SlideShare ist ein Scribd-Unternehmen logo
1 von 164
Downloaden Sie, um offline zu lesen
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




                 Legendre’s Function

                             N. B. Vyas

                      Department of Mathematics
               Atmiya Institute of Technology and Science


                   Department of Mathematics




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




  The differential equation




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




  The differential equation
         2
  (1 − x )y − 2xy + n(n + 1)y = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




  The differential equation
         2
  (1 − x )y − 2xy + n(n + 1)y = 0
  is called Legendre’s differential equation,
  n is real constant




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2
            1
⇒ P3 (x) = (5x3 − 3x)
            2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2
            1
⇒ P3 (x) = (5x3 − 3x)
            2
            1
⇒ P4 (x) = (35x3 − 30x2 + 3)
            8



                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2
            1
⇒ P3 (x) = (5x3 − 3x)
            2
            1
⇒ P4 (x) = (35x3 − 30x2 + 3)
            8
            1
⇒ P5 (x) = (63x5 − 70x3 + 15x)
            8

                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
   Examples of Legendre’s Polynomials
       Generating Function for Pn (x)
                  Rodrigue’s Formula
       Recurrence Relations for Pn (x)




Ex.1 Express f (x) in terms of
     Legendre’s polynomials where
     f (x) = x3 + 2x2 − x − 3.




                           N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)
 ∴ 2P3 (x) + 3x = 5x3




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)
 ∴ 2P3 (x) + 3x = 5x3
 ∴ 2P3 (x) + 3P1 (x) = 5x3          { x = P1 (x)}




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)
 ∴ 2P3 (x) + 3x = 5x3
 ∴ 2P3 (x) + 3P1 (x) = 5x3          { x = P1 (x)}
         2         3
 ∴ x3 = P3 (x) + P1 (x)
         5         5


                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




          1
⇒ P2 (x) = (3x2 − 1)
          2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2         { 1 = P0 (x)}




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)}
        2          1
∴ x2 = P2 (x) + P0 (x)
        3          3




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)}
        2          1
∴ x2 = P2 (x) + P0 (x)
        3          3
  Now, f (x) = x3 + 2x2 − x − 3




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)}
        2          1
∴ x2 = P2 (x) + P0 (x)
        3          3
  Now, f (x) = x3 + 2x2 − x − 3
   f (x) = x3 + 2x2 − x − 3
           2         3      4        2
         = P3 (x) + P1 (x) + P2 (x) + P0 (x) − P1 (x) − 3P0 (x)
           5         5      3        3



                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
   Examples of Legendre’s Polynomials
       Generating Function for Pn (x)
                  Rodrigue’s Formula
       Recurrence Relations for Pn (x)




Ex.2 Express x3 − 5x2 + 6x + 1 in
     terms of Legendre’s polynomial.




                           N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
   Examples of Legendre’s Polynomials
       Generating Function for Pn (x)
                  Rodrigue’s Formula
       Recurrence Relations for Pn (x)




Ex.3 Express 4x3 − 2x2 − 3x + 8 in
     terms of Legendre’s polynomial.




                           N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Generating Function for Pn(x)
∞
                                   1
      Pn(x)tn = √
n=0
                               1 − 2xt + t2
                                             1
                           = (1 − 2xt + t2)− 2


                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




                                                             1
The function (1 − 2xt + t2)− 2 is
called Generating function of
Legendre’s polynomial Pn(x)




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that
   (i)Pn(1) = 1




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that
   (i)Pn(1) = 1
   (ii)Pn(−1) = (−1)n




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that
   (i)Pn(1) = 1
   (ii)Pn(−1) = (−1)n
   (iii)Pn(−x) = (−1)nPn(x)


                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                    1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
    Putting x = 1 in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                        1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
    Putting x = 1 in eq(1), we get
     ∞
                                        1
          Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
    n=0




                          N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                        1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                        1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0




                          N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                         1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                         1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0
      ∞                 ∞
                 n
 ∴         Pn (1)t =          tn
     n=0                n=0




                            N. B. Vyas       Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                         1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                         1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0
      ∞                 ∞
                 n
 ∴         Pn (1)t =          tn
     n=0                n=0
     Comparing the coefficient of tn both the sides, we get


                            N. B. Vyas       Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                  ∞
                                                         1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                         1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0
      ∞                 ∞
                  n
 ∴         Pn (1)t =          tn
     n=0                n=0
     Comparing the coefficient of tn both the sides, we get
     Pn (1) = 1

                            N. B. Vyas       Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                         1
          Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                         1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                          1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0
      ∞                   ∞
 ∴         Pn (−1)tn =        (−1)n tn
     n=0                 n=0




                          N. B. Vyas     Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                          1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0
      ∞                   ∞
 ∴         Pn (−1)tn =        (−1)n tn
     n=0                 n=0
     Comparing coefficients of tn , we get




                          N. B. Vyas     Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                          1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0
      ∞                   ∞
 ∴         Pn (−1)tn =        (−1)n tn
     n=0                 n=0
     Comparing coefficients of tn , we get
     Pn (−1) = (−1)n



