊ぶのが良いか?
15
多腕バンディット問題
エージェント:
環境:
行動:
報酬:
方策:
16
多腕バンディット問題
エージェント: プレイヤー
環境: スロットマシン
行動:
i番目のスロットマシンを選んでレバーを引く
報酬:
スロットマシンの払戻額
方策:
過去の各マシンの試行回数と当選金額から
どのスロットを選ぶか決める関数
17
今回の実験
スロットは3つあり、1回100円でプレイする。
確率 0.1, 0.2, 0.3 で500円当たる。つまり期待値は
50円, 100円, 150円。(スロット0~2)
別途「何もしない」に相当する「100円入れたら
確率1で100円戻ってくるスロット3」を用意。
これらの知識が既知なら当然スロット2を選ぶわ
けだが、エージェントはこれらを知らない。
18
あなたがエージェントならどうする?
greedyアルゴリズム
「各スロットを3回ずつやって、以降は報酬の平
均が最大のスロットを選ぶ」というアルゴリズム
問: 600人のエージェントがこのアルゴリズムで
1000回遊んだ時、最終的にどのスロットがどれ
くらいの割合で選ばれているか?
19
補足:報酬の平均値は随時更新していく。
13回目の結果を見て平均を更新して、
それを元に14回目の選択を決める。
結果
スロット0:期待値50円: 0件
スロット1:期待値100円: 9件
スロット2:期待値150円: 250件(42%)
何もしない:期待値100円:341件(57%)
半数以上が「お得な賭け」があることに気付かず
最適解でない「何もしない」を選択した。
20
時系列変化
21
何もしない
最適解(期待値150円)
どうしてこうなる?
スロット2は当たり率0.3, 期待値150だけど、
3回の試行でたまたま[0, 0, 0]となることは
0.7 * 0.7 * 0.7 = 0.343 の確率で起きて
「このスロットの期待値は0だな」
と悲観的な勘違いをする。
これ以外にも色々な悲観的勘違いが起きる。
一度悲観的な勘違いをすると、
二度とそのスロットを試さないので
勘違いから脱出できない。
22
昔ペン入力のPCを買ってイマイチだったからそれ以来買ってないけど悲観的勘違いかも
冒頭200ステップを拡大
23
楽観的勘違いは解消できる
24
各3回試した後、20%ぐらいが
期待値50円のスロットを選んでし
まっている(楽観的勘違い)
だけど、その後何回かプレイし
「あれ、思ったほどよくないぞ」
と気づいている
勘違いの種類
真の期待値より高く評価してしまう
「楽観的な勘違い」は後から解消できる。
真の期待値より低く評価してしまう
「悲観的な勘違い」は後から解消できない。
↓
ならば、楽観的な判断に倒せばよいのでは?
25
不確かなときは楽観的に
この考え方には名前がついている。
「不確かなときは楽観的に」の原理
(optimism in face of uncertainty)
探索と利用のトレードオフを解く
アルゴリズムの多くが
この原理に従っている。
26
座右の銘として飾っておいてもよさそう。強化学習は人生。
[Bubeck and Cesa-Bianchi: 2012] https://arxiv.org/pdf/1204.5721.pdf
楽観的アルゴリズム
楽観的初期値法:
「プレイする前から『このスロットで何回か当
たったことがある』と思い込んで計算する」
UCB1アルゴリズム:
「報酬の期待値を信頼区間付きで求めて、
信頼区間の上の端が一番大きいものを選ぶ」
27
UCB1アルゴリズムの詳しい話は付録で。
実験
各種アルゴリズムでの振る舞いを観察
28
greedy
29
最初に各スロットを試す回数
を1回、3回、10回と変えた。
探索回数を増やすにつれて、
最適解を選ぶエージェントの
割合は増える。
しかし、各10回試した程度で
はまだ4割ぐらい「なにもしな
い」にハマってしまう。
楽観的初期値法
プレイ前に各スロットでK回
500円当たったと考える。
K=1, 3, 10 で試した。
K=3でほとんど最適解に。
30
UCB1
UCB1(中央)は楽観的初期値法
(K=3, 上)に比べてあんまりよ
くないように見える。
1万回試行すると(下)だいぶ伯
仲するようになった。
1000回という今回適当に決めた実験条件では楽観
的初期化法がよく見えるけど、楽観的な初期値の
効果は600回目ぐらいで消えて「何もしない」が
減らなくなっているので長期的にはUCB1が勝つ
だろう。
31
報酬の平均
32
(平滑化のため幅30で移動平均を取っている)
報酬の平均: 2万回試行
33
1~2万回でUCB1が逆転する↑
追加実験
発表後の質疑にて
