Eligheor

N

Eligheor

Dibujamos el diagrama de cuerpo libre:
!
0,28!!

!!

0,18!!

!!
!

0,10!!

!

!

!

30°

150!!

Llevamos las medidas de mm a metros:

ne Solutions Manual Organization System

280  𝑚𝑚 = 0,28  𝑚
180 = 0,18  𝑚
100 = 0,10  𝑚

on 19.

m:

!!

Aplicando las ecuaciones de equilibrio obtenemos:
(a) From free-body diagram of lever BCD

ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0

𝑀! = 0:           − 𝐴 0,18 + 150 sin 30 0,10 +    150 cos 30 0,28 = 0
∴ TAB = 300

(b) From free-body diagram of lever BCD

ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0
∴ C x = −380 N

or

C x = 380 N
21.

OS: Complete Online Solutions Manual Organization System

COSMOS: Complete Online Solutions Manual Organization System

pter 4, Solution 19.

Chapter 4, Solution 19.

e-Body Diagram:

𝐴 =   

150 sin 30 0,10 +    150 cos 30 0,28
= 𝟐𝟒𝟑, 𝟕𝟒  𝑵
0,18

(a) From free-body diagram of lever BCD

Free-Body Diagram:

ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0
(a) From free-body        𝑜                    𝐴lever BCD →    
diagram of = 244  𝑁  

∴ TAB = 300
ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0
⎛ 2.4 in. ⎞
−⎜
in. From
⎟ A − (0.9 (b))Fsp = 0 free-body diagram of lever BCD
Βx = 0 :
⎝ cosα ⎠
∴ T = 300
ΣFx = 0: 0:                    243,74 +300 N ) = 0 30 +    𝐷 = 0 AB
𝐹! = 200 N + Cx + 0.6 ( 150 sin
!
8
(b) From free-body diagram of lever BCD
Fsp =
lb = kx = k (1.2 in.)
∴ C x = −380 N
or
C x = 380 N
cos 30°
ΣFx = 0: 200 N + C + 0.6 ( 300 N ) = 0
𝐷 F 0: C y + − 300 x) = 0
Σ! y==−243,74 0.8 ( 150N sin 30 = −𝟑𝟏𝟖, 𝟕𝟒  𝑵
∴ C x = −380=N
or
k = 7.69800 lb/in.
k 7.70 lb/in. ▹ C x = 380 N
∴ C y = −240 N
or
C y = 240 N
ΣFy = 0: C y + 0.8 ( 300 N ) = 0

0:

or

0:

or

=

𝐹! = 0:                  𝐷2 − 150 cos 30 = 0
!
2

2
2
C = C x + C y C = 380 ) N ( 240 ) = 449.44240 N
Then
⎛ 8 lb ⎞
∴ = y ( −240 +
or
Cy = N
( 3 lb ) sin 30° + Bx + ⎜
⎟=0
⎝ cos30° ⎠
C
𝐷!⎛ =    ⎞ 1502 cos 240 = 𝟏𝟐𝟗, 𝟗𝟎𝟒  𝑵
− 30 ⎞2
C 1 y 2 = C y =⎛
) 32240 )2
and Then θ = tan −=⎜ C x⎟ + tan −1 ⎜ ( 380⎟ =+ ( .276° = 449.44 N
⎜C ⎟
Bx = −10.7376 lb
⎝ − 380 ⎠
⎝ x⎠
⎛ Cy ⎞
⎛ − 240 ⎞ C = 449 N
− ( 3 lb ) cos 30° + B y = 0
or = 32.276°
32.3° ▹
and
θ = tan −1 ⎜ ⎟ = tan −1 ⎜
⎟
⎜C ⎟
!
! ⎝ x ⎠
⎝ − 380 ⎠    129,904 ! = 𝟑𝟒𝟒, 𝟐𝟎  𝑵
!+
∴       𝐷 =    𝐷! +    𝐷!    =    −318,74
By = 2.5981 lb
or C = 449 N
32.3° ▹
2
2
−10.7376 ) + ( 2.5981) = 11.0475 lb, and
(
𝐷
129,904

2.5981
= tan −1
= 13.6020°
10.7376

𝑦                            𝜃 =    tan!!