                          N. B. Vyas     Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                              1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                              1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                           1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                               1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)
     ∞                      ∞
                      n
          Pn (−x)(t) =           Pn (x)(−1)n (t)n
    n=0                    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                           1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                               1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)
     ∞                      ∞
                      n
          Pn (−x)(t) =           Pn (x)(−1)n (t)n
    n=0                    n=0
    Comparing the coefficients of tn , both sides, we get



                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                           1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                               1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)
     ∞                      ∞
                      n
          Pn (−x)(t) =           Pn (x)(−1)n (t)n
    n=0                    n=0
    Comparing the coefficients of tn , both sides, we get
    Pn (−x) = (−1)n Pn (x)


                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




               Rodrigue’s Formula

            1 dn
    Pn(x) = n       [(x2 − 1)n]
           2 n! dxn


                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
          (x2 − 1)       x −1




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
           (x2 − 1)      x −1
 ∴ (x2 − 1)y1 = 2nxy




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
           (x2 − 1)      x −1
 ∴ (x2 − 1)y1 = 2nxy
    Differentiating with respect to x,




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
           (x2 − 1)      x −1
 ∴ (x2 − 1)y1 = 2nxy
    Differentiating with respect to x,
    (x2 − 1)y2 +2xy1 = 2nxy1 + 2ny




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




      dn
         (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
     dxn




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




     dn
        (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
    dxn
   dn
→     ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
  dxn




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




     dn
        (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
    dxn
   dn
→     ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
  dxn
   dn
→     (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
  dxn




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




     dn
        (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
    dxn
   dn
→     ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
  dxn
   dn
→     (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
  dxn
   dn
→     (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn
  dxn




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




       dn
          (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
      dxn
     dn
→       ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
    dxn
     dn
→       (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
    dxn
     dn
→       (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn
    dxn
     dn
→       (2ny) = 2nyn
    dxn




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




       dn
          (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
      dxn
     dn
→       ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
    dxn
     dn
→       (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
    dxn
     dn
→       (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn
    dxn
     dn
→       (2ny) = 2nyn
    dxn
                                    n(n − 1)
    Also nC0 = 1, nC1 = n, nC2 =
                                       2!



                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
  Equation (2) is a Legendre’s equation in variables v and x




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
   Equation (2) is a Legendre’s equation in variables v and x
⇒ Pn (x) is a solution of equation (2)




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
   Equation (2) is a Legendre’s equation in variables v and x
⇒ Pn (x) is a solution of equation (2)
   Also, v = f (x) is a solution of equation (2)



                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
   Equation (2) is a Legendre’s equation in variables v and x
⇒ Pn (x) is a solution of equation (2)
   Also, v = f (x) is a solution of equation (2)
   Pn = cv where c is constant


                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




               dn y     dn
∴ Pn (x) = c        = c n (x2 − 1)n ——(3)
               dxn     dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y             dn
∴      = (x + 1)n n ((x − 1)n )
  dxn             dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y             dn
∴      = (x + 1)n n ((x − 1)n )
  dxn             dx
                 dn−1
  +n(x + 1)n−1 n−1 ((x − 1)n )
                dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y             dn
∴      = (x + 1)n n ((x − 1)n )
  dxn             dx
                 dn−1
  +n(x + 1)n−1 n−1 ((x − 1)n )
                dx
  +...




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y               dn
∴      = (x + 1)n n ((x − 1)n )
  dxn               dx
                   dn−1
  +n(x + 1)n−1 n−1 ((x − 1)n )
                 dx
  +...
    dn ((x + 1)n )
  +                (x − 1)n
         dxn



                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Recurrence Relations for Pn(x) : −




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


(1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                 1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                 1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)
                                           1
                         (1 − 2xt + t2 )− 2
                       =                     (x − t)
                           (1 − 2xt + t2 )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                 1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)
                                           1
                         (1 − 2xt + t2 )− 2
                       =                     (x − t)
                           (1 − 2xt + t2 )
       from (i)



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                         1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)
                                           1
                         (1 − 2xt + t2 )− 2
                       =                     (x − t)
                           (1 − 2xt + t2 )
       from (i)
                            ∞                                   ∞
                                             n−1
       (1 − 2xt +    t2 )         nPn (x)t         = (x − t)         Pn (x)tn
                            n=1                                n=0
                                N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                   ∞
∴        nPn (x)tn−1 − 2x               nPn (x)tn +         nPn (x)tn+1 =
    n=1                           n=1                 n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0




                            N. B. Vyas      Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                   ∞
∴        nPn (x)tn−1 − 2x               nPn (x)tn +         nPn (x)tn+1 =
    n=1                           n=1                 n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.