「UCB1は1万回くらいやれば楽観的初期値法に勝
つ、というタイムスケールの話をするなら、
greedyも3回だけじゃなくてもっと探索したらい
いのでは?」
という質問があったのでK=100で実験
34
実験結果
35
実験結果2
36
Greedy(100)の選択
予想通りgreedy_100は400回の探索後、
ほとんど全部が最適解を選んでいる。
37
順位
今回の問題設定ではt=1000でも20000でも
greedy(100)が優勝。
t=1000
greedy(100) > optim(3) > UCB1
> optim(100) > greed(3)
t=20000
greedy(100) ~ optim(100) > optim(3)
> UCB1 > greedy(3)
38
追加実験まとめ
これは割と示唆に富む結果で、UCB1は有名だし
中身の数学がよくわからないのでなんか凄そう
ということで選ばれてしまいがちだが、
「時間を掛ければ比較的早く良くなっていく」*
ことが保証されているにすぎないので、
人間が問題設定を理解してパラメータを選んだ
素朴なアルゴリズムが勝つこともある。
今回の問題設定ではgreedy(100)が圧勝だった。
実務的にはこう判断できる能力に価値がある。
39
* greedyや楽観的初期値法は時間を掛けてもよくならないケースがあることを今回の
実験で見たし、greedyしつつ一定確率で探索するε-greedyよりはUCB1の方が最適解と
のずれの減り方が早い。
付録
説明の都合で飛ばしたところを埋めておく。
40
UCB1の信頼区間
他の腕のプレイ回数が信頼区間に影響するのが
なぜだかよくわからなかった
41
Chernoff-Hoeffding Inequality
[0, 1]の範囲の値を取る独立な確率変数
𝑋1 … 𝑋 𝑛 の平均 ത𝑋 =
1
𝑛
σ𝑖 𝑋𝑖 と真の期待値 𝜇
の差には任意の正数 𝑡 について
𝑃 ത𝑋 − 𝜇 > 𝑡 ≤ exp −2𝑛𝑡2
という関係がある。
42
https://en.wikipedia.org/wiki/Hoeffding's_inequality
Chernoff-Hoeffding Inequality
普通に信頼区間を議論する場合は、givenな5%と
かの確率を右辺とイコールと置いてtを求める
𝑃 ത𝑋 − 𝜇 > 𝑡 ≤ exp −2𝑛𝑡2
log(0.05) は -3 ぐらいだから n = 150 なら t = 0.1
n = 15000 なら t = 0.01 となる。
43
https://en.wikipedia.org/wiki/Hoeffding's_inequality
UCB1
UCB1ではまず 𝑡 = 2
log 𝑇
𝑛
と決め打ちする。Tは
全試行数。これを右辺に代入すると
𝑃 ത𝑋 − 𝜇 > 𝑡 ≤ exp −2𝑛𝑡2
= 𝑇−4
となる。少し変形すると
𝑃 ത𝑋 − 𝑡 < 𝜇 < ത𝑋 + 𝑡 ≤ 1 − 2𝑇−4
となり、 ത𝑋 + 𝑡はT増加とともにだんだん広くなる
信頼区間の上の端ということになる。
44
https://en.wikipedia.org/wiki/Hoeffding's_inequality
UCB1
つまりUCB1の信頼区間は
「外れる確率が𝑇−4
になるよう決めた信頼区間」
なので、式にTが入ってくる。
じゃあなぜ𝑇−4
にしたかったのか?
UCB1の最悪ケースの性能を計算する時に三重の
SumがTを走る。Sum(𝑇−2
)はT→∞でも定数に収束
するのでこの項をO(1)とみなせて議論が容易だか
ら。(詳細は次ページから)
45
UCB1の性能評価
UCB1のリグレットがO(log T)であることを示す
46
リグレット
「全知の神が最善の選択肢を取り続けた場合」
と比べてどれくらい差があるかで、強化学習の
アルゴリズムの良さを評価する。
これをリグレット(Regret)という。
多腕バンディットの場合、神は期待値が最大のも
のを選び続けるので、以下の通り:
𝑅(𝑡) = ෍
𝑖
𝜇1 − 𝜇𝑖 𝐸[𝑁 𝑡,𝑖 ]
47
t回目までにスロットiが選ばれた回数をN(t, i)、期待値最大のスロットを1とする
iを選んだ回数
iを選んだ回数Nは、引数がtrueの時1になる関数𝜒
を使って以下のように書ける
𝑁 𝑇,𝑖 = 1 + ෍
𝑡=𝐾+1
𝑇
𝜒(𝑡回目に𝑖が選ばれた)
Nの期待値を知るために「𝑡回目に𝑖が選ばれた」
の起こる確率を計算したい。
48
以下字数削減のため (I 𝑡= 𝑖) ≡ 「𝑡回目に𝑖が選ばれた」とする。
iがm回以上選ばれた条件
確率を計算するために「iを十分な回数m回選ん
