SlideShare ist ein Scribd-Unternehmen logo
1 von 31
The RSA Algorithm

JooSeok Song
2007. 11. 13. Tue
Private-Key Cryptography
 traditional private/secret/single key
cryptography uses one key
 shared by both sender and receiver
 if this key is disclosed communications are
compromised
 also is symmetric, parties are equal
 hence does not protect sender from receiver
forging a message & claiming is sent by sender

CCLAB
Public-Key Cryptography
 probably most significant advance in the 3000
year history of cryptography
 uses two keys – a public & a private key
 asymmetric since parties are not equal
 uses clever application of number theoretic
concepts to function
 complements rather than replaces private key
crypto

CCLAB
Public-Key Cryptography
 public-key/two-key/asymmetric cryptography
involves the use of two keys:
– a public-key, which may be known by anybody, and
can be used to encrypt messages, and verify
signatures
– a private-key, known only to the recipient, used to
decrypt messages, and sign (create) signatures

 is asymmetric because
– those who encrypt messages or verify signatures
cannot decrypt messages or create signatures

CCLAB
Public-Key Cryptography

CCLAB
Why Public-Key Cryptography?
 developed to address two key issues:
– key distribution – how to have secure communications
in general without having to trust a KDC with your key
– digital signatures – how to verify a message comes
intact from the claimed sender

 public invention due to Whitfield Diffie & Martin
Hellman at Stanford Uni in 1976
– known earlier in classified community

CCLAB
Public-Key Characteristics
 Public-Key algorithms rely on two keys with the
characteristics that it is:
– computationally infeasible to find decryption key
knowing only algorithm & encryption key
– computationally easy to en/decrypt messages when the
relevant (en/decrypt) key is known
– either of the two related keys can be used for
encryption, with the other used for decryption (in some
schemes)

CCLAB
Public-Key Cryptosystems

CCLAB
Public-Key Applications
 can classify uses into 3 categories:
– encryption/decryption (provide secrecy)
– digital signatures (provide authentication)
– key exchange (of session keys)

 some algorithms are suitable for all uses, others
are specific to one

CCLAB
Security of Public Key Schemes
 like private key schemes brute force exhaustive
search attack is always theoretically possible
 but keys used are too large (>512bits)
 security relies on a large enough difference in
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems
 more generally the hard problem is known, its
just made too hard to do in practise
 requires the use of very large numbers
 hence is slow compared to private key schemes
CCLAB
RSA
 by Rivest, Shamir & Adleman of MIT in 1977
 best known & widely used public-key scheme
 based on exponentiation in a finite (Galois) field
over integers modulo a prime
– nb. exponentiation takes O((log n)3) operations (easy)

 uses large integers (eg. 1024 bits)
 security due to cost of factoring large numbers
– nb. factorization takes O(e log n log log n) operations (hard)

CCLAB
RSA Key Setup
 each user generates a public/private key pair by:
 selecting two large primes at random - p, q
 computing their system modulus N=p.q
– note ø(N)=(p-1)(q-1)

 selecting at random the encryption key e
 where 1<e<ø(N), gcd(e,ø(N))=1

 solve following equation to find decryption key d
– e.d=1 mod ø(N) and 0≤d≤N

 publish their public encryption key: KU={e,N}
 keep secret private decryption key: KR={d,p,q}
CCLAB
RSA Use
 to encrypt a message M the sender:
– obtains public key of recipient KU={e,N}
– computes: C=Me mod N, where 0≤M<N

 to decrypt the ciphertext C the owner:
– uses their private key KR={d,p,q}
– computes: M=Cd mod N

 note that the message M must be smaller than
the modulus N (block if needed)

CCLAB
Prime Numbers
 prime numbers only have divisors of 1 and self
– they cannot be written as a product of other numbers
– note: 1 is prime, but is generally not of interest

 eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
 prime numbers are central to number theory
 list of prime number less than 200 is:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61
67 71 73 79 83 89 97 101 103 107 109 113 127 131
137 139 149 151 157 163 167 173 179 181 191 193
197 199