!

𝐷!

=    tan!!

𝑜                𝐷 B = 11.05 lb
=     344  𝑁

s: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Clausen, David Mazurek, Phillip J. Cornwell
mpanies.

Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
7 The McGraw-Hill Companies.
Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

−318,74
13.60° ▹
𝜃 = 22,2°

= −𝟐𝟐, 𝟏𝟕𝟒°
Dibujamos el diagrama de cuerpo libre:
!!

!!

2!

+

!

os
!c

!!

!

!!

!

!!
!!
!!
!!

OS: Complete Online Solutions Manual Organization System

!

!

pter 4, Solution 19.

e-Body Diagram:

Aplicando las ecuaciones de equilibrio obtenemos:
(a) From free-body diagram of lever BCD

ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0

𝑀! = 0:                      𝑇 2𝑎 + 𝑎 cos 𝜃 −   𝑇𝑎 + 𝑃𝑎 = 0

∴ TAB = 300

(b) From free-body diagram of lever BCD
𝑷

𝑇=

              (𝑎)

ΣFx = 0: 200 N + Cx   + 0.6 ( 300 N ) = 0
𝟏 + 𝐜𝐨𝐬 𝜽
∴ C x = −380 N

or

C x = 380 N

ΣFy = 0: C y + 0.8 ( 300 N ) = 0

∴ C y = −240 N

or

C y = 240 N
Free-Body Diagram:
(a) From free-body diagram of lever BCD

ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0
∴ TAB = 300
(b) From free-body diagram of lever BCD

ΣFx = 0: 0:                    𝐶 x− 0.6 ( 300 = )0= 0
𝐹! = 200 N + C + 𝑇 sin 𝜃 N
!
∴ C x = −380 N
or
C x = 380 N

COSMOS: Complete Online Solutions Manual Organization System

𝐶 =   𝑻 + 0.8 ( 300 N
ΣFy =!0: C y 𝐬𝐢𝐧 𝜽          (𝑏)) = 0
∴ C y = −240 N

C y = 240 N

or

De la
2 (b)
2
Chapter 4, Solution 19. ecuación (a) en la ecuación+ C y se tiene2que: )2 = 449.44 N
C = Cx
= ( 380 ) + ( 240
Then
Free-Body Diagram:

⎛ C𝑷 ⎞ 𝐬𝐢𝐧 𝜽 −1 ⎛ − 240 ⎞
y
            (𝑐) = 32.276°
⎟ = tan ⎜
⎟
𝟏 ⎟
C x+    𝐜𝐨𝐬 𝜽⎝ − 380 ⎠
⎠
⎝
(a) From free-body diagram of lever BCD
or C = 449 N
ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0

  
tan −1 ⎜
θ = 𝐶! = ⎜

and

𝐹! = 0:                    𝐶! + 𝑇 + 𝑇 cos 𝜃 − 𝑃 = 0

32.3° ▹

∴ TAB = 300

(b) From free-body diagram of lever BCD

ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0

𝐶! =   𝑷 − 𝑻 𝟏 + 𝐜𝐨𝐬 𝜽               (𝑑)
∴ C x = −380 N

C x = 380 N

or

Σ ecuación (d) ( 300 N ) = 0
De la ecuación (a) en laFy = 0: C y + 0.8se tiene que:

∴ C y = −240 N

C y = 240 N

or

Then

2
2
2
C = 𝐶C x=   𝑃y− 𝑃 ( 380 )cos (𝜃 = 0= 449.44 N
+ C 2 = 1 + + 240 )
!