だ」という条件をつけたい。
𝑁 𝑇,𝑖 = 1 + ෍
𝑡=𝐾+1
𝑇
𝜒(𝐼𝑡 = 𝑖)
≤ 𝑚 + ෍
𝑡=𝐾+1
𝑇
𝜒(𝐼𝑡 = 𝑖 かつ 𝑁𝑡−1,𝑖 ≥ 𝑚)
mを導入したことで何がうれしいのか、
mは具体的にはいくらなのかは後述する。
49
iが選ばれる確率
「𝐼𝑡 = 𝑖」はUCB1のアルゴリズムでは
ҧ𝑥𝑖,𝑡 + 𝑎 𝑁(𝑡,𝑖), 𝑇 > ҧ𝑥1,𝑡 + 𝑎 𝑁(𝑡,1), 𝑇
𝑤ℎ𝑒𝑟𝑒 𝑎 𝑛, 𝑇 = 2log 𝑇/𝑛 ,
ҧ𝑥𝑖,𝑡 = 𝑖の𝑡回目までの報酬の平均
と同じ。この確率を計算したいが、Nが未知。
そこで可能な値全部でsumする。
50
sumが3重になる
𝑁 𝑇,𝑖 ≤ 𝑚 + ෍
𝑡=𝐾+1
𝑇
𝜒 𝐼𝑡 = 𝑖 かつ 𝑁𝑡−1,𝑖 ≥ 𝑚
≤ 𝑚 + ෍
𝑡=𝐾+1
𝑇
෍
𝑠=𝑚
𝑡−1
෍
𝑠′=1
𝑡−1
𝜒
ҧ𝑥𝑖,𝑠 + 𝑎 𝑠, 𝑡 − 1
> ҧ𝑥1,𝑠′ + 𝑎 𝑠′
, 𝑡 − 1
かつ 𝑁𝑡−1,𝑖 ≥ 𝑚
51
「ある値ペアs, s’で1」の時「すべての値ペアs, s’で和を取ったもの」は1以上なので。
中身の計算の前に
3重sumの中身をこれから計算していくが、
その前にtの範囲を増やして整理しておく。
t=K…Tをt=1…∞に広げて、t-1→t する。
𝑁 𝑇,𝑖 ≤ 𝑚 + ෍
𝑡=1
∞
෍
𝑠=𝑚
𝑡−1
෍
𝑠′=1
𝑡−1
𝜒
ҧ𝑥𝑖,𝑠 + 𝑎 𝑠, 𝑡
> ҧ𝑥1,𝑠′ + 𝑎 𝑠′
, 𝑡
かつ 𝑁𝑡,𝑖 ≥ 𝑚
52
iを選ぶ確率の計算
∗ ҧ𝑥𝑖,𝑠 + 𝑎 𝑠, 𝑡 > ҧ𝑥1,𝑠′ + 𝑎 𝑠′
, 𝑡
の起こる確率を計算する。3つの可能性がある。
1 𝜇1 ≥ ҧ𝑥1,𝑠′ + 𝑎 𝑠′
, 𝑡
2 𝜇𝑖 ≤ ҧ𝑥𝑖,𝑠 − 𝑎 𝑠, 𝑡
3 𝜇1 − 𝜇𝑖 < 2𝑎(𝑠, 𝑡)
(1)(2)がFalseなら(3)がTrueになることが示せるの
で(*)の起こる確率はこの3つの和以下である。
53
(1)(2)がFalseなら(3)がTrueになる
∗ ҧ𝑥𝑖,𝑠 + 𝑎 𝑠, 𝑡 > ҧ𝑥1,𝑠′ + 𝑎 𝑠′
, 𝑡
1 𝜇1 ≥ ҧ𝑥1,𝑠′ + 𝑎 𝑠′
, 𝑡
2 𝜇𝑖 ≤ ҧ𝑥𝑖,𝑠 − 𝑎 𝑠, 𝑡
3 𝜇1 − 𝜇𝑖 < 2𝑎(𝑠, 𝑡)
(1)(2)がFalseなので(*)を使って以下が言える
𝜇1 < ҧ𝑥1,𝑠′ + 𝑎 𝑠′
, 𝑡 < ҧ𝑥𝑖,𝑠 + 𝑎 𝑠, 𝑡
ҧ𝑥𝑖,𝑠 − 𝑎 𝑠, 𝑡 < 𝜇𝑖
前提として𝜇1 ≥ 𝜇𝑖なので(3)が言える
54
iを選ぶ確率の計算
(*)の起こる確率はこの3つの和以下
1 𝜇1 ≥ ҧ𝑥1,𝑠′ + 𝑎 𝑠′
, 𝑡
2 𝜇𝑖 ≤ ҧ𝑥𝑖,𝑠 − 𝑎 𝑠, 𝑡
3 𝜇1 − 𝜇𝑖 < 2𝑎(𝑠, 𝑡)
(1)(2)は「信頼区間の外」なので𝑇−4
となる。
(3)の計算で「かつ 𝑁𝑡,𝑖 ≥ 𝑚 」の条件を使う。
mが十分大きければ確率が0になることを示す。
(mを導入したのはこのためだ!)
55
𝜇1 − 𝜇𝑖 < 2𝑎(𝑠, 𝑡)の確率を求める
再掲: 𝑎 𝑛, 𝑇 = 2log 𝑇/𝑛
もし m ≥
8 log 𝑇
𝜇1−𝜇 𝑖
2 なら s ≥ m なので
2𝑎 𝑠 , 𝑡 = 2 2log 𝑡/𝑠 ≤ 2
2log 𝑡
8 log 𝑇
𝜇1 − 𝜇𝑖
2
= 𝜇1 − 𝜇𝑖
log 𝑡
log T
≤ 𝜇1 − 𝜇𝑖
よってmが上記条件の時、確率は0になる。
56
話の流れのバックトラック
(3)の確率が0であることが分かった
iを選ぶ確率が2𝑇−4
以下だと分かった
3重sumの中身がわかった
3重sumを計算したらNの期待値がわかる
NがわかるとUCB1のリグレットがわかる
57
Nの期待値を求める
𝐸[𝑁 𝑇,𝑖] ≤ 𝑚 + ෍
𝑡=1
∞
෍
𝑠=𝑚
𝑡−1
෍
𝑠′=1
𝑡−1
𝑃
ҧ𝑥𝑖,𝑠 + 𝑎 𝑠, 𝑡
> ҧ𝑥1,𝑠′ + 𝑎 𝑠′
, 𝑡
かつ 𝑁𝑡,𝑖 ≥ 𝑚
≤ 𝑚 + ෍
𝑡=1
∞
෍
𝑠=𝑚
𝑡−1
෍
𝑠′=1
𝑡−1
2𝑡−4
≤ 𝑚 + 2 ෍
𝑡=1
∞
𝑡−2
≤
8 log 𝑇
𝜇1 − 𝜇𝑖
2
+ 1 +
𝜋2
3
つまりO(log T)である。
58
Basel Problem
෍
𝑛=1
∞
1
𝑛2
=
𝜋2
6
参考文献
http://amzn.to/2josIJ1
https://jeremykun.com/2013/10/28/optimism-in-
the-face-of-uncertainty-the-ucb1-algorithm/
http://www.win.tue.nl/~aboer/sdt/notes.pdf
59