CCLAB
Prime Factorisation
 to factor a number n is to write it as a product of
other numbers: n=a × b × c
 note that factoring a number is relatively hard
compared to multiplying the factors together to
generate the number
 the prime factorisation of a number n is when its
written as a product of primes
– eg. 91=7×13 ; 3600=24×32×52

CCLAB
Relatively Prime Numbers & GCD
 two numbers a, b are relatively prime if have
no common divisors apart from 1
– eg. 8 & 15 are relatively prime since factors of 8 are
1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common
factor

 conversely can determine the greatest common
divisor by comparing their prime factorizations
and using least powers
– eg. 300=21×31×52 18=21×32 hence
GCD(18,300)=21×31×50=6

CCLAB
Fermat's Theorem
 ap-1 mod p = 1
– where p is prime and gcd(a,p)=1

 also known as Fermat’s Little Theorem
 useful in public key and primality testing

CCLAB
Euler Totient Function ø(n)
 when doing arithmetic modulo n
 complete set of residues is: 0..n-1
 reduced set of residues is those numbers
(residues) which are relatively prime to n
– eg for n=10,
– complete set of residues is {0,1,2,3,4,5,6,7,8,9}
– reduced set of residues is {1,3,7,9}

 number of elements in reduced set of residues is
called the Euler Totient Function ø(n)

CCLAB
Euler Totient Function ø(n)
 to compute ø(n) need to count number of
elements to be excluded
 in general need prime factorization, but
– for p (p prime) ø(p) = p-1
– for p.q (p,q prime)
ø(p.q) = (p-1)(q-1)

 eg.
– ø(37) = 36
– ø(21) = (3–1)×(7–1) = 2×6 = 12

CCLAB
Euler's Theorem
 a generalisation of Fermat's Theorem
 aø(n)mod N = 1
– where gcd(a,N)=1

 eg.
–
–
–
–

CCLAB

a=3;n=10;
hence 34 =
a=2;n=11;
hence 210 =

ø(10)=4;
81 = 1 mod 10
ø(11)=10;
1024 = 1 mod 11
Why RSA Works
 because of Euler's Theorem:
 aø(n)mod N = 1
– where gcd(a,N)=1

 in RSA have:
–
–
–
–

N=p.q
ø(N)=(p-1)(q-1)
carefully chosen e & d to be inverses mod ø(N)
hence e.d=1+k.ø(N) for some k

 hence :
Cd = (Me)d = M1+k.ø(N) = M1.(Mø(N))q = M1.(1)q =
M1 = M mod N

CCLAB
RSA Example
1.
2.
3.
4.
5.

Select primes: p=17 & q=11
Compute n = pq =17×11=187
Compute ø(n)=(p–1)(q-1)=16×10=160
Select e : gcd(e,160)=1; choose e=7
Determine d: de=1 mod 160 and d < 160
Value is d=23 since 23×7=161= 10×160+1
6. Publish public key KU={7,187}
7. Keep secret private key KR={23,17,11}

CCLAB
RSA Example cont
 sample RSA encryption/decryption is:
 given message M = 88 (nb. 88<187)
 encryption:
C = 887 mod 187 = 11

 decryption:
M = 1123 mod 187 = 88

CCLAB
Exponentiation
can use the Square and Multiply Algorithm
a fast, efficient algorithm for exponentiation
concept is based on repeatedly squaring base
and multiplying in the ones that are needed to
compute the result
 look at binary representation of exponent
 only takes O(log2 n) multiples for number n





– eg. 75 = 74.71 = 3.7 = 10 mod 11
– eg. 3129 = 3128.31 = 5.3 = 4 mod 11
CCLAB
Exponentiation

CCLAB
RSA Key Generation
 users of RSA must:
– determine two primes at random - p, q
– select either e or d and compute the other

 primes p,q must not be easily derived from
modulus N=p.q
– means must be sufficiently large
– typically guess and use probabilistic test

 exponents e, d are inverses, so use Inverse
algorithm to compute the other

CCLAB
RSA Security
 three approaches to attacking RSA:
– brute force key search (infeasible given size of
numbers)
– mathematical attacks (based on difficulty of computing
ø(N), by factoring modulus N)
– timing attacks (on running of decryption)