and

⎛ Cy ⎞
⎛ − 240 ⎞
θ = tan ⎜ ⎟ = tan −1 ⎜
⎟
⎜ 𝐶! = 0    ,                𝐶 =   ⎟ =!32.276°
⎝ − 380 ⎠ 𝐶
⎝ Cx ⎠

1 +    cos 𝜃

−1

or C = 449 N

32.3° ▹

𝑷 𝐬𝐢𝐧 𝜽
𝐶 =   
          (𝑒)
𝟏 +    𝐜𝐨𝐬 𝜽

𝑃𝑎𝑟𝑎    𝜃 = 60°    𝑎  𝑡𝑟𝑎𝑣𝑒𝑠  𝑑𝑒𝑙  𝑒𝑛𝑢𝑛𝑐𝑖𝑎𝑑𝑜
De la ecuación (a) se tiene que:
𝑇=

𝑃
𝑃
𝑃
𝟐
=   
=   
=      
1
1 +    cos 𝜃
1 +    cos 60
𝟑
1 +    2

Vector Mechanics for Engineers:ecuación (e) se tiene que: E. Russell Johnston, Jr.,
De la Statics and Dynamics, 8/e, Ferdinand P. Beer,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

𝐶 =   

𝑷

𝑃 sin 𝜃
𝑃 sin 60
𝑃 0,87
=   
=   
=      𝟎, 𝟓𝟖 𝑷
1
1 +    cos 𝜃
1 +    cos 60
1 +    2

Recomendados

BryanBryan
BryanJesthiger Cohil
363 views5 Folien
EligheorEligheor
Eligheornickjeorly
186 views4 Folien
BryanBryan
BryanJesthiger Cohil
371 views4 Folien
EligheorEligheor
Eligheornickjeorly
165 views3 Folien
BryanBryan
BryanJesthiger Cohil
191 views3 Folien

Más contenido relacionado

Was ist angesagt?

Problema Problema
Problema nickjeorly
120 views1 Folie
ProblemaProblema
Problemanickjeorly
123 views1 Folie
Ejercicios n7Ejercicios n7
Ejercicios n7nickjeorly
392 views6 Folien
Examen n7Examen n7
Examen n7Jesthiger Cohil
431 views7 Folien
Bryan2Bryan2
Bryan2Jesthiger Cohil
278 views5 Folien
Eligheor2Eligheor2
Eligheor2nickjeorly
225 views5 Folien

Was ist angesagt?(20)

Problema Problema
Problema
nickjeorly120 views
ProblemaProblema
Problema
nickjeorly123 views
Ejercicios n7Ejercicios n7
Ejercicios n7
nickjeorly392 views
Examen n7Examen n7
Examen n7
Jesthiger Cohil431 views
Bryan2Bryan2
Bryan2
Jesthiger Cohil278 views
Eligheor2Eligheor2
Eligheor2
nickjeorly225 views
Exact valuesExact values
Exact values
Shaun Wilson955 views
Ejercicio dosEjercicio dos
Ejercicio dos
nickjeorly156 views
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2
Jesthiger Cohil289 views
Sriram1000991882-Report-FractureMechanicsSriram1000991882-Report-FractureMechanics
Sriram1000991882-Report-FractureMechanics
Sriram Sambasivam363 views
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
Jhayson Carvalho474 views
Related anglesRelated angles
Related angles
Shaun Wilson753 views
Sine & cosine of obtuse angleSine & cosine of obtuse angle
Sine & cosine of obtuse angle
shaminakhan2.7K views
Sheet no 1Sheet no 1
Sheet no 1
bilalkhanzada4110 views
Math Section 2.1 ECC EtudesMath Section 2.1 ECC Etudes
Math Section 2.1 ECC Etudes
DavidYeeElCamino870 views
Problemas estatica.Problemas estatica.
Problemas estatica.
DiegoPrez68081776 views
Fungsi dan Grafik Fungsi TrigonometriFungsi dan Grafik Fungsi Trigonometri
Fungsi dan Grafik Fungsi Trigonometri
Aururia Begi Wiwiet Rambang16.7K views
Trig relationshipsTrig relationships
Trig relationships
Shaun Wilson622 views

