Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Data Processing-Presentation

A presentation given by Atul Vishwakarma, Associate Lead, Leadcap Ventures.

  • Als Erste(r) kommentieren

Data Processing-Presentation

  1. 2. Atul Vishwakarma Data Processing…?
  2. 3. Data & Data Set: The information that you collect from an experiment, survey, or archival source is referred to as your data. Most generally, data can be defined as a list of numbers possessing meaningful relations. A data set is a representation of data, defining a set of variables" that are measured on a set of cases." Variable: A variable is any characteristic of an object that can be represented as a number. The values that the variable takes will vary when measurements are made on different objects or at different times. Case: Recorded information about an object we observe a case.
  3. 4. Every row is a single case Every column is a variable
  4. 5. Data Processing: Data processing most often refers to processes that convert data into information or knowledge. Information: Information is defined as either a meaningful answer to a query or a meaningful stimulus that can consider into further queries.
  5. 6. <ul><li>Steps of Data Processing: </li></ul><ul><li>Objective </li></ul><ul><li>Questionnaire </li></ul><ul><li>Field Survey </li></ul><ul><li>Data Entry </li></ul><ul><li>Data Processing </li></ul><ul><li>Information’s in tables and chart formats </li></ul>
  6. 7. <ul><li>Elements of Data Processing: </li></ul><ul><li>Data Coding </li></ul><ul><li>Data Editing/Cleaning </li></ul><ul><li>Data Validation </li></ul><ul><li>Data Classification </li></ul><ul><li>Attributes </li></ul><ul><li>Class-Intervals </li></ul><ul><li>Data Tabulation </li></ul><ul><li>Statistical Analysis </li></ul><ul><li>Computer graphics </li></ul><ul><li>Data Warehousing </li></ul><ul><li>Data Mining </li></ul>
  7. 8. <ul><li>Tabulation: </li></ul><ul><li>Tables must be clear and easy to read </li></ul><ul><li>Must have a title which describes the data in the table. </li></ul><ul><li>Columns and rows should be clearly headed. </li></ul><ul><li>Units should be displayed in column / row headings only. </li></ul><ul><li>Missing values should be displayed as -, and zeros as 0. They should be no blanks in a table conveying experimental results. </li></ul><ul><li>Numbers should be listed neatly below each other and should be to the same number of decimal places. </li></ul><ul><li>Table should be made logical, clear, accurate and simple as possible. </li></ul>5.7 50 - 40 2.4 30 1.6 20 7.3 10 6.8 0 Rate of Urine Production (mL / min) Time (min)
  8. 9. SOME PROBLEMS IN PROCESSING: a) The Problem Concerning “Don’t Know” or DK/NA responses. b) Use of Percentages %
  9. 10. Softwares: SPSS SAS Quantum Quanvert Stata Strata Systat Euler Matlab Minitab
  10. 11. Data Processing using Quantum, SPSS etc..
  11. 12. Data File Formats: SPSS: *.sav Excel: *xls ASCII: *.asc, *.dat Programming in Quantum: Exporting data in ASCII format. Programming according to questionnaire (Drafting Set File) Outputs in *.csv formats
  12. 13. A single variable. Cross Checking
  13. 14. Atul Vishwakarma Leadcap Ventures [email_address]