SlideShare ist ein Scribd-Unternehmen logo
1 von 26
Paths of planets, satellites and comets are
beautiful curves called conic sections. They
are obtained when a cone is intersected by a
plane surface.
       And also they have many other
beautiful and interesting facts about them.
For example they are such curves that
distance from any point on the curve from a
fixed point bears a constant ratio to distance
from a fixed st line.
A cone cut by a plane
                                                                                                                   a)Perpendicular to its
            Different
                                                                                                                   axis of the cone gives
            Sections Of
                                                                                                                   a circle, if not
            A Double
                                                                                                                   through its vertex;
            Cone
                                                                                                                   through the vertex
                                                                                                                   only a point is got.
                                                                                                                   b) In an angle with
                                                                                                                   the axis, gives an
                                                                                                                   ellipse.
                                                                                                                   c) Parallel to its slant
                                                                                                                   height or generator
                                                                                                                   gives a parabola.
                                                                                                                   d) Parallel to its
                                                                                                                   axis, gives two
                                                                                                                   branches of a
 Fig 1a       Fig1b               Fig 1c                    Fig 1d
                                                                                                                   hyperbola.
 circle       ellipse             parabola                  hyperbola


Fig 1 : Conic sections. a) plane section perpendicular to axis of cone – circle, if it is through the vertex , a
                                                                                                                   e) Through the
point.
                                          b) plane section with an angle with a plane perpendicular to axis
                                                                                                                   axis, gives two
                                   any of the generators – ellipse.
of cone and not parallel to
                                          c) plane section parallel to a generator of the cone – parabola .
                                                                                                                   straight lines.
                                          d) plane section parallel to axis of cone not through it – hyperbola,
                                                    if through the axis of the cone – two straight lines.
We know the axis of earth always
                     The pole star
ORBIT OF                             points towards the pole star. In fact
                                     that is the reason of changing seasons.
THE EARTH
                                     If every point of the orbit is joined to
                                     the pole star, we get a cone ; not an odd
                                     shaped one, but a round smooth one
                                     called a right circular cone.
                                     Again the Sun is not placed at its
                                     center; but a t point called its focus, far
                                     away from the center.
                                     Planets and satellites move in elliptical
                                     orbits
                                     Comets who are seen periodically
                                     move around the Sun in vey long
                                     elliptical orbits.
    The Earth
                                     Some travelling comets at high speed
                                     are not captured by the Sun, they just
                                     bend around it once and pass away in
                                     parabolic orbits.
                                     Still some comets are in so high speed
                                     that they are deflected back from the
                                     Sun and turn away in hyperbolic
                                     orbits. This is some sort of collision.
                The Sun
Conic sections are
THE ‘ECCENTRICITY’ OF A CONIC SECTION
                                                                   curves such that ratio
                                                                   of distance from any
                                                                   point on it from a
                                                                   fixed point, called
                                                                   focus,      bears      a
                                                                   constant ratio ‘e’ or
                                                                   eccentricity to its
                                                                   distance from a fixed
                                                                   straight line, called
 The Circle and the ellipse are bound orbits. The moon’s
                                                                   directrix.     The
 orbit is almost circular orbit. Orbit of the earth is
 elliptical. Bodies with total energy negative are captured        curve is a circle if
 and move in bound orbits. This means potential energy of
                                                                   e = 0, ellipse if e <
 attraction exceeds kinetic energy which is always
 positive. Parabola is the orbit of a planet or comet
                                                                   1, parabola if e =
 critically captured; it takes a turn and escapes the other
 way, in ‘escape velocity’ corresponding to zero total
                                                                   1, hyperbola if e >
 energy of the escaping body. The body possesses total
                                                                   1, and two st lines if
 energy positive, i.e., it is in high velocity, outweighing
 attractive forces, it is deflected in hyperbolic orbit. This is
                                                                   e = ∞.
 some sort of collision, nay collision broader sense.
Equation of an ellipse
                                                             Y
                                                                                                    2               2
                                                                                            x                   y
                                                                                                                            1
                                                                                                    2               2
                                                                                            a                   a

                                                                     P

                                                                 a
                                                                         Q (x y)

                                                     O

     X’                                                                                                                         X
                  M                                  b               R                          N




                          2
              2
                      y
          x
                                      1                                                         2
                                                                                2
              2           2                                                                 y
                                                                            x
          a           b                                                                                     1
                                                                                2               2
                                                     Y’                     b               b




                                                                                                                                    2       2
    Let the eqn. of the circle be written in form                                                                                                   ……………………………………..………….(a)
                                                                                                                                X       Y
                                                                                                                                                1
                                                                                                                                    2       2
                                                                                                                                a       a