Weitere ähnliche Inhalte

Was ist angesagt?

[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...Deep Learning JP
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習Eiji Uchibe
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向ohken
 
ノンパラメトリックベイズを用いた逆強化学習
ノンパラメトリックベイズを用いた逆強化学習ノンパラメトリックベイズを用いた逆強化学習
ノンパラメトリックベイズを用いた逆強化学習Shota Ishikawa
 
強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験克海 納谷
 
最適化超入門
最適化超入門最適化超入門
最適化超入門Takami Sato
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門hoxo_m
 
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展Deep Learning JP
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理Taiji Suzuki
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知Yuya Takashina
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)RyuichiKanoh
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)Shota Imai
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門tmtm otm
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential EquationsDeep Learning JP
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language ModelsDeep Learning JP
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方joisino
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII
 
[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展Deep Learning JP
 

Was ist angesagt? (20)

[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
 
ノンパラメトリックベイズを用いた逆強化学習
ノンパラメトリックベイズを用いた逆強化学習ノンパラメトリックベイズを用いた逆強化学習
ノンパラメトリックベイズを用いた逆強化学習
 
強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験強化学習アルゴリズムPPOの解説と実験
強化学習アルゴリズムPPOの解説と実験
 
最適化超入門
最適化超入門最適化超入門
最適化超入門
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
 
[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展
 

Andere mochten auch

強化学習入門
強化学習入門強化学習入門
強化学習入門Shunta Saito
 
機械学習キャンバス0.1
機械学習キャンバス0.1機械学習キャンバス0.1
機械学習キャンバス0.1nishio
 
Humor Recognition and Humor Anchor Extraction
Humor Recognition and Humor Anchor ExtractionHumor Recognition and Humor Anchor Extraction
Humor Recognition and Humor Anchor Extraction裕樹 奥田
 
Learning Better Embeddings for Rare Words Using Distributional Representations
Learning Better Embeddings for Rare Words Using Distributional RepresentationsLearning Better Embeddings for Rare Words Using Distributional Representations
Learning Better Embeddings for Rare Words Using Distributional RepresentationsTakanori Nakai
 
