# Eligheor

N

Eligheor

BryanJesthiger Cohil
363 views5 Folien
Eligheornickjeorly
186 views4 Folien
BryanJesthiger Cohil
371 views4 Folien
Eligheornickjeorly
165 views3 Folien
BryanJesthiger Cohil
191 views3 Folien

## Was ist angesagt?

Problema nickjeorly
120 views1 Folie
Problemanickjeorly
123 views1 Folie
Ejercicios n7nickjeorly
392 views6 Folien
Examen n7Jesthiger Cohil
431 views7 Folien
Bryan2Jesthiger Cohil
278 views5 Folien
Eligheor2nickjeorly
225 views5 Folien

### Was ist angesagt?(20)

Problema
nickjeorly120 views
Problema
nickjeorly123 views
Ejercicios n7
nickjeorly392 views
Examen n7
Jesthiger Cohil431 views
Bryan2
Jesthiger Cohil278 views
Eligheor2
nickjeorly225 views
Exact values
Shaun Wilson955 views
Ejercicio dos
nickjeorly156 views
Solución al ejercicio 2
Jesthiger Cohil289 views
Sriram1000991882-Report-FractureMechanics
Sriram Sambasivam363 views
Capítulo 04 carga e análise de tensão
Jhayson Carvalho474 views
Related angles
Shaun Wilson753 views
Sine & cosine of obtuse angle
shaminakhan2.7K views
Sheet no 1
Math Section 2.1 ECC Etudes
DavidYeeElCamino870 views
Problemas estatica.
DiegoPrez68081776 views
Fungsi dan Grafik Fungsi Trigonometri
Aururia Begi Wiwiet Rambang16.7K views
Trig relationships
Shaun Wilson622 views

HR
Keith Kirby44 views
OTEC_2015
Maria R. Davila84 views
Oase App Services presentatie FINAL
Barend Houtsmuller212 views
Protocolo WPPSI
Katherine Carvallo6.5K views
Berfikir dan intelegensi
Zakah Milanisti1.2K views
RAMAGYA-ISA-ENDANGERED SPECIES
RAMAGYA-ISA782 views
Successful Recruitment Tip
appliview414 views
Accidente cerebro-vascular
Sindy de la Rosa4.5K views

### Similar a Eligheor(19)

Ejerccio uno
nickjeorly133 views
Fungsi dan Grafik Fungsi Trigonometri
Aururia Begi Wiwiet Rambang3.2K views
lecture.20.21.Frames.ppt
FabianDuran175 views
ejercicio viga con dos rótulas
Mario García349 views
Sol cap 03 edicion 8
Luisa Lopez271 views
problemas resueltas estatica 2parte
Quintana Excélsior414 views
Cap 03
hania dogar5.3K views
Engineering Mechanics
Rajshahi University of Engineering and Technology281 views
MF 10 Tuberías en paralelo y ramificadas
Capítulo 03 materiais
Jhayson Carvalho378 views
EM_Tutorial_02_Solution.pdf
dharma raja`2 views
Strength example 1 5
Capitulo 12
vimacive309 views
Cap 12
Fer Jimenez Figueroa3.1K views

## Más de nickjeorly

Informe practica 5nickjeorly
243 views8 Folien
Eligheorcohilasig4nickjeorly
544 views29 Folien
ESTUDIO DE CASOSnickjeorly
1.2K views17 Folien
Sist ltinickjeorly
223 views4 Folien

### Más de nickjeorly(20)

Informe practica 5
nickjeorly243 views
Eligheorcohilasig4
nickjeorly544 views
ESTUDIO DE CASOS
nickjeorly1.2K views
Sist lti
nickjeorly223 views
Eligheor cohilasig2
nickjeorly417 views
Puesta a tierra power point
nickjeorly257 views
Pymes venezolanas
nickjeorly474 views
N4
nickjeorly2.1K views
Potencia y energia electrica
nickjeorly419 views
SISTEMAS LTI
nickjeorly281 views
Eligheorrr
nickjeorly162 views
potencias
nickjeorly988 views
Eligheorcohil
nickjeorly225 views
Eligueor tarea1
nickjeorly173 views
Eligheor tarea2
nickjeorly201 views
Ejercicio
nickjeorly197 views
Solucionario1
nickjeorly161 views
Eligheor
nickjeorly151 views

### Último(19)

ECOLUXEAwardsSeasonpre-OSCARSLounge_2024.pdf
Durkin Entertainment LLC71 views
RESUME
bvtp649ry86 views
Diapositivas-GisneyS.pptx
olivarescalona97 views
Taylor Swift Bibliography.pdf
sheenamdsantos12 views
ZewindTV Pitch Deck
Darren Levy6 views
Thanksgiving Family Feud.pptx
Rhemi Culver8 views
Durley House.pdf
victusx14996 views
Seq 350a.pdf
Jose Antonio Cerro5 views
Upcoming films.pdf
Afdah26 views
Mann-Mayal-episode-1.pdf
novelsmag25 views
RESUME (Updated)
bvtp649ry87 views
Prospectus
nataliaballivian24 views
NITC Casuals Quiz (General)
Sreeram M68 views
polaris script
scribdgrudge30813 views
Music is Life
manis0706837 views
Loupz Pitch Deck-3.pdf
PancrazioScalambrino7 views