                            N. B. Vyas      Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                   ∞
∴        nPn (x)tn−1 − 2x               nPn (x)tn +         nPn (x)tn+1 =
    n=1                           n=1                 n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.
    replacing n by n-1 in 2nd term in R.H.S




                            N. B. Vyas      Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                     ∞
∴         nPn (x)tn−1 − 2x              nPn (x)tn +          nPn (x)tn+1 =
    n=1                           n=1                  n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.
    replacing n by n-1 in 2nd term in R.H.S
    ∞                                     ∞                    ∞
         (n + 1)Pn+1 (x)tn − 2x                nPn (x)tn +          (n −
    n=0                                  n=1                  n=2
                            ∞                    ∞
    1)Pn−1 (x)tn = x             Pn (x)tn −           Pn−1 (x)tn
                           n=0                  n=1




                            N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                     ∞
∴         nPn (x)tn−1 − 2x              nPn (x)tn +          nPn (x)tn+1 =
    n=1                           n=1                  n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.
    replacing n by n-1 in 2nd term in R.H.S
    ∞                                     ∞                    ∞
         (n + 1)Pn+1 (x)tn − 2x                nPn (x)tn +          (n −
    n=0                                  n=1                  n=2
                            ∞                    ∞
    1)Pn−1 (x)tn = x             Pn (x)tn −           Pn−1 (x)tn
                           n=0                  n=1
    comparing the coefficients of tn on both the sides

                            N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) =
  xPn (x) − Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) =
  xPn (x) − Pn−1 (x)
∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) =
  xPn (x) − Pn−1 (x)
∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x)
∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


(2) nPn (x) = xPn (x) − Pn−1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
              Pn (x)t = (1 − 2xt +     t2 ) 2    ——–(i)
        n=0
        Differentiating equation (i) partially with respect to x, we
        get
         ∞
                        1                 3
            Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                        2
        n=0
         ∞                                   1
                    n   t(1 − 2xt + t2 )− 2
    ∴         Pn (x)t =                     ————-(ii)
                          (1 − 2xt + t2 )
        n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2    ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0
        ∞                                    1
                    t(1 − 2xt + t2 )− 2
                    n
   ∴     Pn (x)t =                      ————-(ii)
                      (1 − 2xt + t2 )
     n=0
   ⇒ Differentiating equation (i) partially with respect to t, we
     get



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2    ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0
        ∞                                    1
                    t(1 − 2xt + t2 )− 2
                    n
   ∴     Pn (x)t =                      ————-(ii)
                      (1 − 2xt + t2 )
     n=0
   ⇒ Differentiating equation (i) partially with respect to t, we
     get
      ∞
                          1                3
         nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                          2
       n=1

                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0
        ∞                                   1
                    t(1 − 2xt + t2 )− 2
                    n
   ∴     Pn (x)t =                      ————-(ii)
                      (1 − 2xt + t2 )
     n=0
   ⇒ Differentiating equation (i) partially with respect to t, we
     get
      ∞
                          1                3
         nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                          2
       n=1
        ∞                                                1
                        n−1    (x − t)(1 −Legendre’s )− 2
                              N. B. Vyas
                                           2xt + t2 Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


   ∞                                  ∞
                 n−1     (x − t)
        nPn (x)t       =                    Pn (x)tn {by eq. (ii)
                            t
  n=1                                 n=0




                        N. B. Vyas          Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


   ∞                                  ∞
                  n−1     (x − t)
        nPn (x)t        =                   Pn (x)tn {by eq. (ii)
                             t
  n=1                                 n=0
    ∞                                  ∞
∴ t         nPn (x)tn−1 = (x − t)            Pn (x)tn
      n=1                             n=0




                         N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0




                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.




                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.
    ∞                      ∞                     ∞
                 n                      n
∴         nPn (x)t = x          Pn (x)t −             Pn−1 (x)tn
    n=1                   n=0                   n=1




                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.
    ∞                      ∞                     ∞
                 n                      n
∴         nPn (x)t = x          Pn (x)t −             Pn−1 (x)tn
    n=1                   n=0                   n=1
    comparing the coefficients of tn on both sides, we get



                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.
    ∞                      ∞                     ∞
                 n                      n
∴         nPn (x)t = x          Pn (x)t −             Pn−1 (x)tn
    n=1                   n=0                   n=1
    comparing the coefficients of tn on both sides, we get
    nPn (x) = xPn (x) − Pn−1 (x)


                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)
    ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)
    ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c)
       Substituting the value of (c) in equation (b), we get



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)
    ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c)
       Substituting the value of (c) in equation (b), we get
    ∴ (2n + 1)Pn (x) + (2n + 1)[nPn (x) + Pn−1 (x)] =
       (n + 1)Pn+1 (x) + nPn−1 (x)
                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)
∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)
∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x)
∴ dividing by (n + 1), we get




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)
∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x)
∴ dividing by (n + 1), we get
∴ (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(4) Pn (x) = xPn−1 (x) + nPn−1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)
       replacing n by n − 1, we get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)
       replacing n by n − 1, we get
    ∴ nPn−1 (x) = Pn (x) − xPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)
       replacing n by n − 1, we get
    ∴ nPn−1 (x) = Pn (x) − xPn−1 (x)
    ∴ Pn (x) = xPn−1 (x) + nPn−1 (x)



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get
       (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get
       (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x)
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get
       (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x)
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))
       from equation (a),




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))
       from equation (a),
       (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))
       from equation (a),
       (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]



                             N. B. Vyas    Legendre’s Function

Weitere ähnliche Inhalte

Was ist angesagt?

Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equationJUGAL BORAH
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsmuhammadabullah
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsMatthew Leingang
 
ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION LANKESH S S
 
Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Muhammad Waqas
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Syed Ahmed Zaki
 
Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10 Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10 Bindu Cm
 
Applied Calculus Chapter 4 multiple integrals
Applied Calculus Chapter  4 multiple integralsApplied Calculus Chapter  4 multiple integrals
Applied Calculus Chapter 4 multiple integralsJ C
 
Vector calculus
Vector calculusVector calculus
Vector calculusKumar
 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of MatricesAmenahGondal1
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpointoaishnosaj
 
X2 T05 04 reduction formula (2010)
X2 T05 04 reduction formula (2010)X2 T05 04 reduction formula (2010)
X2 T05 04 reduction formula (2010)Nigel Simmons
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic FormsMatthew Leingang
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first orderUzair Saiyed
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errorsmaheej
 

Was ist angesagt? (20)

Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
 
ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION
 
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONSDIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS
 
Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1Engineering Numerical Analysis Lecture-1
Engineering Numerical Analysis Lecture-1
 
Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)Presentation on Numerical Method (Trapezoidal Method)
Presentation on Numerical Method (Trapezoidal Method)
 
Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10 Presentaton on Polynomials....Class 10
Presentaton on Polynomials....Class 10
 
taylors theorem
taylors theoremtaylors theorem
taylors theorem
 
Applied Calculus Chapter 4 multiple integrals
Applied Calculus Chapter  4 multiple integralsApplied Calculus Chapter  4 multiple integrals
Applied Calculus Chapter 4 multiple integrals
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of Matrices
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpoint
 
X2 T05 04 reduction formula (2010)
X2 T05 04 reduction formula (2010)X2 T05 04 reduction formula (2010)
X2 T05 04 reduction formula (2010)
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
 
maths
maths maths
maths
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
Gamma function
Gamma functionGamma function
Gamma function
 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errors
 

Andere mochten auch

Legendre's eqaution
Legendre's eqautionLegendre's eqaution
Legendre's eqautionSachin Patel
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equationkishor pokar
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's functionOneirosErebus
 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applicationsPratik Gadhiya
 
Metric tensor in general relativity
Metric tensor in general relativityMetric tensor in general relativity
Metric tensor in general relativityHalo Anwar
 
Jif315 academic planner
Jif315 academic plannerJif315 academic planner
Jif315 academic plannerKurenai Ryu
 
Academic planner jif 315 20152016
Academic planner jif 315   20152016Academic planner jif 315   20152016
Academic planner jif 315 20152016Kurenai Ryu
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shahC.G.P.I.T
 
Mc Coy Call Center Improvement Program 8 6
Mc Coy   Call Center Improvement Program   8 6Mc Coy   Call Center Improvement Program   8 6
Mc Coy Call Center Improvement Program 8 6Robert Madonna
 
Jif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformJif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformKurenai Ryu
 
Web analytics and matrics basics
Web analytics and matrics basicsWeb analytics and matrics basics
Web analytics and matrics basicsJOSH talks
 
MATRICS – Sequestration and Trust Deeds
MATRICS – Sequestration and Trust DeedsMATRICS – Sequestration and Trust Deeds
MATRICS – Sequestration and Trust Deedsshelterscotland
 
AP Calculus Slides March 22, 2007
AP Calculus Slides March 22, 2007AP Calculus Slides March 22, 2007
AP Calculus Slides March 22, 2007Darren Kuropatwa
 

Andere mochten auch (20)

Legendre
LegendreLegendre
Legendre
 
Legendre's eqaution
Legendre's eqautionLegendre's eqaution
Legendre's eqaution
 
Bessel’s equation
Bessel’s equationBessel’s equation
Bessel’s equation
 
Practical Applications of Bessel's function
Practical Applications of Bessel's functionPractical Applications of Bessel's function
Practical Applications of Bessel's function
 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applications
 
Special functions
Special functionsSpecial functions
Special functions
 
Numerical Methods 1
Numerical Methods 1Numerical Methods 1
Numerical Methods 1
 
Metric tensor in general relativity
Metric tensor in general relativityMetric tensor in general relativity
Metric tensor in general relativity
 
Jif315 academic planner
Jif315 academic plannerJif315 academic planner
Jif315 academic planner
 
Laplace1
Laplace1Laplace1
Laplace1
 
Academic planner jif 315 20152016
Academic planner jif 315   20152016Academic planner jif 315   20152016
Academic planner jif 315 20152016
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
Mc Coy Call Center Improvement Program 8 6
Mc Coy   Call Center Improvement Program   8 6Mc Coy   Call Center Improvement Program   8 6
Mc Coy Call Center Improvement Program 8 6
 
3. tensor calculus jan 2013
3. tensor calculus jan 20133. tensor calculus jan 2013
3. tensor calculus jan 2013
 
Jif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformJif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transform
 
Web analytics and matrics basics
Web analytics and matrics basicsWeb analytics and matrics basics
Web analytics and matrics basics
 
MATRICS – Sequestration and Trust Deeds
MATRICS – Sequestration and Trust DeedsMATRICS – Sequestration and Trust Deeds
MATRICS – Sequestration and Trust Deeds
 
