SlideShare ist ein Scribd-Unternehmen logo
1 von 7
Downloaden Sie, um offline zu lesen
EL DISEÑO POR CAPACIDAD EN ELEMENTOS DE HORMIGON
ARMADO
Ing. Nelson Salas
INTRODUCCION
El método de diseño por capacidad se desarrolló originalmente en Nueva Zelanda para
estructuras de hormigón armado. En la actualidad ha sido aceptado internacionalmente y sus
principios se han extendido también al diseño de estructuras de acero. Los estudios
experimentales han permitido mejorar el entendimiento del comportamiento sísmico y del
detallado que se debe realizar para fomentar un adecuado desempeño estructural. Se han
desarrollado una serie de herramientas para que el ingeniero estructural fomente el
comportamiento consistente, estable y controlado de las estructuras sismo resistentes, en lo
fundamental podemos agruparlas en conceptos de diseño por capacidad, dinámica estructural
e índices de daño.
PRINCIPIOS DE DISEÑO
El diseño por capacidad está basado en la formulación de una jerarquía en la resistencia de los
componentes que conforman el sistema estructural para permitir la formación de un adecuado
mecanismo de deformación plástica (mecanismo de falla), evitando la ocurrencia de fallas
frágiles. Para ello se determinan ciertas zonas de la estructura sismo resistente que se diseñan
y detallan para disipar energía en forma dúctil y estable y que se denominan comúnmente
“rótulas plásticas”.
Primeramente es necesario puntualizar sobre unas tres ideas muy conocidas por los ingenieros,
y que tácitamente son asumidas dentro del desarrollo del tema.
1) Se considera que un edificio se comportará inelásticamente ante un sismo severo (sismo
de diseño); caso contrario, las fuerzas horizontales deberán ser varias veces las que
estipulan los códigos, para obtener un diseño elástico, el cual resultaría totalmente
antieconómico.
2) Aquellas partes de la estructura que entrarán al rango inelástico deberán localizarse en
las vigas y no en las columnas; es decir, el criterio de columna fuerte–viga débil debe
prevalecer.
3) El concepto de “capacidad” primará en cada paso de un diseño sismo resistente, es decir
en este caso, que las fuerzas en el nudo (o en las rótulas) dependen de las armaduras
presentes en dichas zonas, es decir, las armaduras a ser colocadas realmente y no de las
fuerzas encontradas al analizar la estructura.
Figura 1: Comportamiento inelástico de una estructura.
UBICACIÓN DE LA ROTULA PLASTICA
En una estructura cuyo sistema resistente a carga sísmica esté constituido por columnas y vigas
(sistema aporticado), y proyectado para que se comporte inelásticamente en el caso del sismo
severo, es imprescindible que la rótula inelástica tenga lugar en las vigas y no en las columnas
caso contrario la estabilidad global de la estructura se vería en serio riesgo. La excepción a esto
tiene lugar, claro está, en la base de las columnas en el empotramiento de las mismas en la
cimentación, donde deben presentarse las rótulas para completar el mecanismo de
comportamiento inelástico de la estructura.
Se presentan entonces dos problemas: primero el garantizar que se dé un comportamiento
inelástico confiable, es decir por rotación inelástica en flexión y segundo, que éste
comportamiento inelástico se manifieste en las vigas, fuera de los nudos.
El primer punto es muy importante, y se podría sintetizarlo así: En todos y cada uno de los
elementos estructurales, y ante todas las situaciones de carga posible, la capacidad a cortante
tiene que ser mayor que la capacidad a flexión: es decir, se busca que la falla sea por flexión y
no por cortante. La falla por flexión se manifiesta por rotación inelástica de la sección. Para
conseguirlo, se debe diseñar el cortante teniendo en cuenta la máxima capacidad a flexión; el
diseño a flexión deberá por su parte asegurar suficiente ductilidad de curvatura.
El concepto de “capacidad” nada tiene que ver con las cargas exteriores aplicadas a las
estructuras o al miembro, sino que implica la utilización de la armadura presente en la sección,
cuyo esfuerzo para este cálculo puede ser mayor que el especificado; también puede ser
necesario no utilizar factores de reducción de capacidad de carga Ø, puesto que, aunque suene
extraño se puede afirmar que “la peor situación para el cortante se presenta cuando la columna
está construida en forma perfecta “ en cuanto a flexión se refiere.
Respecto al segundo punto, para que las rótulas inelásticas se presenten en las vigas y no en las
columnas, las capacidades mínimas a flexión de las columnas deben ser mayores que las
capacidades máximas a flexión de la viga (columna fuerte – viga débil).
En ambos casos, las capacidades son nominales, y el esfuerzo del acero será fy, el especificado,
es decir, no se considera el endurecimiento del acero por deformación, ya que lo único que
interesa es establecer cuál de los dos elementos (la viga o la columna) entra en fluencia
primero.
Si bien es muy fácil enunciar el propósito, no lo es tanto su puesta en práctica. No existe todavía
consenso exacto ni sobre la mínima capacidad de la columna ni sobre la máxima de la viga.
CAPACIDAD EN COLUMNAS
En efecto inclusive dadas la geometría, materiales y armado de columnas, su capacidad a flexión
no es única. Las dos principales fuentes de discusión son: a) la carga axial que debe utilizarse
para obtener la capacidad de la columna, y b) la necesidad de considerar los efectos de
momento biaxiales en la misma
Figura 2: Diagrama esquemático de interacción carga- momento en columnas.
En efecto, en un diagrama de interacción carga-momento de una columna, ver fig. 2, se observa
que su máxima capacidad a flexión, Mn, fluctúa entre Mb (momento balanceado), y Mo,
acompañada de carga axial igual a cero respectivamente. El problema es, entonces, cual valor
de Mn se debe usar. Como se indicó arriba, respuesta no está completamente definida; al
reporte del comité ACI 352-85 no es explícito al respecto. Se puede sugerir dos
recomendaciones: la primera, sugiere el uso de Mn asociado con Pn = 0. Se supone que esta es
una posición conservadora, puesto que se deja de lado la carga axial presente en la columna,
que ayudaría a resistir un momento mayor al menos en la zona por debajo de Pb, la segunda