Destacado(14)

HRHR
HR
Keith Kirby44 views
OTEC_2015OTEC_2015
OTEC_2015
Maria R. Davila84 views
Oase App Services presentatie FINALOase App Services presentatie FINAL
Oase App Services presentatie FINAL
Barend Houtsmuller212 views
Protocolo WPPSIProtocolo WPPSI
Protocolo WPPSI
Katherine Carvallo6.5K views
Berfikir dan intelegensiBerfikir dan intelegensi
Berfikir dan intelegensi
Zakah Milanisti1.2K views
RAMAGYA-ISA-ENDANGERED SPECIESRAMAGYA-ISA-ENDANGERED SPECIES
RAMAGYA-ISA-ENDANGERED SPECIES
RAMAGYA-ISA782 views
Successful Recruitment TipSuccessful Recruitment Tip
Successful Recruitment Tip
appliview414 views
Accidente cerebro-vascularAccidente cerebro-vascular
Accidente cerebro-vascular
Sindy de la Rosa4.5K views

Similar a Eligheor(19)

Ejerccio unoEjerccio uno
Ejerccio uno
nickjeorly133 views
Fungsi dan Grafik Fungsi TrigonometriFungsi dan Grafik Fungsi Trigonometri
Fungsi dan Grafik Fungsi Trigonometri
Aururia Begi Wiwiet Rambang3.2K views
lecture.20.21.Frames.pptlecture.20.21.Frames.ppt
lecture.20.21.Frames.ppt
FabianDuran175 views
ejercicio viga con dos rótulasejercicio viga con dos rótulas
ejercicio viga con dos rótulas
Mario García349 views
Sol cap 03   edicion 8Sol cap 03   edicion 8
Sol cap 03 edicion 8
Luisa Lopez271 views
problemas resueltas estatica 2parteproblemas resueltas estatica 2parte
problemas resueltas estatica 2parte
Quintana Excélsior414 views
Cap 03Cap 03
Cap 03
hania dogar5.3K views
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
Rajshahi University of Engineering and Technology281 views
MF 10 Tuberías en paralelo y ramificadasMF 10 Tuberías en paralelo y ramificadas
MF 10 Tuberías en paralelo y ramificadas
www.youtube.com/cinthiareyes850 views
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
Jhayson Carvalho378 views
EM_Tutorial_02_Solution.pdfEM_Tutorial_02_Solution.pdf
EM_Tutorial_02_Solution.pdf
dharma raja`2 views
Strength example 1 5Strength example 1 5
Strength example 1 5
Majeed Azad77 views
Capitulo 12Capitulo 12
Capitulo 12
vimacive309 views
Cap 12Cap 12
Cap 12
Fer Jimenez Figueroa3.1K views

Más de nickjeorly(20)

Informe practica 5Informe practica 5
Informe practica 5
nickjeorly243 views
Eligheorcohilasig4Eligheorcohilasig4
Eligheorcohilasig4
nickjeorly544 views
ESTUDIO DE CASOSESTUDIO DE CASOS
ESTUDIO DE CASOS
nickjeorly1.2K views
Sist ltiSist lti
Sist lti
nickjeorly223 views
Eligheor cohilasig2Eligheor cohilasig2
Eligheor cohilasig2
nickjeorly417 views
Puesta a tierra power pointPuesta a tierra power point
Puesta a tierra power point
nickjeorly257 views
Pymes venezolanasPymes venezolanas
Pymes venezolanas
nickjeorly474 views
N4N4
N4
nickjeorly2.1K views
Potencia y energia electricaPotencia y energia electrica
Potencia y energia electrica
nickjeorly419 views
SISTEMAS LTISISTEMAS LTI
SISTEMAS LTI
nickjeorly281 views
EligheorrrEligheorrr
Eligheorrr
nickjeorly162 views
potenciaspotencias
potencias
nickjeorly988 views
EligheorcohilEligheorcohil
Eligheorcohil
nickjeorly225 views
Eligueor tarea1Eligueor tarea1
Eligueor tarea1
nickjeorly173 views
Eligheor tarea2Eligheor tarea2
Eligheor tarea2
nickjeorly201 views
EjercicioEjercicio
Ejercicio
nickjeorly197 views
Solucionario1Solucionario1
Solucionario1
nickjeorly161 views
EligheorEligheor
Eligheor
nickjeorly151 views