CCLAB
Factoring Problem
 mathematical approach takes 3 forms:
– factor N=p.q, hence find ø(N) and then d
– determine ø(N) directly and find d
– find d directly

 currently believe all equivalent to factoring
– have seen slow improvements over the years
 as of Aug-99 best is 130 decimal digits (512) bit with GNFS

– biggest improvement comes from improved algorithm
 cf “Quadratic Sieve” to “Generalized Number Field Sieve”

– barring dramatic breakthrough 1024+ bit RSA secure
 ensure p, q of similar size and matching other constraints

CCLAB
Timing Attacks
 developed in mid-1990’s
 exploit timing variations in operations
– eg. multiplying by small vs large number
– or IF's varying which instructions executed

 infer operand size based on time taken
 RSA exploits time taken in exponentiation
 countermeasures
– use constant exponentiation time
– add random delays
– blind values used in calculations

CCLAB
Summary
 have considered:
–
–
–
–
–
–
–

CCLAB

prime numbers
Fermat’s and Euler’s Theorems
Primality Testing
Chinese Remainder Theorem
Discrete Logarithms
principles of public-key cryptography
RSA algorithm, implementation, security
Assignments
1. Perform encryption and decryption using RSA
algorithm, as in Figure 1, for the following:
a. p = 3; q = 11, e = 7; M = 5
b. p = 5; q = 11, e = 3; M = 9
Encryption
Plaintext
88

887 mod 187 = 11

Decryption
Ciphertext
11

1123 mod 187 = 88

KU = 7, 187
KR = 23, 187
Figure 1. Example of RSA Algorithm

Plaintext
88

2. In a public-key system using RSA, you intercept
the ciphertext C = 10 sent to a user whose public
key is e = 5, n = 35. What is the plaintext M?
CCLAB

31

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Secure Socket Layer
Secure Socket LayerSecure Socket Layer
Secure Socket Layer
 
Cryptography
CryptographyCryptography
Cryptography
 
Encryption algorithms
Encryption algorithmsEncryption algorithms
Encryption algorithms
 
Key management
Key managementKey management
Key management
 
Rsa cryptosystem
Rsa cryptosystemRsa cryptosystem
Rsa cryptosystem
 
Rsa
RsaRsa
Rsa
 
Elliptic curve cryptography
Elliptic curve cryptographyElliptic curve cryptography
Elliptic curve cryptography
 
RSA ALGORITHM
RSA ALGORITHMRSA ALGORITHM
RSA ALGORITHM
 
Topic1 substitution transposition-techniques
Topic1 substitution transposition-techniquesTopic1 substitution transposition-techniques
Topic1 substitution transposition-techniques
 
Rsa algorithm (rivest shamir-adleman)
Rsa algorithm (rivest shamir-adleman)Rsa algorithm (rivest shamir-adleman)
Rsa algorithm (rivest shamir-adleman)
 
Cryptography
CryptographyCryptography
Cryptography
 
Symmetric & Asymmetric Cryptography
Symmetric & Asymmetric CryptographySymmetric & Asymmetric Cryptography
Symmetric & Asymmetric Cryptography
 
Introduction to Cryptography
Introduction to CryptographyIntroduction to Cryptography
Introduction to Cryptography
 
Cryptography and Network security # Lecture 4
Cryptography and Network security # Lecture 4Cryptography and Network security # Lecture 4
Cryptography and Network security # Lecture 4
 
History of cryptography
History of cryptographyHistory of cryptography
History of cryptography
 
Email security
Email securityEmail security
Email security
 
Cryptography
CryptographyCryptography
Cryptography
 
Cryptography Fundamentals
Cryptography FundamentalsCryptography Fundamentals
Cryptography Fundamentals
 