permite el uso de una mínima carga axial que se puede presentar en la columna, obtenida en el
cálculo en base a las combinaciones de carga, es decir, Pn = Pd – Ps, (ver fig. 3), donde:
Pn = carga axial nominal que servirá para obtener el momento resistente de la columna.
Pd = carga axial debida a carga muerta.
Ps = carga axial debida al sismo.
Figura 3: Capacidad a flexión de una columna
Respecto a la influencia de los momentos biaxiales, se puede decir que la capacidad nominal a
flexión unidireccional de una columna puede verse drásticamente reducida con la inclusión de
momento en dirección perpendicular. Depende de la magnitud de este último. El caso extremo
se presentaría cuando los aceros de dos vigas perpendiculares entre sí, y que llegan a una misma
columna, fluyan simultáneamente, provocando en la columna un estado de flexión biaxial
máximo. Esto implicaría que el 100% de las fuerzas sísmicas actúan simultáneamente en ambas
direcciones. Sin embargo, no existen consensos en aceptar la posibilidad real de esta situación.
Si bien unos autores la defienden, la mayoría estima que es poco probable, aceptando que sería
suficiente con revisar en cada sentido por separado, y mayorando la relación entre capacidades
a flexión de columnas a vigas; el reporte ACI 352-85 comparte esta posición, una tercera
posición sugiere la utilización del 100% de fuerzas sísmicas en una dirección y un 30% de ellas
en la otra dirección.
CAPACIDAD EN VIGAS
En el caso de los elementos horizontales, la preocupación radica en la contribución que puede
tener la losa (monolíticamente construida con la viga) en la capacidad a flexión de la viga. El
aumento de la capacidad tiene lugar no por la contribución del patín de concreto en compresión,
sino más bien por el acero de la losa (que conforma el patín), cuando el patín esta tensionado.
Como resultado, en la “viga” fluye no solo el acero superior de la viga propiamente dicha, sino
también parte del acero superior e incluso inferior de la losa. No está bien definido el ancho de
la losa donde sus aceros fluyen. Depende entre otras cosas del nivel de solicitación. En efecto,
cuando por primera vez se está sobrepasando el refuerzo de fluencias en la viga se puede
suponer que el esfuerzo de la losa, en un ancho de Ln/10 a cada lado de la viga, fluye también.
Sin embargo, se ha visto en experimentos que luego de varios ciclos la cedencia en la losa se va
extendiendo incluso hasta abarcar todo el ancho de la misma.
La capacidad (momento máximo probable) en cada uno de los extremos de las vigas que llegan
a las columnas se calculan con la expresión:
𝑴𝒑𝒓 = 𝜶 𝑨𝒔 𝒇𝒚 (𝒅 −
𝜶 𝑨𝒔 𝒇𝒚
𝟏. 𝟕 𝒇′ 𝒄 𝒃
)
dónde:
α = factor de sobre-resistencia que toma en cuenta la colaboración de la losa, la
sobre-resistencia del acero, etc. (se toma = 1.4)
As = acero de refuerzo a ser colocado realmente en la viga
d = peralte a flexión de la viga = h – r
f’c = resistencia del hormigón
fy = límite de fluencia del acero
b = ancho de la viga
En su sección correspondiente, el comité del ACI especifica que la suma de las capacidades de
momento en las columnas que llegan al nudo deberá ser no menor que 1.2 (6/5) veces la suma
de las capacidades de momentos en las vigas que llegan al mismo nudo (ecuación 21.1 del ACI),
es decir:
Σ Mn columnas ≥ 1.2 Σ Mn vigas
y añade que para cuando al nudo llegan vigas en dos direcciones perpendiculares, la relación de
capacidades a momento se la revisará independientemente en cada dirección por separado.
CALCULO DEL CORTANTE EN VIGAS
Para garantizar ductilidad, las vigas tendrán suficiente resistencia a cortante, es decir, se debe
tratar de que fallen a flexión y no por corte, por lo tanto la fuerza cortante de diseño deberá ser
una buena aproximación del cortante máximo que se puede desarrollar en el elemento. Por lo
tanto la resistencia al corte requerida está relacionada con la resistencia a flexión del elemento,
en función a las armaduras a ser colocadas en la realidad, más que con las fuerzas cortantes
mayoradas obtenidas del análisis de la estructura bajo cargas laterales.
Debido a que la resistencia de fluencia real del acero casi siempre es mayor a la especificada y
también por la probabilidad de que ocurra endurecimiento por deformación, se recomienda
usar un esfuerzo de por lo menos 1.25 fy en el refuerzo longitudinal.
La fuerza cortante de diseño Vu, en las zonas de fluencia (rótulas plásticas) se determinará como
la suma del corte producido por cargas estáticas más el cortante correspondiente a la máxima
resistencia probable en los extremos Mpr basados en el esfuerzo de tracción del refuerzo. Los
momentos extremos del elemento deben considerarse en las dos direcciones, en el sentido
horario y sentido anti horario, debido a la reversibilidad del sismo.
𝑽𝒖 =
𝑾𝒖 𝒍𝒏
𝟐
+
𝑴𝒑𝒓𝒊 + 𝑴𝒑𝒓𝒅
𝒍𝒏
𝑾𝒖 = 𝟏. 𝟐 𝑫 + 𝟏. 𝟎 𝑳
𝑴𝒑𝒓 = 𝜶 𝑨𝒔 𝒇𝒚 (𝒅 −
𝜶 𝑨𝒔 𝒇𝒚
𝟏. 𝟕 𝒇′ 𝒄 𝒃
)
En este caso se tomará α = 1.25, por lo explicado.
Figura 4: momentos máximos probables en los extremos de una viga.
Cálculo del refuerzo por corte:
Dentro de las rótulas plásticas la contribución a cortante del concreto puede ser despreciada
Por otro lado:
Reemplazando y despejando se tiene que el área de acero requerida para resistir el corte será:
Donde s es el espaciamiento entre estribos.
Se colocarán estribos cerrados de confinamiento en las siguientes regiones:
a) En una longitud igual a dos veces el peralte de la viga (2h) desde la cara del apoyo
(columna) hacia el centro de la luz, en ambos extremos.
b) En longitudes iguales a 2h en sitios donde el análisis indique que puede ocurrir fluencia
por flexión.
Se respetarán los espaciamientos máximos establecidos por el ACI.
En cualquier otra zona de las vigas tenemos:
CALCULO DEL CORTANTE EN COLUMNAS
El cortante de diseño se calcula en función de la capacidad máxima a momento disponible en la
columna, es decir, en función del momento determinado en un diagrama de interacción, como
se lo explicó anteriormente.
Si la cantidad de acero para estribos calculada por corte es mayor que
la cantidad calculada por confinamiento, se debe mantener la
configuración y el espaciamiento a lo largo de toda la columna ya que
el corte es constante.