Último(19)

ECOLUXEAwardsSeasonpre-OSCARSLounge_2024.pdfECOLUXEAwardsSeasonpre-OSCARSLounge_2024.pdf
ECOLUXEAwardsSeasonpre-OSCARSLounge_2024.pdf
Durkin Entertainment LLC71 views
RESUMERESUME
RESUME
bvtp649ry86 views
Diapositivas-GisneyS.pptxDiapositivas-GisneyS.pptx
Diapositivas-GisneyS.pptx
olivarescalona97 views
Taylor Swift Bibliography.pdfTaylor Swift Bibliography.pdf
Taylor Swift Bibliography.pdf
sheenamdsantos12 views
ZewindTV Pitch DeckZewindTV Pitch Deck
ZewindTV Pitch Deck
Darren Levy6 views
Thanksgiving Family Feud.pptxThanksgiving Family Feud.pptx
Thanksgiving Family Feud.pptx
Rhemi Culver8 views
Durley House.pdfDurley House.pdf
Durley House.pdf
victusx14996 views
Seq 350a.pdfSeq 350a.pdf
Seq 350a.pdf
Jose Antonio Cerro5 views
Upcoming films.pdfUpcoming films.pdf
Upcoming films.pdf
Afdah26 views
Mann-Mayal-episode-1.pdfMann-Mayal-episode-1.pdf
Mann-Mayal-episode-1.pdf
novelsmag25 views
RESUME (Updated)RESUME (Updated)
RESUME (Updated)
bvtp649ry87 views
ProspectusProspectus
Prospectus
nataliaballivian24 views
NITC Casuals Quiz (General)NITC Casuals Quiz (General)
NITC Casuals Quiz (General)
Sreeram M68 views
polaris scriptpolaris script
polaris script
scribdgrudge30813 views
Music is LifeMusic is Life
Music is Life
manis0706837 views
Loupz Pitch Deck-3.pdfLoupz Pitch Deck-3.pdf
Loupz Pitch Deck-3.pdf
PancrazioScalambrino7 views