[Yang, Downey and Boyd-Graber 2015] Efficient Methods for Incorporating Knowl...
[Yang, Downey and Boyd-Graber 2015] Efficient Methods for Incorporating Knowl...[Yang, Downey and Boyd-Graber 2015] Efficient Methods for Incorporating Knowl...
[Yang, Downey and Boyd-Graber 2015] Efficient Methods for Incorporating Knowl...Shuyo Nakatani
 
EMNLP 2015 yomikai
EMNLP 2015 yomikai EMNLP 2015 yomikai
EMNLP 2015 yomikai Yo Ehara
 
強化学習を利用した自律型GameAIの取り組み ~高速自動プレイによるステージ設計支援~ #denatechcon
強化学習を利用した自律型GameAIの取り組み ~高速自動プレイによるステージ設計支援~ #denatechcon強化学習を利用した自律型GameAIの取り組み ~高速自動プレイによるステージ設計支援~ #denatechcon
強化学習を利用した自律型GameAIの取り組み ~高速自動プレイによるステージ設計支援~ #denatechconDeNA
 
Memory Networks (End-to-End Memory Networks の Chainer 実装)
Memory Networks (End-to-End Memory Networks の Chainer 実装)Memory Networks (End-to-End Memory Networks の Chainer 実装)
Memory Networks (End-to-End Memory Networks の Chainer 実装)Shuyo Nakatani
 
無限関係モデル (続・わかりやすいパターン認識 13章)
無限関係モデル (続・わかりやすいパターン認識 13章)無限関係モデル (続・わかりやすいパターン認識 13章)
無限関係モデル (続・わかりやすいパターン認識 13章)Shuyo Nakatani
 
文字認識はCNNで終わるのか?
文字認識はCNNで終わるのか?文字認識はCNNで終わるのか?
文字認識はCNNで終わるのか?Seiichi Uchida
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章Shuyo Nakatani
 
A Neural Attention Model for Sentence Summarization [Rush+2015]
A Neural Attention Model for Sentence Summarization [Rush+2015]A Neural Attention Model for Sentence Summarization [Rush+2015]
A Neural Attention Model for Sentence Summarization [Rush+2015]Yuta Kikuchi
 
星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章Shuyo Nakatani
 
深層学習の非常に簡単な説明
深層学習の非常に簡単な説明深層学習の非常に簡単な説明
深層学習の非常に簡単な説明Seiichi Uchida
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践智之 村上
 

Andere mochten auch (16)

強化学習入門
強化学習入門強化学習入門
強化学習入門
 
機械学習キャンバス0.1
機械学習キャンバス0.1機械学習キャンバス0.1
機械学習キャンバス0.1
 
Humor Recognition and Humor Anchor Extraction
Humor Recognition and Humor Anchor ExtractionHumor Recognition and Humor Anchor Extraction
Humor Recognition and Humor Anchor Extraction
 
Learning Better Embeddings for Rare Words Using Distributional Representations
Learning Better Embeddings for Rare Words Using Distributional RepresentationsLearning Better Embeddings for Rare Words Using Distributional Representations
Learning Better Embeddings for Rare Words Using Distributional Representations
 
Emnlp読み会資料
Emnlp読み会資料Emnlp読み会資料
Emnlp読み会資料
 
[Yang, Downey and Boyd-Graber 2015] Efficient Methods for Incorporating Knowl...
[Yang, Downey and Boyd-Graber 2015] Efficient Methods for Incorporating Knowl...[Yang, Downey and Boyd-Graber 2015] Efficient Methods for Incorporating Knowl...
[Yang, Downey and Boyd-Graber 2015] Efficient Methods for Incorporating Knowl...
 
EMNLP 2015 yomikai
EMNLP 2015 yomikai EMNLP 2015 yomikai
EMNLP 2015 yomikai
 
強化学習を利用した自律型GameAIの取り組み ~高速自動プレイによるステージ設計支援~ #denatechcon
強化学習を利用した自律型GameAIの取り組み ~高速自動プレイによるステージ設計支援~ #denatechcon強化学習を利用した自律型GameAIの取り組み ~高速自動プレイによるステージ設計支援~ #denatechcon
強化学習を利用した自律型GameAIの取り組み ~高速自動プレイによるステージ設計支援~ #denatechcon
 
Memory Networks (End-to-End Memory Networks の Chainer 実装)
Memory Networks (End-to-End Memory Networks の Chainer 実装)Memory Networks (End-to-End Memory Networks の Chainer 実装)
Memory Networks (End-to-End Memory Networks の Chainer 実装)
 
無限関係モデル (続・わかりやすいパターン認識 13章)
無限関係モデル (続・わかりやすいパターン認識 13章)無限関係モデル (続・わかりやすいパターン認識 13章)
無限関係モデル (続・わかりやすいパターン認識 13章)
 
文字認識はCNNで終わるのか?
文字認識はCNNで終わるのか?文字認識はCNNで終わるのか?
文字認識はCNNで終わるのか?
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章
 