AP Calculus Slides March 22, 2007
AP Calculus Slides March 22, 2007AP Calculus Slides March 22, 2007
AP Calculus Slides March 22, 2007
 
4PL Biz Module
4PL Biz Module 4PL Biz Module
4PL Biz Module
 

Ähnlich wie Legendre Function

polynomials of class 10th
polynomials of class 10thpolynomials of class 10th
polynomials of class 10thAshish Pradhan
 
Admissions in India 2015
Admissions in India 2015Admissions in India 2015
Admissions in India 2015Edhole.com
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceinventy
 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths projectRITURAJ DAS
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions xmath266
 
Polinomials in cd
Polinomials in cdPolinomials in cd
Polinomials in cdAdi Sharma
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)Nigel Simmons
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signsswartzje
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 

Ähnlich wie Legendre Function (20)

Zeros of p(x)
Zeros of p(x)Zeros of p(x)
Zeros of p(x)
 
Factor theorem
Factor theoremFactor theorem
Factor theorem
 
polynomials of class 10th
polynomials of class 10thpolynomials of class 10th
polynomials of class 10th
 
Admissions in India 2015
Admissions in India 2015Admissions in India 2015
Admissions in India 2015
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Polyomials x
Polyomials xPolyomials x
Polyomials x
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Polynomial- Maths project
Polynomial- Maths projectPolynomial- Maths project
Polynomial- Maths project
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions x
 
Algebra
AlgebraAlgebra
Algebra
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Polinomials in cd
Polinomials in cdPolinomials in cd
Polinomials in cd
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
Rational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of SignsRational Zeros and Decarte's Rule of Signs
Rational Zeros and Decarte's Rule of Signs
 
POLYNOMIALS
POLYNOMIALSPOLYNOMIALS
POLYNOMIALS
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 

Mehr von Dr. Nirav Vyas

Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanDr. Nirav Vyas
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressionsDr. Nirav Vyas
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressionsDr. Nirav Vyas
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture NotesDr. Nirav Vyas
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture NotesDr. Nirav Vyas
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesDr. Nirav Vyas
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesDr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Dr. Nirav Vyas
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Dr. Nirav Vyas
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 

Mehr von Dr. Nirav Vyas (20)

Reduction forumla
Reduction forumlaReduction forumla
Reduction forumla
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Geometric progressions
Geometric progressionsGeometric progressions
Geometric progressions
 
Arithmetic progressions
Arithmetic progressionsArithmetic progressions
Arithmetic progressions
 
Combinations
CombinationsCombinations
Combinations
 
Permutation
PermutationPermutation
Permutation
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Trend analysis - Lecture Notes
Trend analysis - Lecture NotesTrend analysis - Lecture Notes
Trend analysis - Lecture Notes
 
Basic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture NotesBasic Concepts of Statistics - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
 
Numerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen valuesNumerical Methods - Power Method for Eigen values
Numerical Methods - Power Method for Eigen values
 
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 2
 
Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1Numerical Methods - Oridnary Differential Equations - 1
Numerical Methods - Oridnary Differential Equations - 1
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
Fourier series 3
Fourier series 3Fourier series 3
Fourier series 3
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 