### Eligheor

• 1. Dibujamos el diagrama de cuerpo libre: ! 0,28!! !! 0,18!! !! ! 0,10!! ! ! ! 30° 150!! Llevamos las medidas de mm a metros: ne Solutions Manual Organization System 280  𝑚𝑚 = 0,28  𝑚 180 = 0,18  𝑚 100 = 0,10  𝑚 on 19. m: !! Aplicando las ecuaciones de equilibrio obtenemos: (a) From free-body diagram of lever BCD ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 𝑀! = 0:           − 𝐴 0,18 + 150 sin 30 0,10 +   150 cos 30 0,28 = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0 ∴ C x = −380 N or C x = 380 N
• 2. 21. OS: Complete Online Solutions Manual Organization System COSMOS: Complete Online Solutions Manual Organization System pter 4, Solution 19. Chapter 4, Solution 19. e-Body Diagram: 𝐴 =   150 sin 30 0,10 +   150 cos 30 0,28 = 𝟐𝟒𝟑, 𝟕𝟒  𝑵 0,18 (a) From free-body diagram of lever BCD Free-Body Diagram: ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 (a) From free-body        𝑜                    𝐴lever BCD →     diagram of = 244  𝑁   ∴ TAB = 300 ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 ⎛ 2.4 in. ⎞ −⎜ in. From ⎟ A − (0.9 (b))Fsp = 0 free-body diagram of lever BCD Βx = 0 : ⎝ cosα ⎠ ∴ T = 300 ΣFx = 0: 0:                    243,74 +300 N ) = 0 30 +   𝐷 = 0 AB 𝐹! = 200 N + Cx + 0.6 ( 150 sin ! 8 (b) From free-body diagram of lever BCD Fsp = lb = kx = k (1.2 in.) ∴ C x = −380 N or C x = 380 N cos 30° ΣFx = 0: 200 N + C + 0.6 ( 300 N ) = 0 𝐷 F 0: C y + − 300 x) = 0 Σ! y==−243,74 0.8 ( 150N sin 30 = −𝟑𝟏𝟖, 𝟕𝟒  𝑵 ∴ C x = −380=N or k = 7.69800 lb/in. k 7.70 lb/in. ▹ C x = 380 N ∴ C y = −240 N or C y = 240 N ΣFy = 0: C y + 0.8 ( 300 N ) = 0 0: or 0: or = 𝐹! = 0:                  𝐷2 − 150 cos 30 = 0 ! 2 2 2 C = C x + C y C = 380 ) N ( 240 ) = 449.44240 N Then ⎛ 8 lb ⎞ ∴ = y ( −240 + or Cy = N ( 3 lb ) sin 30° + Bx + ⎜ ⎟=0 ⎝ cos30° ⎠ C 𝐷!⎛ =   ⎞ 1502 cos 240 = 𝟏𝟐𝟗, 𝟗𝟎𝟒  𝑵 − 30 ⎞2 C 1 y 2 = C y =⎛ ) 32240 )2 and Then θ = tan −=⎜ C x⎟ + tan −1 ⎜ ( 380⎟ =+ ( .276° = 449.44 N ⎜C ⎟ Bx = −10.7376 lb ⎝ − 380 ⎠ ⎝ x⎠ ⎛ Cy ⎞ ⎛ − 240 ⎞ C = 449 N − ( 3 lb ) cos 30° + B y = 0 or = 32.276° 32.3° ▹ and θ = tan −1 ⎜ ⎟ = tan −1 ⎜ ⎟ ⎜C ⎟ ! ! ⎝ x ⎠ ⎝ − 380 ⎠   129,904 ! = 𝟑𝟒𝟒, 𝟐𝟎  𝑵 !+ ∴      𝐷 =   𝐷! +   𝐷!   =   −318,74 By = 2.5981 lb or C = 449 N 32.3° ▹ 2 2 −10.7376 ) + ( 2.5981) = 11.0475 lb, and ( 𝐷 129,904 2.5981 = tan −1 = 13.6020° 10.7376 𝑦                            𝜃 =   tan!! ! 𝐷! =   tan!! 𝑜                𝐷 B = 11.05 lb =    344  𝑁 s: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Clausen, David Mazurek, Phillip J. Cornwell mpanies. Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., . Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell 7 The McGraw-Hill Companies. Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr., Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. −318,74 13.60° ▹ 𝜃 = 22,2° = −𝟐𝟐, 𝟏𝟕𝟒°