Eligheor

  • 1. Dibujamos el diagrama de cuerpo libre: ! 0,28!! !! 0,18!! !! ! 0,10!! ! ! ! 30° 150!! Llevamos las medidas de mm a metros: ne Solutions Manual Organization System 280  𝑚𝑚 = 0,28  𝑚 180 = 0,18  𝑚 100 = 0,10  𝑚 on 19. m: !! Aplicando las ecuaciones de equilibrio obtenemos: (a) From free-body diagram of lever BCD ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 𝑀! = 0:           − 𝐴 0,18 + 150 sin 30 0,10 +   150 cos 30 0,28 = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0 ∴ C x = −380 N or C x = 380 N
  • 2. 21. OS: Complete Online Solutions Manual Organization System COSMOS: Complete Online Solutions Manual Organization System pter 4, Solution 19. Chapter 4, Solution 19. e-Body Diagram: 𝐴 =   150 sin 30 0,10 +   150 cos 30 0,28 = 𝟐𝟒𝟑, 𝟕𝟒  𝑵 0,18 (a) From free-body diagram of lever BCD Free-Body Diagram: ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 (a) From free-body        𝑜                    𝐴lever BCD →     diagram of = 244  𝑁   ∴ TAB = 300 ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 ⎛ 2.4 in. ⎞ −⎜ in. From ⎟ A − (0.9 (b))Fsp = 0 free-body diagram of lever BCD Βx = 0 : ⎝ cosα ⎠ ∴ T = 300 ΣFx = 0: 0:                    243,74 +300 N ) = 0 30 +   𝐷 = 0 AB 𝐹! = 200 N + Cx + 0.6 ( 150 sin ! 8 (b) From free-body diagram of lever BCD Fsp = lb = kx = k (1.2 in.) ∴ C x = −380 N or C x = 380 N cos 30° ΣFx = 0: 200 N + C + 0.6 ( 300 N ) = 0 𝐷 F 0: C y + − 300 x) = 0 Σ! y==−243,74 0.8 ( 150N sin 30 = −𝟑𝟏𝟖, 𝟕𝟒  𝑵 ∴ C x = −380=N or k = 7.69800 lb/in. k 7.70 lb/in. ▹ C x = 380 N ∴ C y = −240 N or C y = 240 N ΣFy = 0: C y + 0.8 ( 300 N ) = 0 0: or 0: or = 𝐹! = 0:                  𝐷2 − 150 cos 30 = 0 ! 2 2 2 C = C x + C y C = 380 ) N ( 240 ) = 449.44240 N Then ⎛ 8 lb ⎞ ∴ = y ( −240 + or Cy = N ( 3 lb ) sin 30° + Bx + ⎜ ⎟=0 ⎝ cos30° ⎠ C 𝐷!⎛ =   ⎞ 1502 cos 240 = 𝟏𝟐𝟗, 𝟗𝟎𝟒  𝑵 − 30 ⎞2 C 1 y 2 = C y =⎛ ) 32240 )2 and Then θ = tan −=⎜ C x⎟ + tan −1 ⎜ ( 380⎟ =+ ( .276° = 449.44 N ⎜C ⎟ Bx = −10.7376 lb ⎝ − 380 ⎠ ⎝ x⎠ ⎛ Cy ⎞ ⎛ − 240 ⎞ C = 449 N − ( 3 lb ) cos 30° + B y = 0 or = 32.276° 32.3° ▹ and θ = tan −1 ⎜ ⎟ = tan −1 ⎜ ⎟ ⎜C ⎟ ! ! ⎝ x ⎠ ⎝ − 380 ⎠   129,904 ! = 𝟑𝟒𝟒, 𝟐𝟎  𝑵 !+ ∴      𝐷 =   𝐷! +   𝐷!   =   −318,74 By = 2.5981 lb or C = 449 N 32.3° ▹ 2 2 −10.7376 ) + ( 2.5981) = 11.0475 lb, and ( 𝐷 129,904 2.5981 = tan −1 = 13.6020° 10.7376 𝑦                            𝜃 =   tan!! ! 𝐷! =   tan!! 𝑜                𝐷 B = 11.05 lb =    344  𝑁 s: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Clausen, David Mazurek, Phillip J. Cornwell mpanies. Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., . Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 7 The McGraw-Hill Companies. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. −318,74 13.60° ▹ 𝜃 = 22,2° = −𝟐𝟐, 𝟏𝟕𝟒°