Symmetric encryption
Symmetric encryptionSymmetric encryption
Symmetric encryption
 
The rsa algorithm
The rsa algorithmThe rsa algorithm
The rsa algorithm
 

Ähnlich wie The rsa algorithm JooSeok Song

Ähnlich wie The rsa algorithm JooSeok Song (20)

The rsa algorithm
The rsa algorithmThe rsa algorithm
The rsa algorithm
 
The rsa algorithm
The rsa algorithmThe rsa algorithm
The rsa algorithm
 
Ch09
Ch09Ch09
Ch09
 
Rsa
RsaRsa
Rsa
 
ch09_rsa_nemo.ppt
ch09_rsa_nemo.pptch09_rsa_nemo.ppt
ch09_rsa_nemo.ppt
 
Unit --3.ppt
Unit --3.pptUnit --3.ppt
Unit --3.ppt
 
RSA Algm.pptx
RSA Algm.pptxRSA Algm.pptx
RSA Algm.pptx
 
Introduction to cryptography
Introduction to cryptographyIntroduction to cryptography
Introduction to cryptography
 
Information and network security 33 rsa algorithm
Information and network security 33 rsa algorithmInformation and network security 33 rsa algorithm
Information and network security 33 rsa algorithm
 
3 pkc+rsa
3 pkc+rsa3 pkc+rsa
3 pkc+rsa
 
PUBLIC KEY & RSA.ppt
PUBLIC KEY & RSA.pptPUBLIC KEY & RSA.ppt
PUBLIC KEY & RSA.ppt
 
Public-Key Cryptography.pdfWrite the result of the following operation with t...
Public-Key Cryptography.pdfWrite the result of the following operation with t...Public-Key Cryptography.pdfWrite the result of the following operation with t...
Public-Key Cryptography.pdfWrite the result of the following operation with t...
 
CNS.ppt
CNS.pptCNS.ppt
CNS.ppt
 
RSA & MD5 algorithm
RSA & MD5 algorithmRSA & MD5 algorithm
RSA & MD5 algorithm
 
Rsa diffi-network security-itt
Rsa diffi-network security-ittRsa diffi-network security-itt
Rsa diffi-network security-itt
 
PKC&RSA
PKC&RSAPKC&RSA
PKC&RSA
 
Cryptography
CryptographyCryptography
Cryptography
 
Lecture6 rsa
Lecture6 rsaLecture6 rsa
Lecture6 rsa
 
An implementation of RSA policy
An implementation of RSA policyAn implementation of RSA policy
An implementation of RSA policy
 
F010243136
F010243136F010243136
F010243136
 

Mehr von Information Security Awareness Group

Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...Information Security Awareness Group
 
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
 Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf... Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...Information Security Awareness Group
 
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...Information Security Awareness Group
 
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...Information Security Awareness Group
 
Big data analysis concepts and references by Cloud Security Alliance
Big data analysis concepts and references by Cloud Security AllianceBig data analysis concepts and references by Cloud Security Alliance
Big data analysis concepts and references by Cloud Security AllianceInformation Security Awareness Group
 
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...
 Authorization Policy in a PKI Environment  Mary Thompson Srilekha Mudumbai A... Authorization Policy in a PKI Environment  Mary Thompson Srilekha Mudumbai A...
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...Information Security Awareness Group
 
Introduction to distributed security concepts and public key infrastructure m...
Introduction to distributed security concepts and public key infrastructure m...Introduction to distributed security concepts and public key infrastructure m...
Introduction to distributed security concepts and public key infrastructure m...Information Security Awareness Group
 
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...Information Security Awareness Group
 
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...Information Security Awareness Group
 

Mehr von Information Security Awareness Group (20)

Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
Securing the Data in Big Data Security Analytics by Kevin Bowers, Nikos Trian...
 
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
 Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf... Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
Mobile Device Security by Michael Gong, Jake Kreider, Chris Lugo, Kwame Osaf...
 
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
Mobile Devices – Using Without Losing Mark K. Mellis, Associate Information S...
 