Weitere ähnliche Inhalte

Was ist angesagt?

Predimensionamiento 2006 ing. roberto morales
Predimensionamiento 2006   ing. roberto moralesPredimensionamiento 2006   ing. roberto morales
Predimensionamiento 2006 ing. roberto moralesTonny Crash
 
Diseño de Cimentaciones Carlos Magdaleno
Diseño de Cimentaciones  Carlos MagdalenoDiseño de Cimentaciones  Carlos Magdaleno
Diseño de Cimentaciones Carlos MagdalenoAdan Vazquez Rodriguez
 
Análisis de vigas de concreto armado
Análisis de vigas de concreto armadoAnálisis de vigas de concreto armado
Análisis de vigas de concreto armadoJosé Grimán Morales
 
Diseño de puentes -jack_lopez_jara_aci-peru
Diseño de puentes  -jack_lopez_jara_aci-peruDiseño de puentes  -jack_lopez_jara_aci-peru
Diseño de puentes -jack_lopez_jara_aci-perulheonarhd osorio
 
Diseño sísmico de edificaciones; problemas resueltos genner villarreal cast...
Diseño sísmico de edificaciones; problemas resueltos   genner villarreal cast...Diseño sísmico de edificaciones; problemas resueltos   genner villarreal cast...
Diseño sísmico de edificaciones; problemas resueltos genner villarreal cast...JORDYN BAGNER CORDOVA ALVARADO
 
Diseño de puente mixto (losa de concreto y vigas de acero)
Diseño de puente mixto (losa de concreto y vigas de acero)Diseño de puente mixto (losa de concreto y vigas de acero)
Diseño de puente mixto (losa de concreto y vigas de acero)Enrique Santana
 
Conexiones viga-columna
Conexiones viga-columnaConexiones viga-columna
Conexiones viga-columnaLisseth Gadvay
 
Formulario final concreto armado (2)
Formulario final concreto armado (2)Formulario final concreto armado (2)
Formulario final concreto armado (2)oscar torres
 
Norma e.020
Norma e.020Norma e.020
Norma e.020Ishaco10
 
Concreto-armado-introduccion-al-detallado
Concreto-armado-introduccion-al-detalladoConcreto-armado-introduccion-al-detallado
Concreto-armado-introduccion-al-detalladoRobinsonGermn
 
Diseño de columnas conceto 1
Diseño de columnas  conceto 1Diseño de columnas  conceto 1
Diseño de columnas conceto 1Julian Fernandez
 
Mathcad muros en contrafuerte
Mathcad muros en contrafuerteMathcad muros en contrafuerte
Mathcad muros en contrafuerteJhon Mejia Apaico
 
Libro ingenieria sismo resistente prácticas y exámenes upc
Libro ingenieria sismo resistente prácticas y exámenes upcLibro ingenieria sismo resistente prácticas y exámenes upc
Libro ingenieria sismo resistente prácticas y exámenes upcCesar Augusto Ramos Manrique
 

Was ist angesagt? (20)

Predimensionamiento 2006 ing. roberto morales
Predimensionamiento 2006   ing. roberto moralesPredimensionamiento 2006   ing. roberto morales
Predimensionamiento 2006 ing. roberto morales
 
Diseño de Cimentaciones Carlos Magdaleno
Diseño de Cimentaciones  Carlos MagdalenoDiseño de Cimentaciones  Carlos Magdaleno
Diseño de Cimentaciones Carlos Magdaleno
 
Análisis de vigas de concreto armado
Análisis de vigas de concreto armadoAnálisis de vigas de concreto armado
Análisis de vigas de concreto armado
 
Metrado de cargas
Metrado de cargasMetrado de cargas
Metrado de cargas
 
Columnas y características
Columnas y característicasColumnas y características
Columnas y características
 
Diseño de puentes -jack_lopez_jara_aci-peru
Diseño de puentes  -jack_lopez_jara_aci-peruDiseño de puentes  -jack_lopez_jara_aci-peru
Diseño de puentes -jack_lopez_jara_aci-peru
 
Cimentaciones - Roberto Morales
Cimentaciones - Roberto MoralesCimentaciones - Roberto Morales
Cimentaciones - Roberto Morales
 
Diseño sísmico de edificaciones; problemas resueltos genner villarreal cast...
Diseño sísmico de edificaciones; problemas resueltos   genner villarreal cast...Diseño sísmico de edificaciones; problemas resueltos   genner villarreal cast...
Diseño sísmico de edificaciones; problemas resueltos genner villarreal cast...
 
Predimensionamiento 2006
Predimensionamiento 2006Predimensionamiento 2006
Predimensionamiento 2006
 
Diseño de puente mixto (losa de concreto y vigas de acero)
Diseño de puente mixto (losa de concreto y vigas de acero)Diseño de puente mixto (losa de concreto y vigas de acero)
Diseño de puente mixto (losa de concreto y vigas de acero)
 
CONTRACCION Y RETRACCION DEL CONCRETO
 CONTRACCION Y RETRACCION DEL CONCRETO CONTRACCION Y RETRACCION DEL CONCRETO
CONTRACCION Y RETRACCION DEL CONCRETO
 
EJERCICIOS DE CIMENTACIÓN
EJERCICIOS DE CIMENTACIÓNEJERCICIOS DE CIMENTACIÓN
EJERCICIOS DE CIMENTACIÓN
 
Pilotes presentacion
Pilotes presentacionPilotes presentacion
Pilotes presentacion
 
Conexiones viga-columna
Conexiones viga-columnaConexiones viga-columna
Conexiones viga-columna
 
Formulario final concreto armado (2)
Formulario final concreto armado (2)Formulario final concreto armado (2)
Formulario final concreto armado (2)
 
Norma e.020
Norma e.020Norma e.020
Norma e.020
 
Concreto-armado-introduccion-al-detallado
Concreto-armado-introduccion-al-detalladoConcreto-armado-introduccion-al-detallado
Concreto-armado-introduccion-al-detallado
 
Diseño de columnas conceto 1
Diseño de columnas  conceto 1Diseño de columnas  conceto 1
Diseño de columnas conceto 1
 