  • 3. Dibujamos el diagrama de cuerpo libre: !! !! 2! + ! os !c !! ! !! ! !! !! !! !! OS: Complete Online Solutions Manual Organization System ! ! pter 4, Solution 19. e-Body Diagram: Aplicando las ecuaciones de equilibrio obtenemos: (a) From free-body diagram of lever BCD ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 𝑀! = 0:                      𝑇 2𝑎 + 𝑎 cos 𝜃 −  𝑇𝑎 + 𝑃𝑎 = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD 𝑷 𝑇=              (𝑎) ΣFx = 0: 200 N + Cx   + 0.6 ( 300 N ) = 0 𝟏 + 𝐜𝐨𝐬 𝜽 ∴ C x = −380 N or C x = 380 N ΣFy = 0: C y + 0.8 ( 300 N ) = 0 ∴ C y = −240 N or C y = 240 N
  • 4. Free-Body Diagram: (a) From free-body diagram of lever BCD ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD ΣFx = 0: 0:                    𝐶 x− 0.6 ( 300 = )0= 0 𝐹! = 200 N + C + 𝑇 sin 𝜃 N ! ∴ C x = −380 N or C x = 380 N COSMOS: Complete Online Solutions Manual Organization System 𝐶 =  𝑻 + 0.8 ( 300 N ΣFy =!0: C y 𝐬𝐢𝐧 𝜽          (𝑏)) = 0 ∴ C y = −240 N C y = 240 N or De la 2 (b) 2 Chapter 4, Solution 19. ecuación (a) en la ecuación+ C y se tiene2que: )2 = 449.44 N C = Cx = ( 380 ) + ( 240 Then Free-Body Diagram: ⎛ C𝑷 ⎞ 𝐬𝐢𝐧 𝜽 −1 ⎛ − 240 ⎞ y            (𝑐) = 32.276° ⎟ = tan ⎜ ⎟ 𝟏 ⎟ C x+   𝐜𝐨𝐬 𝜽⎝ − 380 ⎠ ⎠ ⎝ (a) From free-body diagram of lever BCD or C = 449 N ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0   tan −1 ⎜ θ = 𝐶! = ⎜ and 𝐹! = 0:                    𝐶! + 𝑇 + 𝑇 cos 𝜃 − 𝑃 = 0 32.3° ▹ ∴ TAB = 300 (b) From free-body diagram of lever BCD ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0 𝐶! =  𝑷 − 𝑻 𝟏 + 𝐜𝐨𝐬 𝜽              (𝑑) ∴ C x = −380 N C x = 380 N or Σ ecuación (d) ( 300 N ) = 0 De la ecuación (a) en laFy = 0: C y + 0.8se tiene que: ∴ C y = −240 N C y = 240 N or Then 2 2 2 C = 𝐶C x=  𝑃y− 𝑃 ( 380 )cos (𝜃 = 0= 449.44 N + C 2 = 1 + + 240 ) ! and ⎛ Cy ⎞ ⎛ − 240 ⎞ θ = tan ⎜ ⎟ = tan −1 ⎜ ⎟ ⎜ 𝐶! = 0    ,                𝐶 =  ⎟ =!32.276° ⎝ − 380 ⎠ 𝐶 ⎝ Cx ⎠ 1 +   cos 𝜃 −1 or C = 449 N 32.3° ▹ 𝑷 𝐬𝐢𝐧 𝜽 𝐶 =            (𝑒) 𝟏 +   𝐜𝐨𝐬 𝜽 𝑃𝑎𝑟𝑎    𝜃 = 60°    𝑎  𝑡𝑟𝑎𝑣𝑒𝑠  𝑑𝑒𝑙  𝑒𝑛𝑢𝑛𝑐𝑖𝑎𝑑𝑜 De la ecuación (a) se tiene que: 𝑇= 𝑃 𝑃 𝑃 𝟐 =   =   =     1 1 +   cos 𝜃 1 +   cos 60 𝟑 1 +   2 Vector Mechanics for Engineers:ecuación (e) se tiene que: E. Russell Johnston, Jr., De la Statics and Dynamics, 8/e, Ferdinand P. Beer, Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 𝐶 =   𝑷 𝑃 sin 𝜃 𝑃 sin 60 𝑃 0,87 =   =   =     𝟎, 𝟓𝟖 𝑷 1 1 +   cos 𝜃 1 +   cos 60 1 +   2