Kürzlich hochgeladen

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 

Kürzlich hochgeladen (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 

Legendre Function

  • 1. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Function N. B. Vyas Department of Mathematics Atmiya Institute of Technology and Science Department of Mathematics N. B. Vyas Legendre’s Function
  • 2. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) The differential equation N. B. Vyas Legendre’s Function
  • 3. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) The differential equation 2 (1 − x )y − 2xy + n(n + 1)y = 0 N. B. Vyas Legendre’s Function
  • 4. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) The differential equation 2 (1 − x )y − 2xy + n(n + 1)y = 0 is called Legendre’s differential equation, n is real constant N. B. Vyas Legendre’s Function
  • 5. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 N. B. Vyas Legendre’s Function
  • 6. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x N. B. Vyas Legendre’s Function
  • 7. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 N. B. Vyas Legendre’s Function
  • 8. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 1 ⇒ P3 (x) = (5x3 − 3x) 2 N. B. Vyas Legendre’s Function
  • 9. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 1 ⇒ P3 (x) = (5x3 − 3x) 2 1 ⇒ P4 (x) = (35x3 − 30x2 + 3) 8 N. B. Vyas Legendre’s Function
  • 10. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 1 ⇒ P3 (x) = (5x3 − 3x) 2 1 ⇒ P4 (x) = (35x3 − 30x2 + 3) 8 1 ⇒ P5 (x) = (63x5 − 70x3 + 15x) 8 N. B. Vyas Legendre’s Function
  • 11. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex.1 Express f (x) in terms of Legendre’s polynomials where f (x) = x3 + 2x2 − x − 3. N. B. Vyas Legendre’s Function
  • 12. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: N. B. Vyas Legendre’s Function
  • 13. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) N. B. Vyas Legendre’s Function
  • 14. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) N. B. Vyas Legendre’s Function
  • 15. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 N. B. Vyas Legendre’s Function
  • 16. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) N. B. Vyas Legendre’s Function
  • 17. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) ∴ 2P3 (x) + 3x = 5x3 N. B. Vyas Legendre’s Function
  • 18. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) ∴ 2P3 (x) + 3x = 5x3 ∴ 2P3 (x) + 3P1 (x) = 5x3 { x = P1 (x)} N. B. Vyas Legendre’s Function
  • 19. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) ∴ 2P3 (x) + 3x = 5x3 ∴ 2P3 (x) + 3P1 (x) = 5x3 { x = P1 (x)} 2 3 ∴ x3 = P3 (x) + P1 (x) 5 5 N. B. Vyas Legendre’s Function
  • 20. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 N. B. Vyas Legendre’s Function
  • 21. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) N. B. Vyas Legendre’s Function
  • 22. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 N. B. Vyas Legendre’s Function
  • 23. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} N. B. Vyas Legendre’s Function
  • 24. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} 2 1 ∴ x2 = P2 (x) + P0 (x) 3 3 N. B. Vyas Legendre’s Function
  • 25. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} 2 1 ∴ x2 = P2 (x) + P0 (x) 3 3 Now, f (x) = x3 + 2x2 − x − 3 N. B. Vyas Legendre’s Function
  • 26. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} 2 1 ∴ x2 = P2 (x) + P0 (x) 3 3 Now, f (x) = x3 + 2x2 − x − 3 f (x) = x3 + 2x2 − x − 3 2 3 4 2 = P3 (x) + P1 (x) + P2 (x) + P0 (x) − P1 (x) − 3P0 (x) 5 5 3 3 N. B. Vyas Legendre’s Function
  • 27. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex.2 Express x3 − 5x2 + 6x + 1 in terms of Legendre’s polynomial. N. B. Vyas Legendre’s Function
  • 28. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex.3 Express 4x3 − 2x2 − 3x + 8 in terms of Legendre’s polynomial. N. B. Vyas Legendre’s Function
  • 29. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Generating Function for Pn(x) ∞ 1 Pn(x)tn = √ n=0 1 − 2xt + t2 1 = (1 − 2xt + t2)− 2 N. B. Vyas Legendre’s Function
  • 30. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 The function (1 − 2xt + t2)− 2 is called Generating function of Legendre’s polynomial Pn(x) N. B. Vyas Legendre’s Function
  • 31. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that N. B. Vyas Legendre’s Function
  • 32. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that (i)Pn(1) = 1 N. B. Vyas Legendre’s Function
  • 33. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that (i)Pn(1) = 1 (ii)Pn(−1) = (−1)n N. B. Vyas Legendre’s Function
  • 34. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that (i)Pn(1) = 1 (ii)Pn(−1) = (−1)n (iii)Pn(−x) = (−1)nPn(x) N. B. Vyas Legendre’s Function
  • 35. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get N. B. Vyas Legendre’s Function
  • 36. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 N. B. Vyas Legendre’s Function
  • 37. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 N. B. Vyas Legendre’s Function
  • 38. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 ∞ ∞ n ∴ Pn (1)t = tn n=0 n=0 N. B. Vyas Legendre’s Function
  • 39. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 ∞ ∞ n ∴ Pn (1)t = tn n=0 n=0 Comparing the coefficient of tn both the sides, we get N. B. Vyas Legendre’s Function
  • 40. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 ∞ ∞ n ∴ Pn (1)t = tn n=0 n=0 Comparing the coefficient of tn both the sides, we get Pn (1) = 1 N. B. Vyas Legendre’s Function
  • 41. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get N. B. Vyas Legendre’s Function
  • 42. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 N. B. Vyas Legendre’s Function
  • 43. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 N. B. Vyas Legendre’s Function
  • 44. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 ∞ ∞ ∴ Pn (−1)tn = (−1)n tn n=0 n=0 N. B. Vyas Legendre’s Function
  • 45. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 ∞ ∞ ∴ Pn (−1)tn = (−1)n tn n=0 n=0 Comparing coefficients of tn , we get N. B. Vyas Legendre’s Function
  • 46. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 ∞ ∞ ∴ Pn (−1)tn = (−1)n tn n=0 n=0 Comparing coefficients of tn , we get Pn (−1) = (−1)n N. B. Vyas Legendre’s Function
  • 47. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get N. B. Vyas Legendre’s Function
  • 48. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 N. B. Vyas Legendre’s Function
  • 49. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get N. B. Vyas Legendre’s Function
  • 50. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 N. B. Vyas Legendre’s Function
  • 51. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) N. B. Vyas Legendre’s Function
  • 52. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) ∞ ∞ n Pn (−x)(t) = Pn (x)(−1)n (t)n n=0 n=0 N. B. Vyas Legendre’s Function