Mathcad muros en contrafuerte
Mathcad muros en contrafuerteMathcad muros en contrafuerte
Mathcad muros en contrafuerte
 
Libro ingenieria sismo resistente prácticas y exámenes upc
Libro ingenieria sismo resistente prácticas y exámenes upcLibro ingenieria sismo resistente prácticas y exámenes upc
Libro ingenieria sismo resistente prácticas y exámenes upc
 

Andere mochten auch

Diseño por capacidad pique
Diseño por capacidad piqueDiseño por capacidad pique
Diseño por capacidad piquePool Escamilo
 
Perforacion en chimeneas www.mineriacapma.blogspot.com
Perforacion en chimeneas www.mineriacapma.blogspot.comPerforacion en chimeneas www.mineriacapma.blogspot.com
Perforacion en chimeneas www.mineriacapma.blogspot.comCesar Lenin Belito Tovar
 
2010.07.10 Tomas Guendelman
2010.07.10 Tomas Guendelman2010.07.10 Tomas Guendelman
2010.07.10 Tomas Guendelmanlaraditzel
 
2010.04.10 Daniel Torrealva
2010.04.10 Daniel Torrealva2010.04.10 Daniel Torrealva
2010.04.10 Daniel Torrealvalaraditzel
 
Problemas propuestos (amortiguado) y algo de teoría
Problemas propuestos (amortiguado) y algo de teoríaProblemas propuestos (amortiguado) y algo de teoría
Problemas propuestos (amortiguado) y algo de teoríaFátima Lds
 
Sistemas dinámicos varios grados de libertad
Sistemas dinámicos varios grados de libertadSistemas dinámicos varios grados de libertad
Sistemas dinámicos varios grados de libertadJulio Rayme Moroco
 
Sistemas de varios_gdl (2)
Sistemas de varios_gdl (2)Sistemas de varios_gdl (2)
Sistemas de varios_gdl (2)Wilson Nwhk
 

Andere mochten auch (11)

Diseño por capacidad pique
Diseño por capacidad piqueDiseño por capacidad pique
Diseño por capacidad pique
 
Análisis inelástico de edificios
Análisis inelástico de edificiosAnálisis inelástico de edificios
Análisis inelástico de edificios
 
Ejecución de piques verticales
Ejecución de piques verticalesEjecución de piques verticales
Ejecución de piques verticales
 
Perforacion en chimeneas www.mineriacapma.blogspot.com
Perforacion en chimeneas www.mineriacapma.blogspot.comPerforacion en chimeneas www.mineriacapma.blogspot.com
Perforacion en chimeneas www.mineriacapma.blogspot.com
 
2010.07.10 Tomas Guendelman
2010.07.10 Tomas Guendelman2010.07.10 Tomas Guendelman
2010.07.10 Tomas Guendelman
 
Configurac sismorresistente
Configurac sismorresistenteConfigurac sismorresistente
Configurac sismorresistente
 
2010.04.10 Daniel Torrealva
2010.04.10 Daniel Torrealva2010.04.10 Daniel Torrealva
2010.04.10 Daniel Torrealva
 
Problemas propuestos (amortiguado) y algo de teoría
Problemas propuestos (amortiguado) y algo de teoríaProblemas propuestos (amortiguado) y algo de teoría
Problemas propuestos (amortiguado) y algo de teoría
 
Sistemas dinámicos varios grados de libertad
Sistemas dinámicos varios grados de libertadSistemas dinámicos varios grados de libertad
Sistemas dinámicos varios grados de libertad
 
Diseño por desempeño
Diseño por desempeñoDiseño por desempeño
Diseño por desempeño
 
Sistemas de varios_gdl (2)
Sistemas de varios_gdl (2)Sistemas de varios_gdl (2)
Sistemas de varios_gdl (2)
 

Ähnlich wie Resumen diseño por capacidad

Comportamiento del concreto armado
Comportamiento del concreto armadoComportamiento del concreto armado
Comportamiento del concreto armadoIsabel Rincón
 
Temas de ormigon armado
Temas de ormigon armadoTemas de ormigon armado
Temas de ormigon armadogrupkarlos
 
198711067 teoria-desarrollada-i
198711067 teoria-desarrollada-i198711067 teoria-desarrollada-i
198711067 teoria-desarrollada-iMichel Rodriguez
 
columnas Cortas bajo carga axial
columnas Cortas bajo carga axialcolumnas Cortas bajo carga axial
columnas Cortas bajo carga axialRNLD123
 
estructuración y predimensionamiento
estructuración y predimensionamientoestructuración y predimensionamiento
estructuración y predimensionamientopatrick_amb
 
Conexiones viga-columna
Conexiones viga-columnaConexiones viga-columna
Conexiones viga-columnatauroxv
 
Columnasesbeltassometidasaflexo compresin
Columnasesbeltassometidasaflexo compresinColumnasesbeltassometidasaflexo compresin
Columnasesbeltassometidasaflexo compresinLUCIANORAMOSLUJAN
 
Deseño de vigas teoria elastica
Deseño de vigas teoria elasticaDeseño de vigas teoria elastica
Deseño de vigas teoria elasticapaolalewis
 
Detallado acero de refuerzo en Vigas de Concreto Armado
Detallado acero de refuerzo en Vigas de Concreto ArmadoDetallado acero de refuerzo en Vigas de Concreto Armado
Detallado acero de refuerzo en Vigas de Concreto ArmadoMiguel Sambrano
 
trabajo puentes diseño de seccion compuesta.docx
trabajo puentes diseño de seccion compuesta.docxtrabajo puentes diseño de seccion compuesta.docx
trabajo puentes diseño de seccion compuesta.docxJheysonMoralesvasque
 

Ähnlich wie Resumen diseño por capacidad (20)

06CAPITULO5.pdf
06CAPITULO5.pdf06CAPITULO5.pdf
06CAPITULO5.pdf
 
Comportamiento del concreto armado
Comportamiento del concreto armadoComportamiento del concreto armado
Comportamiento del concreto armado
 
Concreto1
Concreto1Concreto1
Concreto1
 
Temas de ormigon armado
Temas de ormigon armadoTemas de ormigon armado
Temas de ormigon armado
 