A Neural Attention Model for Sentence Summarization [Rush+2015]
A Neural Attention Model for Sentence Summarization [Rush+2015]A Neural Attention Model for Sentence Summarization [Rush+2015]
A Neural Attention Model for Sentence Summarization [Rush+2015]
 
星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章
 
深層学習の非常に簡単な説明
深層学習の非常に簡単な説明深層学習の非常に簡単な説明
深層学習の非常に簡単な説明
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
 

Ähnlich wie 強化学習その1

【Zansa】第12回勉強会 -PRMLからベイズの世界へ
【Zansa】第12回勉強会 -PRMLからベイズの世界へ【Zansa】第12回勉強会 -PRMLからベイズの世界へ
【Zansa】第12回勉強会 -PRMLからベイズの世界へZansa
 
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)TakaakiYonekura
 
「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)
「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)
「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)Kensuke Otsuki
 
それっぽく感じる機械学習
それっぽく感じる機械学習それっぽく感じる機械学習
それっぽく感じる機械学習Yuki Igarashi
 
第2回 メドレー読書会
第2回 メドレー読書会第2回 メドレー読書会
第2回 メドレー読書会Toshifumi
 
Positive-Unlabeled Learning with Non-Negative Risk Estimator
Positive-Unlabeled Learning with Non-Negative Risk EstimatorPositive-Unlabeled Learning with Non-Negative Risk Estimator
Positive-Unlabeled Learning with Non-Negative Risk EstimatorKiryo Ryuichi
 
行列計算アルゴリズム
行列計算アルゴリズム行列計算アルゴリズム
行列計算アルゴリズムTakuo Tachibana
 
劣モジュラ最適化と機械学習 3章
劣モジュラ最適化と機械学習 3章劣モジュラ最適化と機械学習 3章
劣モジュラ最適化と機械学習 3章Hakky St
 
S2 第3回DSEカンファレンス資料_okura
S2 第3回DSEカンファレンス資料_okuraS2 第3回DSEカンファレンス資料_okura
S2 第3回DSEカンファレンス資料_okurayoroz okura
 

Ähnlich wie 強化学習その1 (9)

【Zansa】第12回勉強会 -PRMLからベイズの世界へ
【Zansa】第12回勉強会 -PRMLからベイズの世界へ【Zansa】第12回勉強会 -PRMLからベイズの世界へ
【Zansa】第12回勉強会 -PRMLからベイズの世界へ
 
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
第4回数理モデル勉強会(日本植物学会第84回大会関連集会)
 
「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)
「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)
「現実世界に活かす数学」 (麻布高等学校、教養総合、数学講義 5 回目)
 
それっぽく感じる機械学習
それっぽく感じる機械学習それっぽく感じる機械学習
それっぽく感じる機械学習
 
第2回 メドレー読書会
第2回 メドレー読書会第2回 メドレー読書会
第2回 メドレー読書会
 
Positive-Unlabeled Learning with Non-Negative Risk Estimator
Positive-Unlabeled Learning with Non-Negative Risk EstimatorPositive-Unlabeled Learning with Non-Negative Risk Estimator
Positive-Unlabeled Learning with Non-Negative Risk Estimator
 
行列計算アルゴリズム
行列計算アルゴリズム行列計算アルゴリズム
行列計算アルゴリズム
 
劣モジュラ最適化と機械学習 3章
劣モジュラ最適化と機械学習 3章劣モジュラ最適化と機械学習 3章
劣モジュラ最適化と機械学習 3章
 
S2 第3回DSEカンファレンス資料_okura
S2 第3回DSEカンファレンス資料_okuraS2 第3回DSEカンファレンス資料_okura
S2 第3回DSEカンファレンス資料_okura
 

Mehr von nishio

量子アニーリングマシンのプログラミング
量子アニーリングマシンのプログラミング量子アニーリングマシンのプログラミング
量子アニーリングマシンのプログラミングnishio
 
夏プロ報告
夏プロ報告夏プロ報告
夏プロ報告nishio
 
ITと経営
ITと経営ITと経営
ITと経営nishio
 
部分観測モンテカルロ計画法を用いたガイスターAI
部分観測モンテカルロ計画法を用いたガイスターAI部分観測モンテカルロ計画法を用いたガイスターAI
部分観測モンテカルロ計画法を用いたガイスターAInishio
 