  • 53. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) ∞ ∞ n Pn (−x)(t) = Pn (x)(−1)n (t)n n=0 n=0 Comparing the coefficients of tn , both sides, we get N. B. Vyas Legendre’s Function
  • 54. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) ∞ ∞ n Pn (−x)(t) = Pn (x)(−1)n (t)n n=0 n=0 Comparing the coefficients of tn , both sides, we get Pn (−x) = (−1)n Pn (x) N. B. Vyas Legendre’s Function
  • 55. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Rodrigue’s Formula 1 dn Pn(x) = n [(x2 − 1)n] 2 n! dxn N. B. Vyas Legendre’s Function
  • 56. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n N. B. Vyas Legendre’s Function
  • 57. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x N. B. Vyas Legendre’s Function
  • 58. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) N. B. Vyas Legendre’s Function
  • 59. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 N. B. Vyas Legendre’s Function
  • 60. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 ∴ (x2 − 1)y1 = 2nxy N. B. Vyas Legendre’s Function
  • 61. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 ∴ (x2 − 1)y1 = 2nxy Differentiating with respect to x, N. B. Vyas Legendre’s Function
  • 62. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 ∴ (x2 − 1)y1 = 2nxy Differentiating with respect to x, (x2 − 1)y2 +2xy1 = 2nxy1 + 2ny N. B. Vyas Legendre’s Function
  • 63. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn N. B. Vyas Legendre’s Function
  • 64. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn N. B. Vyas Legendre’s Function
  • 65. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn N. B. Vyas Legendre’s Function
  • 66. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn dn → (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn dxn N. B. Vyas Legendre’s Function
  • 67. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn dn → (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn dxn dn → (2ny) = 2nyn dxn N. B. Vyas Legendre’s Function
  • 68. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn dn → (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn dxn dn → (2ny) = 2nyn dxn n(n − 1) Also nC0 = 1, nC1 = n, nC2 = 2! N. B. Vyas Legendre’s Function
  • 69. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn N. B. Vyas Legendre’s Function
  • 70. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 N. B. Vyas Legendre’s Function
  • 71. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 N. B. Vyas Legendre’s Function
  • 72. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 N. B. Vyas Legendre’s Function
  • 73. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx N. B. Vyas Legendre’s Function
  • 74. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) N. B. Vyas Legendre’s Function
  • 75. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x N. B. Vyas Legendre’s Function
  • 76. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x ⇒ Pn (x) is a solution of equation (2) N. B. Vyas Legendre’s Function
  • 77. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x ⇒ Pn (x) is a solution of equation (2) Also, v = f (x) is a solution of equation (2) N. B. Vyas Legendre’s Function
  • 78. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x ⇒ Pn (x) is a solution of equation (2) Also, v = f (x) is a solution of equation (2) Pn = cv where c is constant N. B. Vyas Legendre’s Function
  • 79. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx N. B. Vyas Legendre’s Function
  • 80. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n N. B. Vyas Legendre’s Function
  • 81. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n N. B. Vyas Legendre’s Function
  • 82. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx N. B. Vyas Legendre’s Function
  • 83. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx dn−1 +n(x + 1)n−1 n−1 ((x − 1)n ) dx N. B. Vyas Legendre’s Function
  • 84. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx dn−1 +n(x + 1)n−1 n−1 ((x − 1)n ) dx +... N. B. Vyas Legendre’s Function
  • 85. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx dn−1 +n(x + 1)n−1 n−1 ((x − 1)n ) dx +... dn ((x + 1)n ) + (x − 1)n dxn N. B. Vyas Legendre’s Function
  • 86. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Recurrence Relations for Pn(x) : − N. B. Vyas Legendre’s Function
  • 87. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 88. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have N. B. Vyas Legendre’s Function
  • 89. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 N. B. Vyas Legendre’s Function
  • 90. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get N. B. Vyas Legendre’s Function
  • 91. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 N. B. Vyas Legendre’s Function
  • 92. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) N. B. Vyas Legendre’s Function
  • 93. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) 1 (1 − 2xt + t2 )− 2 = (x − t) (1 − 2xt + t2 ) N. B. Vyas Legendre’s Function
  • 94. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) 1 (1 − 2xt + t2 )− 2 = (x − t) (1 − 2xt + t2 ) from (i) N. B. Vyas Legendre’s Function
  • 95. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) 1 (1 − 2xt + t2 )− 2 = (x − t) (1 − 2xt + t2 ) from (i) ∞ ∞ n−1 (1 − 2xt + t2 ) nPn (x)t = (x − t) Pn (x)tn n=1 n=0 N. B. Vyas Legendre’s Function
  • 96. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 N. B. Vyas Legendre’s Function
  • 97. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. N. B. Vyas Legendre’s Function
  • 98. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. replacing n by n-1 in 2nd term in R.H.S N. B. Vyas Legendre’s Function
  • 99. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. replacing n by n-1 in 2nd term in R.H.S ∞ ∞ ∞ (n + 1)Pn+1 (x)tn − 2x nPn (x)tn + (n − n=0 n=1 n=2 ∞ ∞ 1)Pn−1 (x)tn = x Pn (x)tn − Pn−1 (x)tn n=0 n=1 N. B. Vyas Legendre’s Function
  • 100. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. replacing n by n-1 in 2nd term in R.H.S ∞ ∞ ∞ (n + 1)Pn+1 (x)tn − 2x nPn (x)tn + (n − n=0 n=1 n=2 ∞ ∞ 1)Pn−1 (x)tn = x Pn (x)tn − Pn−1 (x)tn n=0 n=1 comparing the coefficients of tn on both the sides N. B. Vyas Legendre’s Function
  • 101. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 102. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) = xPn (x) − Pn−1 (x) ∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x) N. B. Vyas Legendre’s Function
  • 103. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) = xPn (x) − Pn−1 (x) ∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x) ∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 104. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 105. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have N. B. Vyas Legendre’s Function
  • 106. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 N. B. Vyas Legendre’s Function