198711067 teoria-desarrollada-i
198711067 teoria-desarrollada-i198711067 teoria-desarrollada-i
198711067 teoria-desarrollada-i
 
columnas Cortas bajo carga axial
columnas Cortas bajo carga axialcolumnas Cortas bajo carga axial
columnas Cortas bajo carga axial
 
capitulo2.pdf
capitulo2.pdfcapitulo2.pdf
capitulo2.pdf
 
estructuración y predimensionamiento
estructuración y predimensionamientoestructuración y predimensionamiento
estructuración y predimensionamiento
 
adherencia.pdf
adherencia.pdfadherencia.pdf
adherencia.pdf
 
Paper de acero traducido
Paper de acero traducidoPaper de acero traducido
Paper de acero traducido
 
Conexiones viga-columna
Conexiones viga-columnaConexiones viga-columna
Conexiones viga-columna
 
Columnasesbeltassometidasaflexo compresin
Columnasesbeltassometidasaflexo compresinColumnasesbeltassometidasaflexo compresin
Columnasesbeltassometidasaflexo compresin
 
Deflexión
Deflexión Deflexión
Deflexión
 
Deseño de vigas teoria elastica
Deseño de vigas teoria elasticaDeseño de vigas teoria elastica
Deseño de vigas teoria elastica
 
Cap9 otazzi flexion 1
Cap9 otazzi flexion  1Cap9 otazzi flexion  1
Cap9 otazzi flexion 1
 
Ensayo cort oj
Ensayo cort ojEnsayo cort oj
Ensayo cort oj
 
Detallado acero de refuerzo en Vigas de Concreto Armado
Detallado acero de refuerzo en Vigas de Concreto ArmadoDetallado acero de refuerzo en Vigas de Concreto Armado
Detallado acero de refuerzo en Vigas de Concreto Armado
 
trabajo puentes diseño de seccion compuesta.docx
trabajo puentes diseño de seccion compuesta.docxtrabajo puentes diseño de seccion compuesta.docx
trabajo puentes diseño de seccion compuesta.docx
 
Modelos de histeresis Dr.Otani (traducción personal)
Modelos de histeresis Dr.Otani (traducción personal)Modelos de histeresis Dr.Otani (traducción personal)
Modelos de histeresis Dr.Otani (traducción personal)
 
concreto
concretoconcreto
concreto
 

Kürzlich hochgeladen

Portafolio Santiago Agudelo Duran 2024 -30
Portafolio Santiago Agudelo Duran 2024 -30Portafolio Santiago Agudelo Duran 2024 -30
Portafolio Santiago Agudelo Duran 2024 -30SantiagoAgudelo47
 
Torre agbar analisis arquitectonico.....
Torre agbar analisis arquitectonico.....Torre agbar analisis arquitectonico.....
Torre agbar analisis arquitectonico.....estefaniaortizsalina
 
Slaimen Barakat - SLIDESHARE TAREA 3.pdf
Slaimen Barakat - SLIDESHARE TAREA 3.pdfSlaimen Barakat - SLIDESHARE TAREA 3.pdf
Slaimen Barakat - SLIDESHARE TAREA 3.pdfslaimenbarakat
 
PLAN DE MANTENIMIENTO DE SISTEMAS DE AGUA CHONTAYOC.docx
PLAN DE MANTENIMIENTO DE SISTEMAS DE AGUA CHONTAYOC.docxPLAN DE MANTENIMIENTO DE SISTEMAS DE AGUA CHONTAYOC.docx
PLAN DE MANTENIMIENTO DE SISTEMAS DE AGUA CHONTAYOC.docxLeo Florez
 
GROPUIS Y WRIGHT DIPOSITIVA ARQUITECTURA DISEÑO MODERNIDAD
GROPUIS Y WRIGHT DIPOSITIVA ARQUITECTURA DISEÑO MODERNIDADGROPUIS Y WRIGHT DIPOSITIVA ARQUITECTURA DISEÑO MODERNIDAD
GROPUIS Y WRIGHT DIPOSITIVA ARQUITECTURA DISEÑO MODERNIDADGersonManuelRodrigue1
 
POESÍA ERÓTICA DEL SIGLO XVIII - SERIA Y CARNAL
POESÍA ERÓTICA DEL SIGLO XVIII - SERIA Y CARNALPOESÍA ERÓTICA DEL SIGLO XVIII - SERIA Y CARNAL
POESÍA ERÓTICA DEL SIGLO XVIII - SERIA Y CARNALEvaMaraMorenoLago1
 
Fundamentos de la Ergonomía y sus características principales
Fundamentos de la Ergonomía y sus características principalesFundamentos de la Ergonomía y sus características principales
Fundamentos de la Ergonomía y sus características principalesLuis Fernando Salgado
 
tema ilustrado 9 el inicio del reinado de juan carlos I
tema ilustrado 9 el inicio del reinado de juan carlos Itema ilustrado 9 el inicio del reinado de juan carlos I
tema ilustrado 9 el inicio del reinado de juan carlos Iirenecarmona12
 
Triptico de los derechos humanos pe señorees jaja
Triptico de los derechos humanos pe señorees jajaTriptico de los derechos humanos pe señorees jaja
Triptico de los derechos humanos pe señorees jajadayannanicolzuluetab
 
S7_ Grises y quebrados. semana 07 sesión 1
S7_ Grises y quebrados. semana 07 sesión 1S7_ Grises y quebrados. semana 07 sesión 1
S7_ Grises y quebrados. semana 07 sesión 1eje12345ja
 
Sofia Ospina Architecture and Design Portfolio
Sofia Ospina Architecture and Design PortfolioSofia Ospina Architecture and Design Portfolio
Sofia Ospina Architecture and Design Portfoliosofiospina94
 
GRUPO 1.pptx problemas oportunidades objetivos
GRUPO 1.pptx problemas oportunidades objetivosGRUPO 1.pptx problemas oportunidades objetivos
GRUPO 1.pptx problemas oportunidades objetivosCristianGmez22034
 
que son los planos arquitectónicos y tipos
que son los planos arquitectónicos y tiposque son los planos arquitectónicos y tipos
que son los planos arquitectónicos y tiposNikholIk1
 
secuencias de los figuras de cuadros y rectangulos
secuencias de los figuras de cuadros y rectangulossecuencias de los figuras de cuadros y rectangulos
secuencias de los figuras de cuadros y rectangulosRosarioLloglla
 