交渉力について
交渉力について交渉力について
交渉力についてnishio
 
If文から機械学習への道
If文から機械学習への道If文から機械学習への道
If文から機械学習への道nishio
 
組織横断型研究室構想
組織横断型研究室構想組織横断型研究室構想
組織横断型研究室構想nishio
 
2017首都大学東京情報通信特別講義
2017首都大学東京情報通信特別講義2017首都大学東京情報通信特別講義
2017首都大学東京情報通信特別講義nishio
 
強化学習その5
強化学習その5強化学習その5
強化学習その5nishio
 
良いアイデアを出すための方法
良いアイデアを出すための方法良いアイデアを出すための方法
良いアイデアを出すための方法nishio
 
線形?非線形?
線形?非線形?線形?非線形?
線形?非線形?nishio
 
首都大学東京「情報通信特別講義」2016年西尾担当分
首都大学東京「情報通信特別講義」2016年西尾担当分首都大学東京「情報通信特別講義」2016年西尾担当分
首都大学東京「情報通信特別講義」2016年西尾担当分nishio
 
勾配降下法の 最適化アルゴリズム
勾配降下法の最適化アルゴリズム勾配降下法の最適化アルゴリズム
勾配降下法の 最適化アルゴリズムnishio
 
Wifiで位置推定
Wifiで位置推定Wifiで位置推定
Wifiで位置推定nishio
 
ESP8266EXで位置推定
ESP8266EXで位置推定ESP8266EXで位置推定
ESP8266EXで位置推定nishio
 
Raspberry Piで Wifiルータを作る
Raspberry PiでWifiルータを作るRaspberry PiでWifiルータを作る
Raspberry Piで Wifiルータを作るnishio
 
Wifiにつながるデバイス(ESP8266EX, ESP-WROOM-02, ESPr Developerなど)
Wifiにつながるデバイス(ESP8266EX, ESP-WROOM-02, ESPr Developerなど)Wifiにつながるデバイス(ESP8266EX, ESP-WROOM-02, ESPr Developerなど)
Wifiにつながるデバイス(ESP8266EX, ESP-WROOM-02, ESPr Developerなど)nishio
 
「ネットワークを作る」 ってどういうこと?
「ネットワークを作る」ってどういうこと?「ネットワークを作る」ってどういうこと?
「ネットワークを作る」 ってどういうこと?nishio
 
「ネットワークを作ることで イノベーションを加速」 ってどういうこと?
「ネットワークを作ることでイノベーションを加速」ってどういうこと?「ネットワークを作ることでイノベーションを加速」ってどういうこと?
「ネットワークを作ることで イノベーションを加速」 ってどういうこと?nishio
 
未踏社団でのkintoneの活用
未踏社団でのkintoneの活用未踏社団でのkintoneの活用
未踏社団でのkintoneの活用nishio
 

Mehr von nishio (20)

量子アニーリングマシンのプログラミング
量子アニーリングマシンのプログラミング量子アニーリングマシンのプログラミング
量子アニーリングマシンのプログラミング
 
夏プロ報告
夏プロ報告夏プロ報告
夏プロ報告
 
ITと経営
ITと経営ITと経営
ITと経営
 
部分観測モンテカルロ計画法を用いたガイスターAI
部分観測モンテカルロ計画法を用いたガイスターAI部分観測モンテカルロ計画法を用いたガイスターAI
部分観測モンテカルロ計画法を用いたガイスターAI
 
交渉力について
交渉力について交渉力について
交渉力について
 
If文から機械学習への道
If文から機械学習への道If文から機械学習への道
If文から機械学習への道
 
組織横断型研究室構想
組織横断型研究室構想組織横断型研究室構想
組織横断型研究室構想
 
2017首都大学東京情報通信特別講義
2017首都大学東京情報通信特別講義2017首都大学東京情報通信特別講義
2017首都大学東京情報通信特別講義
 
強化学習その5
強化学習その5強化学習その5
強化学習その5
 
良いアイデアを出すための方法
良いアイデアを出すための方法良いアイデアを出すための方法
良いアイデアを出すための方法
 
線形?非線形?
線形?非線形?線形?非線形?
線形?非線形?
 
首都大学東京「情報通信特別講義」2016年西尾担当分
首都大学東京「情報通信特別講義」2016年西尾担当分首都大学東京「情報通信特別講義」2016年西尾担当分
首都大学東京「情報通信特別講義」2016年西尾担当分
 
勾配降下法の 最適化アルゴリズム
勾配降下法の最適化アルゴリズム勾配降下法の最適化アルゴリズム
勾配降下法の 最適化アルゴリズム
 
Wifiで位置推定
Wifiで位置推定Wifiで位置推定
Wifiで位置推定
 
ESP8266EXで位置推定
ESP8266EXで位置推定ESP8266EXで位置推定
ESP8266EXで位置推定
 
Raspberry Piで Wifiルータを作る
Raspberry PiでWifiルータを作るRaspberry PiでWifiルータを作る
Raspberry Piで Wifiルータを作る
 
Wifiにつながるデバイス(ESP8266EX, ESP-WROOM-02, ESPr Developerなど)
Wifiにつながるデバイス(ESP8266EX, ESP-WROOM-02, ESPr Developerなど)Wifiにつながるデバイス(ESP8266EX, ESP-WROOM-02, ESPr Developerなど)
Wifiにつながるデバイス(ESP8266EX, ESP-WROOM-02, ESPr Developerなど)
 
「ネットワークを作る」 ってどういうこと?
「ネットワークを作る」ってどういうこと?「ネットワークを作る」ってどういうこと?
「ネットワークを作る」 ってどういうこと?
 