  • 107. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get N. B. Vyas Legendre’s Function
  • 108. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 N. B. Vyas Legendre’s Function
  • 109. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 n t(1 − 2xt + t2 )− 2 ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 N. B. Vyas Legendre’s Function
  • 110. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 t(1 − 2xt + t2 )− 2 n ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 ⇒ Differentiating equation (i) partially with respect to t, we get N. B. Vyas Legendre’s Function
  • 111. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 t(1 − 2xt + t2 )− 2 n ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 ⇒ Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 N. B. Vyas Legendre’s Function
  • 112. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 t(1 − 2xt + t2 )− 2 n ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 ⇒ Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 ∞ 1 n−1 (x − t)(1 −Legendre’s )− 2 N. B. Vyas 2xt + t2 Function
  • 113. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 N. B. Vyas Legendre’s Function
  • 114. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 N. B. Vyas Legendre’s Function
  • 115. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 N. B. Vyas Legendre’s Function
  • 116. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. N. B. Vyas Legendre’s Function
  • 117. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. ∞ ∞ ∞ n n ∴ nPn (x)t = x Pn (x)t − Pn−1 (x)tn n=1 n=0 n=1 N. B. Vyas Legendre’s Function
  • 118. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. ∞ ∞ ∞ n n ∴ nPn (x)t = x Pn (x)t − Pn−1 (x)tn n=1 n=0 n=1 comparing the coefficients of tn on both sides, we get N. B. Vyas Legendre’s Function
  • 119. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. ∞ ∞ ∞ n n ∴ nPn (x)t = x Pn (x)t − Pn−1 (x)tn n=1 n=0 n=1 comparing the coefficients of tn on both sides, we get nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 120. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) N. B. Vyas Legendre’s Function
  • 121. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 122. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) N. B. Vyas Legendre’s Function
  • 123. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get N. B. Vyas Legendre’s Function
  • 124. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) N. B. Vyas Legendre’s Function
  • 125. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) N. B. Vyas Legendre’s Function
  • 126. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 127. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c) N. B. Vyas Legendre’s Function
  • 128. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c) Substituting the value of (c) in equation (b), we get N. B. Vyas Legendre’s Function
  • 129. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c) Substituting the value of (c) in equation (b), we get ∴ (2n + 1)Pn (x) + (2n + 1)[nPn (x) + Pn−1 (x)] = (n + 1)Pn+1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 130. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 131. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) ∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x) N. B. Vyas Legendre’s Function
  • 132. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) ∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x) ∴ dividing by (n + 1), we get N. B. Vyas Legendre’s Function
  • 133. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) ∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x) ∴ dividing by (n + 1), we get ∴ (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 134. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 135. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), N. B. Vyas Legendre’s Function
  • 136. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) N. B. Vyas Legendre’s Function
  • 137. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), N. B. Vyas Legendre’s Function
  • 138. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) N. B. Vyas Legendre’s Function
  • 139. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get N. B. Vyas Legendre’s Function
  • 140. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) N. B. Vyas Legendre’s Function
  • 141. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) replacing n by n − 1, we get N. B. Vyas Legendre’s Function
  • 142. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) replacing n by n − 1, we get ∴ nPn−1 (x) = Pn (x) − xPn−1 (x) N. B. Vyas Legendre’s Function
  • 143. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) replacing n by n − 1, we get ∴ nPn−1 (x) = Pn (x) − xPn−1 (x) ∴ Pn (x) = xPn−1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 144. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] N. B. Vyas Legendre’s Function
  • 145. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) N. B. Vyas Legendre’s Function
  • 146. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) N. B. Vyas Legendre’s Function
  • 147. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) N. B. Vyas Legendre’s Function
  • 148. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 149. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) N. B. Vyas Legendre’s Function
  • 150. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get N. B. Vyas Legendre’s Function
  • 151. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x) N. B. Vyas Legendre’s Function
  • 152. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] N. B. Vyas Legendre’s Function
  • 153. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] N. B. Vyas Legendre’s Function
  • 154. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] N. B. Vyas Legendre’s Function
  • 155. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) N. B. Vyas Legendre’s Function
  • 156. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) N. B. Vyas Legendre’s Function
  • 157. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) N. B. Vyas Legendre’s Function
  • 158. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 159. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 160. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] N. B. Vyas Legendre’s Function
  • 161. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) N. B. Vyas Legendre’s Function
  • 162. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) from equation (a), N. B. Vyas Legendre’s Function
  • 163. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) from equation (a), (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] N. B. Vyas Legendre’s Function
  • 164. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) from equation (a), (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] N. B. Vyas Legendre’s Function