IBM Security Strategy Intelligence,
IBM Security Strategy Intelligence,IBM Security Strategy Intelligence,
IBM Security Strategy Intelligence,
 
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
Addressing Big Data Security Challenges: The Right Tools for Smart Protection...
 
Big data analysis concepts and references by Cloud Security Alliance
Big data analysis concepts and references by Cloud Security AllianceBig data analysis concepts and references by Cloud Security Alliance
Big data analysis concepts and references by Cloud Security Alliance
 
Big data analysis concepts and references
Big data analysis concepts and referencesBig data analysis concepts and references
Big data analysis concepts and references
 
PKI by Tim Polk
PKI by Tim PolkPKI by Tim Polk
PKI by Tim Polk
 
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...
 Authorization Policy in a PKI Environment  Mary Thompson Srilekha Mudumbai A... Authorization Policy in a PKI Environment  Mary Thompson Srilekha Mudumbai A...
Authorization Policy in a PKI Environment Mary Thompson Srilekha Mudumbai A...
 
Pki by Steve Lamb
Pki by Steve LambPki by Steve Lamb
Pki by Steve Lamb
 
PKI by Gene Itkis
PKI by Gene ItkisPKI by Gene Itkis
PKI by Gene Itkis
 
Introduction to distributed security concepts and public key infrastructure m...
Introduction to distributed security concepts and public key infrastructure m...Introduction to distributed security concepts and public key infrastructure m...
Introduction to distributed security concepts and public key infrastructure m...
 
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
OThe Open Science Grid: Concepts and Patterns Ruth Pordes, Mine Altunay, Bria...
 
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
Optimal Security Response to Attacks on Open Science Grids Mine Altunay, Sven...
 
THE OPEN SCIENCE GRID Ruth Pordes
THE OPEN SCIENCE GRID Ruth PordesTHE OPEN SCIENCE GRID Ruth Pordes
THE OPEN SCIENCE GRID Ruth Pordes
 
Open Science Grid security-atlas-t2 Bob Cowles
Open Science Grid security-atlas-t2 Bob CowlesOpen Science Grid security-atlas-t2 Bob Cowles
Open Science Grid security-atlas-t2 Bob Cowles
 
Security Open Science Grid Doug Olson
Security Open Science Grid Doug OlsonSecurity Open Science Grid Doug Olson
Security Open Science Grid Doug Olson
 
Open Science Group Security Kevin Hill
Open Science Group Security Kevin HillOpen Science Group Security Kevin Hill
Open Science Group Security Kevin Hill
 
Xrootd proxies Andrew Hanushevsky
Xrootd proxies Andrew HanushevskyXrootd proxies Andrew Hanushevsky
Xrootd proxies Andrew Hanushevsky
 
Privilege Project Vikram Andem
Privilege Project Vikram AndemPrivilege Project Vikram Andem
Privilege Project Vikram Andem
 

Kürzlich hochgeladen

Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 

Kürzlich hochgeladen (20)

Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 

The rsa algorithm JooSeok Song

  • 1. The RSA Algorithm JooSeok Song 2007. 11. 13. Tue
  • 2. Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed communications are compromised  also is symmetric, parties are equal  hence does not protect sender from receiver forging a message & claiming is sent by sender CCLAB
  • 3. Public-Key Cryptography  probably most significant advance in the 3000 year history of cryptography  uses two keys – a public & a private key  asymmetric since parties are not equal  uses clever application of number theoretic concepts to function  complements rather than replaces private key crypto CCLAB
  • 4. Public-Key Cryptography  public-key/two-key/asymmetric cryptography involves the use of two keys: – a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures – a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures  is asymmetric because – those who encrypt messages or verify signatures cannot decrypt messages or create signatures CCLAB
  • 6. Why Public-Key Cryptography?  developed to address two key issues: – key distribution – how to have secure communications in general without having to trust a KDC with your key – digital signatures – how to verify a message comes intact from the claimed sender  public invention due to Whitfield Diffie & Martin Hellman at Stanford Uni in 1976 – known earlier in classified community CCLAB
  • 7. Public-Key Characteristics  Public-Key algorithms rely on two keys with the characteristics that it is: – computationally infeasible to find decryption key knowing only algorithm & encryption key – computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known – either of the two related keys can be used for encryption, with the other used for decryption (in some schemes) CCLAB
  • 9. Public-Key Applications  can classify uses into 3 categories: – encryption/decryption (provide secrecy) – digital signatures (provide authentication) – key exchange (of session keys)  some algorithms are suitable for all uses, others are specific to one CCLAB
  • 10. Security of Public Key Schemes  like private key schemes brute force exhaustive search attack is always theoretically possible  but keys used are too large (>512bits)  security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems  more generally the hard problem is known, its just made too hard to do in practise  requires the use of very large numbers  hence is slow compared to private key schemes CCLAB
  • 11. RSA  by Rivest, Shamir & Adleman of MIT in 1977  best known & widely used public-key scheme  based on exponentiation in a finite (Galois) field over integers modulo a prime – nb. exponentiation takes O((log n)3) operations (easy)  uses large integers (eg. 1024 bits)  security due to cost of factoring large numbers – nb. factorization takes O(e log n log log n) operations (hard) CCLAB
  • 12. RSA Key Setup  each user generates a public/private key pair by:  selecting two large primes at random - p, q  computing their system modulus N=p.q – note ø(N)=(p-1)(q-1)  selecting at random the encryption key e  where 1<e<ø(N), gcd(e,ø(N))=1  solve following equation to find decryption key d – e.d=1 mod ø(N) and 0≤d≤N  publish their public encryption key: KU={e,N}  keep secret private decryption key: KR={d,p,q} CCLAB
  • 13. RSA Use  to encrypt a message M the sender: – obtains public key of recipient KU={e,N} – computes: C=Me mod N, where 0≤M<N  to decrypt the ciphertext C the owner: – uses their private key KR={d,p,q} – computes: M=Cd mod N  note that the message M must be smaller than the modulus N (block if needed) CCLAB
  • 14. Prime Numbers  prime numbers only have divisors of 1 and self – they cannot be written as a product of other numbers – note: 1 is prime, but is generally not of interest  eg. 2,3,5,7 are prime, 4,6,8,9,10 are not  prime numbers are central to number theory  list of prime number less than 200 is: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 CCLAB
  • 15. Prime Factorisation  to factor a number n is to write it as a product of other numbers: n=a × b × c  note that factoring a number is relatively hard compared to multiplying the factors together to generate the number  the prime factorisation of a number n is when its written as a product of primes – eg. 91=7×13 ; 3600=24×32×52 CCLAB
  • 16. Relatively Prime Numbers & GCD  two numbers a, b are relatively prime if have no common divisors apart from 1 – eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor  conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers – eg. 300=21×31×52 18=21×32 hence GCD(18,300)=21×31×50=6 CCLAB