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...jose880240
 
Tríptico-en-homenaje-por-el-día-de-la-madre.pdf
Tríptico-en-homenaje-por-el-día-de-la-madre.pdfTríptico-en-homenaje-por-el-día-de-la-madre.pdf
Tríptico-en-homenaje-por-el-día-de-la-madre.pdfPowerRayo
 
CATALOGO 2024 DIA DE LA MADRE, presentación.pdf
CATALOGO 2024 DIA DE LA MADRE, presentación.pdfCATALOGO 2024 DIA DE LA MADRE, presentación.pdf
CATALOGO 2024 DIA DE LA MADRE, presentación.pdftortillasdemaizjf2
 
INICIOS DEL MOVIMIENTO MODERNO 1900-1930.pdf
INICIOS DEL MOVIMIENTO MODERNO 1900-1930.pdfINICIOS DEL MOVIMIENTO MODERNO 1900-1930.pdf
INICIOS DEL MOVIMIENTO MODERNO 1900-1930.pdfBrbara57940
 
La Bauhaus y la nueva tipografía en el diseño gráfico
La Bauhaus y la nueva tipografía en el diseño gráficoLa Bauhaus y la nueva tipografía en el diseño gráfico
La Bauhaus y la nueva tipografía en el diseño gráficoCristianLobo10
 

Kürzlich hochgeladen (20)

Portafolio Santiago Agudelo Duran 2024 -30
Portafolio Santiago Agudelo Duran 2024 -30Portafolio Santiago Agudelo Duran 2024 -30
Portafolio Santiago Agudelo Duran 2024 -30
 
Torre agbar analisis arquitectonico.....
Torre agbar analisis arquitectonico.....Torre agbar analisis arquitectonico.....
Torre agbar analisis arquitectonico.....
 
Slaimen Barakat - SLIDESHARE TAREA 3.pdf
Slaimen Barakat - SLIDESHARE TAREA 3.pdfSlaimen Barakat - SLIDESHARE TAREA 3.pdf
Slaimen Barakat - SLIDESHARE TAREA 3.pdf
 
PLAN DE MANTENIMIENTO DE SISTEMAS DE AGUA CHONTAYOC.docx
PLAN DE MANTENIMIENTO DE SISTEMAS DE AGUA CHONTAYOC.docxPLAN DE MANTENIMIENTO DE SISTEMAS DE AGUA CHONTAYOC.docx
PLAN DE MANTENIMIENTO DE SISTEMAS DE AGUA CHONTAYOC.docx
 
GROPUIS Y WRIGHT DIPOSITIVA ARQUITECTURA DISEÑO MODERNIDAD
GROPUIS Y WRIGHT DIPOSITIVA ARQUITECTURA DISEÑO MODERNIDADGROPUIS Y WRIGHT DIPOSITIVA ARQUITECTURA DISEÑO MODERNIDAD
GROPUIS Y WRIGHT DIPOSITIVA ARQUITECTURA DISEÑO MODERNIDAD
 
POESÍA ERÓTICA DEL SIGLO XVIII - SERIA Y CARNAL
POESÍA ERÓTICA DEL SIGLO XVIII - SERIA Y CARNALPOESÍA ERÓTICA DEL SIGLO XVIII - SERIA Y CARNAL
POESÍA ERÓTICA DEL SIGLO XVIII - SERIA Y CARNAL
 
Fundamentos de la Ergonomía y sus características principales
Fundamentos de la Ergonomía y sus características principalesFundamentos de la Ergonomía y sus características principales
Fundamentos de la Ergonomía y sus características principales
 
tema ilustrado 9 el inicio del reinado de juan carlos I
tema ilustrado 9 el inicio del reinado de juan carlos Itema ilustrado 9 el inicio del reinado de juan carlos I
tema ilustrado 9 el inicio del reinado de juan carlos I
 
Triptico de los derechos humanos pe señorees jaja
Triptico de los derechos humanos pe señorees jajaTriptico de los derechos humanos pe señorees jaja
Triptico de los derechos humanos pe señorees jaja
 
S7_ Grises y quebrados. semana 07 sesión 1
S7_ Grises y quebrados. semana 07 sesión 1S7_ Grises y quebrados. semana 07 sesión 1
S7_ Grises y quebrados. semana 07 sesión 1
 
Sofia Ospina Architecture and Design Portfolio
Sofia Ospina Architecture and Design PortfolioSofia Ospina Architecture and Design Portfolio
Sofia Ospina Architecture and Design Portfolio
 
GRUPO 1.pptx problemas oportunidades objetivos
GRUPO 1.pptx problemas oportunidades objetivosGRUPO 1.pptx problemas oportunidades objetivos
GRUPO 1.pptx problemas oportunidades objetivos
 
que son los planos arquitectónicos y tipos
que son los planos arquitectónicos y tiposque son los planos arquitectónicos y tipos
que son los planos arquitectónicos y tipos
 
DIAGNOSTICO URBANO DE DE LA ISLA DE COCHE
DIAGNOSTICO URBANO DE DE LA ISLA DE COCHEDIAGNOSTICO URBANO DE DE LA ISLA DE COCHE
DIAGNOSTICO URBANO DE DE LA ISLA DE COCHE
 
secuencias de los figuras de cuadros y rectangulos
secuencias de los figuras de cuadros y rectangulossecuencias de los figuras de cuadros y rectangulos
secuencias de los figuras de cuadros y rectangulos
 
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
 
Tríptico-en-homenaje-por-el-día-de-la-madre.pdf
Tríptico-en-homenaje-por-el-día-de-la-madre.pdfTríptico-en-homenaje-por-el-día-de-la-madre.pdf
Tríptico-en-homenaje-por-el-día-de-la-madre.pdf
 
CATALOGO 2024 DIA DE LA MADRE, presentación.pdf
CATALOGO 2024 DIA DE LA MADRE, presentación.pdfCATALOGO 2024 DIA DE LA MADRE, presentación.pdf
CATALOGO 2024 DIA DE LA MADRE, presentación.pdf
 
INICIOS DEL MOVIMIENTO MODERNO 1900-1930.pdf
INICIOS DEL MOVIMIENTO MODERNO 1900-1930.pdfINICIOS DEL MOVIMIENTO MODERNO 1900-1930.pdf
INICIOS DEL MOVIMIENTO MODERNO 1900-1930.pdf
 
La Bauhaus y la nueva tipografía en el diseño gráfico
La Bauhaus y la nueva tipografía en el diseño gráficoLa Bauhaus y la nueva tipografía en el diseño gráfico
La Bauhaus y la nueva tipografía en el diseño gráfico
 