「ネットワークを作ることで イノベーションを加速」 ってどういうこと?
「ネットワークを作ることでイノベーションを加速」ってどういうこと?「ネットワークを作ることでイノベーションを加速」ってどういうこと?
「ネットワークを作ることで イノベーションを加速」 ってどういうこと?
 
未踏社団でのkintoneの活用
未踏社団でのkintoneの活用未踏社団でのkintoneの活用
未踏社団でのkintoneの活用
 

Kürzlich hochgeladen

ゲーム理論 BASIC 演習106 -価格の交渉ゲーム-#ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習106 -価格の交渉ゲーム-#ゲーム理論 #gametheory #数学ゲーム理論 BASIC 演習106 -価格の交渉ゲーム-#ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習106 -価格の交渉ゲーム-#ゲーム理論 #gametheory #数学ssusere0a682
 
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学ssusere0a682
 
UniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScriptUniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScriptyuitoakatsukijp
 
The_Five_Books_Overview_Presentation_2024
The_Five_Books_Overview_Presentation_2024The_Five_Books_Overview_Presentation_2024
The_Five_Books_Overview_Presentation_2024koheioishi1
 
TokyoTechGraduateExaminationPresentation
TokyoTechGraduateExaminationPresentationTokyoTechGraduateExaminationPresentation
TokyoTechGraduateExaminationPresentationYukiTerazawa
 
東京工業大学 環境・社会理工学院 建築学系 大学院入学入試・進学説明会2024_v2
東京工業大学 環境・社会理工学院 建築学系 大学院入学入試・進学説明会2024_v2東京工業大学 環境・社会理工学院 建築学系 大学院入学入試・進学説明会2024_v2
東京工業大学 環境・社会理工学院 建築学系 大学院入学入試・進学説明会2024_v2Tokyo Institute of Technology
 
生成AIの回答内容の修正を課題としたレポートについて:お茶の水女子大学「授業・研究における生成系AIの活用事例」での講演資料
生成AIの回答内容の修正を課題としたレポートについて:お茶の水女子大学「授業・研究における生成系AIの活用事例」での講演資料生成AIの回答内容の修正を課題としたレポートについて:お茶の水女子大学「授業・研究における生成系AIの活用事例」での講演資料
生成AIの回答内容の修正を課題としたレポートについて:お茶の水女子大学「授業・研究における生成系AIの活用事例」での講演資料Takayuki Itoh
 

Kürzlich hochgeladen (7)

ゲーム理論 BASIC 演習106 -価格の交渉ゲーム-#ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習106 -価格の交渉ゲーム-#ゲーム理論 #gametheory #数学ゲーム理論 BASIC 演習106 -価格の交渉ゲーム-#ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習106 -価格の交渉ゲーム-#ゲーム理論 #gametheory #数学
 
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
ゲーム理論 BASIC 演習105 -n人囚人のジレンマモデル- #ゲーム理論 #gametheory #数学
 
UniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScriptUniProject Workshop Make a Discord Bot with JavaScript
UniProject Workshop Make a Discord Bot with JavaScript
 
The_Five_Books_Overview_Presentation_2024
The_Five_Books_Overview_Presentation_2024The_Five_Books_Overview_Presentation_2024
The_Five_Books_Overview_Presentation_2024
 
TokyoTechGraduateExaminationPresentation
TokyoTechGraduateExaminationPresentationTokyoTechGraduateExaminationPresentation
TokyoTechGraduateExaminationPresentation
 
東京工業大学 環境・社会理工学院 建築学系 大学院入学入試・進学説明会2024_v2
東京工業大学 環境・社会理工学院 建築学系 大学院入学入試・進学説明会2024_v2東京工業大学 環境・社会理工学院 建築学系 大学院入学入試・進学説明会2024_v2
東京工業大学 環境・社会理工学院 建築学系 大学院入学入試・進学説明会2024_v2
 
生成AIの回答内容の修正を課題としたレポートについて:お茶の水女子大学「授業・研究における生成系AIの活用事例」での講演資料
生成AIの回答内容の修正を課題としたレポートについて:お茶の水女子大学「授業・研究における生成系AIの活用事例」での講演資料生成AIの回答内容の修正を課題としたレポートについて:お茶の水女子大学「授業・研究における生成系AIの活用事例」での講演資料
生成AIの回答内容の修正を課題としたレポートについて:お茶の水女子大学「授業・研究における生成系AIの活用事例」での講演資料
 

強化学習その1