  • 17. Fermat's Theorem  ap-1 mod p = 1 – where p is prime and gcd(a,p)=1  also known as Fermat’s Little Theorem  useful in public key and primality testing CCLAB
  • 18. Euler Totient Function ø(n)  when doing arithmetic modulo n  complete set of residues is: 0..n-1  reduced set of residues is those numbers (residues) which are relatively prime to n – eg for n=10, – complete set of residues is {0,1,2,3,4,5,6,7,8,9} – reduced set of residues is {1,3,7,9}  number of elements in reduced set of residues is called the Euler Totient Function ø(n) CCLAB
  • 19. Euler Totient Function ø(n)  to compute ø(n) need to count number of elements to be excluded  in general need prime factorization, but – for p (p prime) ø(p) = p-1 – for p.q (p,q prime) ø(p.q) = (p-1)(q-1)  eg. – ø(37) = 36 – ø(21) = (3–1)×(7–1) = 2×6 = 12 CCLAB
  • 20. Euler's Theorem  a generalisation of Fermat's Theorem  aø(n)mod N = 1 – where gcd(a,N)=1  eg. – – – – CCLAB a=3;n=10; hence 34 = a=2;n=11; hence 210 = ø(10)=4; 81 = 1 mod 10 ø(11)=10; 1024 = 1 mod 11
  • 21. Why RSA Works  because of Euler's Theorem:  aø(n)mod N = 1 – where gcd(a,N)=1  in RSA have: – – – – N=p.q ø(N)=(p-1)(q-1) carefully chosen e & d to be inverses mod ø(N) hence e.d=1+k.ø(N) for some k  hence : Cd = (Me)d = M1+k.ø(N) = M1.(Mø(N))q = M1.(1)q = M1 = M mod N CCLAB
  • 22. RSA Example 1. 2. 3. 4. 5. Select primes: p=17 & q=11 Compute n = pq =17×11=187 Compute ø(n)=(p–1)(q-1)=16×10=160 Select e : gcd(e,160)=1; choose e=7 Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23×7=161= 10×160+1 6. Publish public key KU={7,187} 7. Keep secret private key KR={23,17,11} CCLAB
  • 23. RSA Example cont  sample RSA encryption/decryption is:  given message M = 88 (nb. 88<187)  encryption: C = 887 mod 187 = 11  decryption: M = 1123 mod 187 = 88 CCLAB
  • 24. Exponentiation can use the Square and Multiply Algorithm a fast, efficient algorithm for exponentiation concept is based on repeatedly squaring base and multiplying in the ones that are needed to compute the result  look at binary representation of exponent  only takes O(log2 n) multiples for number n     – eg. 75 = 74.71 = 3.7 = 10 mod 11 – eg. 3129 = 3128.31 = 5.3 = 4 mod 11 CCLAB
  • 26. RSA Key Generation  users of RSA must: – determine two primes at random - p, q – select either e or d and compute the other  primes p,q must not be easily derived from modulus N=p.q – means must be sufficiently large – typically guess and use probabilistic test  exponents e, d are inverses, so use Inverse algorithm to compute the other CCLAB
  • 27. RSA Security  three approaches to attacking RSA: – brute force key search (infeasible given size of numbers) – mathematical attacks (based on difficulty of computing ø(N), by factoring modulus N) – timing attacks (on running of decryption) CCLAB
  • 28. Factoring Problem  mathematical approach takes 3 forms: – factor N=p.q, hence find ø(N) and then d – determine ø(N) directly and find d – find d directly  currently believe all equivalent to factoring – have seen slow improvements over the years  as of Aug-99 best is 130 decimal digits (512) bit with GNFS – biggest improvement comes from improved algorithm  cf “Quadratic Sieve” to “Generalized Number Field Sieve” – barring dramatic breakthrough 1024+ bit RSA secure  ensure p, q of similar size and matching other constraints CCLAB
  • 29. Timing Attacks  developed in mid-1990’s  exploit timing variations in operations – eg. multiplying by small vs large number – or IF's varying which instructions executed  infer operand size based on time taken  RSA exploits time taken in exponentiation  countermeasures – use constant exponentiation time – add random delays – blind values used in calculations CCLAB
  • 30. Summary  have considered: – – – – – – – CCLAB prime numbers Fermat’s and Euler’s Theorems Primality Testing Chinese Remainder Theorem Discrete Logarithms principles of public-key cryptography RSA algorithm, implementation, security
  • 31. Assignments 1. Perform encryption and decryption using RSA algorithm, as in Figure 1, for the following: a. p = 3; q = 11, e = 7; M = 5 b. p = 5; q = 11, e = 3; M = 9 Encryption Plaintext 88 887 mod 187 = 11 Decryption Ciphertext 11 1123 mod 187 = 88 KU = 7, 187 KR = 23, 187 Figure 1. Example of RSA Algorithm Plaintext 88 2. In a public-key system using RSA, you intercept the ciphertext C = 10 sent to a user whose public key is e = 5, n = 35. What is the plaintext M? CCLAB 31