Resumen diseño por capacidad

  • 1. EL DISEÑO POR CAPACIDAD EN ELEMENTOS DE HORMIGON ARMADO Ing. Nelson Salas INTRODUCCION El método de diseño por capacidad se desarrolló originalmente en Nueva Zelanda para estructuras de hormigón armado. En la actualidad ha sido aceptado internacionalmente y sus principios se han extendido también al diseño de estructuras de acero. Los estudios experimentales han permitido mejorar el entendimiento del comportamiento sísmico y del detallado que se debe realizar para fomentar un adecuado desempeño estructural. Se han desarrollado una serie de herramientas para que el ingeniero estructural fomente el comportamiento consistente, estable y controlado de las estructuras sismo resistentes, en lo fundamental podemos agruparlas en conceptos de diseño por capacidad, dinámica estructural e índices de daño. PRINCIPIOS DE DISEÑO El diseño por capacidad está basado en la formulación de una jerarquía en la resistencia de los componentes que conforman el sistema estructural para permitir la formación de un adecuado mecanismo de deformación plástica (mecanismo de falla), evitando la ocurrencia de fallas frágiles. Para ello se determinan ciertas zonas de la estructura sismo resistente que se diseñan y detallan para disipar energía en forma dúctil y estable y que se denominan comúnmente “rótulas plásticas”. Primeramente es necesario puntualizar sobre unas tres ideas muy conocidas por los ingenieros, y que tácitamente son asumidas dentro del desarrollo del tema. 1) Se considera que un edificio se comportará inelásticamente ante un sismo severo (sismo de diseño); caso contrario, las fuerzas horizontales deberán ser varias veces las que estipulan los códigos, para obtener un diseño elástico, el cual resultaría totalmente antieconómico. 2) Aquellas partes de la estructura que entrarán al rango inelástico deberán localizarse en las vigas y no en las columnas; es decir, el criterio de columna fuerte–viga débil debe prevalecer. 3) El concepto de “capacidad” primará en cada paso de un diseño sismo resistente, es decir en este caso, que las fuerzas en el nudo (o en las rótulas) dependen de las armaduras presentes en dichas zonas, es decir, las armaduras a ser colocadas realmente y no de las fuerzas encontradas al analizar la estructura. Figura 1: Comportamiento inelástico de una estructura.
  • 2. UBICACIÓN DE LA ROTULA PLASTICA En una estructura cuyo sistema resistente a carga sísmica esté constituido por columnas y vigas (sistema aporticado), y proyectado para que se comporte inelásticamente en el caso del sismo severo, es imprescindible que la rótula inelástica tenga lugar en las vigas y no en las columnas caso contrario la estabilidad global de la estructura se vería en serio riesgo. La excepción a esto tiene lugar, claro está, en la base de las columnas en el empotramiento de las mismas en la cimentación, donde deben presentarse las rótulas para completar el mecanismo de comportamiento inelástico de la estructura. Se presentan entonces dos problemas: primero el garantizar que se dé un comportamiento inelástico confiable, es decir por rotación inelástica en flexión y segundo, que éste comportamiento inelástico se manifieste en las vigas, fuera de los nudos. El primer punto es muy importante, y se podría sintetizarlo así: En todos y cada uno de los elementos estructurales, y ante todas las situaciones de carga posible, la capacidad a cortante tiene que ser mayor que la capacidad a flexión: es decir, se busca que la falla sea por flexión y no por cortante. La falla por flexión se manifiesta por rotación inelástica de la sección. Para conseguirlo, se debe diseñar el cortante teniendo en cuenta la máxima capacidad a flexión; el diseño a flexión deberá por su parte asegurar suficiente ductilidad de curvatura. El concepto de “capacidad” nada tiene que ver con las cargas exteriores aplicadas a las estructuras o al miembro, sino que implica la utilización de la armadura presente en la sección, cuyo esfuerzo para este cálculo puede ser mayor que el especificado; también puede ser necesario no utilizar factores de reducción de capacidad de carga Ø, puesto que, aunque suene extraño se puede afirmar que “la peor situación para el cortante se presenta cuando la columna está construida en forma perfecta “ en cuanto a flexión se refiere. Respecto al segundo punto, para que las rótulas inelásticas se presenten en las vigas y no en las columnas, las capacidades mínimas a flexión de las columnas deben ser mayores que las capacidades máximas a flexión de la viga (columna fuerte – viga débil). En ambos casos, las capacidades son nominales, y el esfuerzo del acero será fy, el especificado, es decir, no se considera el endurecimiento del acero por deformación, ya que lo único que interesa es establecer cuál de los dos elementos (la viga o la columna) entra en fluencia primero. Si bien es muy fácil enunciar el propósito, no lo es tanto su puesta en práctica. No existe todavía consenso exacto ni sobre la mínima capacidad de la columna ni sobre la máxima de la viga. CAPACIDAD EN COLUMNAS En efecto inclusive dadas la geometría, materiales y armado de columnas, su capacidad a flexión no es única. Las dos principales fuentes de discusión son: a) la carga axial que debe utilizarse para obtener la capacidad de la columna, y b) la necesidad de considerar los efectos de momento biaxiales en la misma
  • 3. Figura 2: Diagrama esquemático de interacción carga- momento en columnas. En efecto, en un diagrama de interacción carga-momento de una columna, ver fig. 2, se observa que su máxima capacidad a flexión, Mn, fluctúa entre Mb (momento balanceado), y Mo, acompañada de carga axial igual a cero respectivamente. El problema es, entonces, cual valor de Mn se debe usar. Como se indicó arriba, respuesta no está completamente definida; al reporte del comité ACI 352-85 no es explícito al respecto. Se puede sugerir dos recomendaciones: la primera, sugiere el uso de Mn asociado con Pn = 0. Se supone que esta es una posición conservadora, puesto que se deja de lado la carga axial presente en la columna, que ayudaría a resistir un momento mayor al menos en la zona por debajo de Pb, la segunda permite el uso de una mínima carga axial que se puede presentar en la columna, obtenida en el cálculo en base a las combinaciones de carga, es decir, Pn = Pd – Ps, (ver fig. 3), donde: Pn = carga axial nominal que servirá para obtener el momento resistente de la columna. Pd = carga axial debida a carga muerta. Ps = carga axial debida al sismo. Figura 3: Capacidad a flexión de una columna