• 3. Dibujamos el diagrama de cuerpo libre: !! !! 2! + ! os !c !! ! !! ! !! !! !! !! OS: Complete Online Solutions Manual Organization System ! ! pter 4, Solution 19. e-Body Diagram: Aplicando las ecuaciones de equilibrio obtenemos: (a) From free-body diagram of lever BCD ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 𝑀! = 0:                      𝑇 2𝑎 + 𝑎 cos 𝜃 −  𝑇𝑎 + 𝑃𝑎 = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD 𝑷 𝑇=              (𝑎) ΣFx = 0: 200 N + Cx   + 0.6 ( 300 N ) = 0 𝟏 + 𝐜𝐨𝐬 𝜽 ∴ C x = −380 N or C x = 380 N ΣFy = 0: C y + 0.8 ( 300 N ) = 0 ∴ C y = −240 N or C y = 240 N
• 4. Free-Body Diagram: (a) From free-body diagram of lever BCD ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0 ∴ TAB = 300 (b) From free-body diagram of lever BCD ΣFx = 0: 0:                    𝐶 x− 0.6 ( 300 = )0= 0 𝐹! = 200 N + C + 𝑇 sin 𝜃 N ! ∴ C x = −380 N or C x = 380 N COSMOS: Complete Online Solutions Manual Organization System 𝐶 =  𝑻 + 0.8 ( 300 N ΣFy =!0: C y 𝐬𝐢𝐧 𝜽          (𝑏)) = 0 ∴ C y = −240 N C y = 240 N or De la 2 (b) 2 Chapter 4, Solution 19. ecuación (a) en la ecuación+ C y se tiene2que: )2 = 449.44 N C = Cx = ( 380 ) + ( 240 Then Free-Body Diagram: ⎛ C𝑷 ⎞ 𝐬𝐢𝐧 𝜽 −1 ⎛ − 240 ⎞ y            (𝑐) = 32.276° ⎟ = tan ⎜ ⎟ 𝟏 ⎟ C x+   𝐜𝐨𝐬 𝜽⎝ − 380 ⎠ ⎠ ⎝ (a) From free-body diagram of lever BCD or C = 449 N ΣM C = 0: TAB ( 50 mm ) − 200 N ( 75 mm ) = 0   tan −1 ⎜ θ = 𝐶! = ⎜ and 𝐹! = 0:                    𝐶! + 𝑇 + 𝑇 cos 𝜃 − 𝑃 = 0 32.3° ▹ ∴ TAB = 300 (b) From free-body diagram of lever BCD ΣFx = 0: 200 N + Cx + 0.6 ( 300 N ) = 0 𝐶! =  𝑷 − 𝑻 𝟏 + 𝐜𝐨𝐬 𝜽              (𝑑) ∴ C x = −380 N C x = 380 N or Σ ecuación (d) ( 300 N ) = 0 De la ecuación (a) en laFy = 0: C y + 0.8se tiene que: ∴ C y = −240 N C y = 240 N or Then 2 2 2 C = 𝐶C x=  𝑃y− 𝑃 ( 380 )cos (𝜃 = 0= 449.44 N + C 2 = 1 + + 240 ) ! and ⎛ Cy ⎞ ⎛ − 240 ⎞ θ = tan ⎜ ⎟ = tan −1 ⎜ ⎟ ⎜ 𝐶! = 0    ,                𝐶 =  ⎟ =!32.276° ⎝ − 380 ⎠ 𝐶 ⎝ Cx ⎠ 1 +   cos 𝜃 −1 or C = 449 N 32.3° ▹ 𝑷 𝐬𝐢𝐧 𝜽 𝐶 =            (𝑒) 𝟏 +   𝐜𝐨𝐬 𝜽 𝑃𝑎𝑟𝑎    𝜃 = 60°    𝑎  𝑡𝑟𝑎𝑣𝑒𝑠  𝑑𝑒𝑙  𝑒𝑛𝑢𝑛𝑐𝑖𝑎𝑑𝑜 De la ecuación (a) se tiene que: 𝑇= 𝑃 𝑃 𝑃 𝟐 =   =   =     1 1 +   cos 𝜃 1 +   cos 60 𝟑 1 +   2 Vector Mechanics for Engineers:ecuación (e) se tiene que: E. Russell Johnston, Jr., De la Statics and Dynamics, 8/e, Ferdinand P. Beer, Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell © 2007 The McGraw-Hill Companies. 𝐶 =   𝑷 𝑃 sin 𝜃 𝑃 sin 60 𝑃 0,87 =   =   =     𝟎, 𝟓𝟖 𝑷 1 1 +   cos 𝜃 1 +   cos 60 1 +   2
Aktuelle SpracheEnglish
Español
Portugues
Français
Deutsche