  • 4. Respecto a la influencia de los momentos biaxiales, se puede decir que la capacidad nominal a flexión unidireccional de una columna puede verse drásticamente reducida con la inclusión de momento en dirección perpendicular. Depende de la magnitud de este último. El caso extremo se presentaría cuando los aceros de dos vigas perpendiculares entre sí, y que llegan a una misma columna, fluyan simultáneamente, provocando en la columna un estado de flexión biaxial máximo. Esto implicaría que el 100% de las fuerzas sísmicas actúan simultáneamente en ambas direcciones. Sin embargo, no existen consensos en aceptar la posibilidad real de esta situación. Si bien unos autores la defienden, la mayoría estima que es poco probable, aceptando que sería suficiente con revisar en cada sentido por separado, y mayorando la relación entre capacidades a flexión de columnas a vigas; el reporte ACI 352-85 comparte esta posición, una tercera posición sugiere la utilización del 100% de fuerzas sísmicas en una dirección y un 30% de ellas en la otra dirección. CAPACIDAD EN VIGAS En el caso de los elementos horizontales, la preocupación radica en la contribución que puede tener la losa (monolíticamente construida con la viga) en la capacidad a flexión de la viga. El aumento de la capacidad tiene lugar no por la contribución del patín de concreto en compresión, sino más bien por el acero de la losa (que conforma el patín), cuando el patín esta tensionado. Como resultado, en la “viga” fluye no solo el acero superior de la viga propiamente dicha, sino también parte del acero superior e incluso inferior de la losa. No está bien definido el ancho de la losa donde sus aceros fluyen. Depende entre otras cosas del nivel de solicitación. En efecto, cuando por primera vez se está sobrepasando el refuerzo de fluencias en la viga se puede suponer que el esfuerzo de la losa, en un ancho de Ln/10 a cada lado de la viga, fluye también. Sin embargo, se ha visto en experimentos que luego de varios ciclos la cedencia en la losa se va extendiendo incluso hasta abarcar todo el ancho de la misma. La capacidad (momento máximo probable) en cada uno de los extremos de las vigas que llegan a las columnas se calculan con la expresión: 𝑴𝒑𝒓 = 𝜶 𝑨𝒔 𝒇𝒚 (𝒅 − 𝜶 𝑨𝒔 𝒇𝒚 𝟏. 𝟕 𝒇′ 𝒄 𝒃 ) dónde: α = factor de sobre-resistencia que toma en cuenta la colaboración de la losa, la sobre-resistencia del acero, etc. (se toma = 1.4) As = acero de refuerzo a ser colocado realmente en la viga d = peralte a flexión de la viga = h – r f’c = resistencia del hormigón fy = límite de fluencia del acero b = ancho de la viga En su sección correspondiente, el comité del ACI especifica que la suma de las capacidades de momento en las columnas que llegan al nudo deberá ser no menor que 1.2 (6/5) veces la suma de las capacidades de momentos en las vigas que llegan al mismo nudo (ecuación 21.1 del ACI), es decir:
  • 5. Σ Mn columnas ≥ 1.2 Σ Mn vigas y añade que para cuando al nudo llegan vigas en dos direcciones perpendiculares, la relación de capacidades a momento se la revisará independientemente en cada dirección por separado. CALCULO DEL CORTANTE EN VIGAS Para garantizar ductilidad, las vigas tendrán suficiente resistencia a cortante, es decir, se debe tratar de que fallen a flexión y no por corte, por lo tanto la fuerza cortante de diseño deberá ser una buena aproximación del cortante máximo que se puede desarrollar en el elemento. Por lo tanto la resistencia al corte requerida está relacionada con la resistencia a flexión del elemento, en función a las armaduras a ser colocadas en la realidad, más que con las fuerzas cortantes mayoradas obtenidas del análisis de la estructura bajo cargas laterales. Debido a que la resistencia de fluencia real del acero casi siempre es mayor a la especificada y también por la probabilidad de que ocurra endurecimiento por deformación, se recomienda usar un esfuerzo de por lo menos 1.25 fy en el refuerzo longitudinal. La fuerza cortante de diseño Vu, en las zonas de fluencia (rótulas plásticas) se determinará como la suma del corte producido por cargas estáticas más el cortante correspondiente a la máxima resistencia probable en los extremos Mpr basados en el esfuerzo de tracción del refuerzo. Los momentos extremos del elemento deben considerarse en las dos direcciones, en el sentido horario y sentido anti horario, debido a la reversibilidad del sismo. 𝑽𝒖 = 𝑾𝒖 𝒍𝒏 𝟐 + 𝑴𝒑𝒓𝒊 + 𝑴𝒑𝒓𝒅 𝒍𝒏 𝑾𝒖 = 𝟏. 𝟐 𝑫 + 𝟏. 𝟎 𝑳 𝑴𝒑𝒓 = 𝜶 𝑨𝒔 𝒇𝒚 (𝒅 − 𝜶 𝑨𝒔 𝒇𝒚 𝟏. 𝟕 𝒇′ 𝒄 𝒃 ) En este caso se tomará α = 1.25, por lo explicado. Figura 4: momentos máximos probables en los extremos de una viga.
  • 6. Cálculo del refuerzo por corte: Dentro de las rótulas plásticas la contribución a cortante del concreto puede ser despreciada Por otro lado: Reemplazando y despejando se tiene que el área de acero requerida para resistir el corte será: Donde s es el espaciamiento entre estribos. Se colocarán estribos cerrados de confinamiento en las siguientes regiones: a) En una longitud igual a dos veces el peralte de la viga (2h) desde la cara del apoyo (columna) hacia el centro de la luz, en ambos extremos. b) En longitudes iguales a 2h en sitios donde el análisis indique que puede ocurrir fluencia por flexión. Se respetarán los espaciamientos máximos establecidos por el ACI. En cualquier otra zona de las vigas tenemos: CALCULO DEL CORTANTE EN COLUMNAS El cortante de diseño se calcula en función de la capacidad máxima a momento disponible en la columna, es decir, en función del momento determinado en un diagrama de interacción, como se lo explicó anteriormente.
  • 7. Si la cantidad de acero para estribos calculada por corte es mayor que la cantidad calculada por confinamiento, se debe mantener la configuración y el espaciamiento a lo largo de toda la columna ya que el corte es constante.