    Transform the coordinates to x and y ,only by compressing Y coordinates by a factor b/a
     where b/a < 1;i.e.,x = X, and y = b .Y/a ; OR X = x and Y = a .y/b.………………………………….(b)
    The curve PMN is now changed to the curve QMN because of the transformation of coordinates
    to new coordinates x and y. A relationship between x and y shall be its equation. Since x and y are
    related to X and Y as in (b) and X and Y are related to each other as in (a), we can rewrite (a) as,
                                                 2
                                           2
                                          ay                                            2                   2
                                                                                    x                   y
                                  2
                              x             2
                                          b                                                                             1
                                                         1                              2                   2
                                                                                    a                   b
                                  2          2
                          a                a

    which is the only one relationship between x and y we sought for, and becomes the eqn. of the
    new curve ( called ellipse).
A meaning Of eccentricity ‘e’
The circle has a centre and the ellipse has also a centre. But
the centre of the ellipse is not that important as the centre of
the circle. The ellipse has no such radial symmetry as in the
case of circle. Instead, there are two other points of importance
along the main axis or the major axis , one on each side of the
center , each being called a focus. How far the focus is moved
from the center so that the circle is flattened to become an
ellipse is measured by its eccentricity. We explore below how
the focus and eccentricity are related .
In the eqn.of the ellipse , put b = fa or b/a = f, (evidently f <
1, as b < a). This reduces the eqn tox2f2 + y2 =
a2f2…………….(a)
          The left side looks like square of a distance (as we
knew distance formula between the points (x, y) and (x1, y1), d
=√{(x- x1) 2+ (y- y1) 2} and the form of the equation indicates us
to make the expression a complete square so as to see what
distance it might be. Put e2 = 1 – f2 (certainly we can, as f < 1)
so that x2f2 becomes
 x2 (1 – e2 ), and a2f2 becomes a2 (1 – e2 ), Thus the eqn.
becomes
          x2 + a2e2 + y2 = a2 + e2x2
In further endeavour to complete squares, we add – 2aex to
both sides and get (x – ae)2 + (y – 0)2 = e2(x – a/e)2………..(b)
Spokes of a wheel being pulled by two
Visualisation of e   rods called directrices; the center splits
                     into two points moved away from each
                     other called foci.
The sum of focal distances from any point on the
ellipse = 2a, the major axis.
 Choose the origin midway between the
 two fixed points and choose the x-axis
 along the line joining the two fixed
 points. There is no loss of generality as
 we can shift the origin and the axes later
 as we please. Thus the coordinates of
 the two fixed points may be taken as
 (k, 0) and ( - k, 0) ; or as (ae, 0) and
  ( - ae, 0) if we denote k /a = e. Later on
 we would observe that this is really the
 eccentricity e. If (x, y) be the
 coordinates of the point , the sum of
 whose distances from (ae, 0) and
  ( - ae, 0) is 2a; we have, the steps are:
                  ( x ae ), y
                                     2            2                          2               2
      ( x ae ) y              2a

         2           2       2                2                              2               2                                2       2               2
 2x          2a e                        2y           2 (x            ae )               y           (x           ae )            y           4a

                                                                                                                                                          2
                                                          2                                                               2
         2       2       2               2            2                          2               2   2            2                   2   2       2
     x       ae                  y            2a                             x               ae               y                   4x a e
                                                                                     2                        2                                   2               2
                                                                                 x                        y                                   x               y
                                                                                                                                  1                                   1
                                                                                     2               2                2                           2               2
     2       2       2               2            2   2           2
                                                                                 a               a (1             e)                          a               b
 a           xe                  x           ae               y
Equation of any conic section in                                                                           Z         Y    P(x, y)
                                                                                                           D
      polar coordinates (origin at focus).                                                                       R
                                                                                                                           L
                                                                                                           S
We would derive the equations of all conic sections in a uniform manner from the fact                                           r
that the eccentricity e of the conic is the ratio of distance of any point on it from the focus
to the length of perpendicular drawn from the point on the directrix. A chord through                   X’ E     V         F(0,0)   Q     X
the focus parallel to the directrix is called latus rectum , LM in the figure and let its
length be 2l. In the figure, let P be any point (x, y) or (r, ) in polar coordinates,(OX                               M
being called the ‘initial line’ and , measured from this line anticlockwise being called
                                                                                                               D’ Z’       Y’
‘vectorial angle’ and r being called the ‘radius vector’).As such r/PD = e shall be our
equation for all conic sections. Now, as L is a point on the conic, and LS = EF, and e =LF /           Fig.12a : general conic
EF = e. So that we have, EF = l/e. Draw ZZ’ a line through the vertex V of the                         section in polar coordinates
conic, meeting PD at R.
Now r/PD = e, or r = e.PD = e(PR + RD) = e(QF + FE)= e(r cos + l/e) = er cos + l
Or, r = er cos + l , or, r - er cos = l, or, r(1 - e cos ) = l, or,
                                                 r = l/(1 - e cos ) …………………………..Eqn.(1)
which is the equation of a parabola for e = 1, ellipse for e < 1, hyperbola for e > 1. The
circle is a special case of ellipse where e = 0 and two straight lines ,a special case
of hyperbola where e = .This would be evident by and by in later sections.
If the curve is drawn to the left of the origin and the axes of coordinates x, y or r, are
taken as usual , the eqn.(1) becomes
                                                r = l/(1 + e cos ) ………………………….. Eqn.(1a)
(observe that cos( - ) = - cos ),
The curve is seen to be symmetrical about the x- axis as cos = cos ( - ), so that could
be replaced by - .
The semi-latus rectum l serves as a parameter for the conic section to describe the
relationship between r and . The necessity of a parameter in addition to position of
focus is actually to fix the position of the directrix as will be evident in the next
paragraph. The directrix line could not have been fixed if only position of focus and
eccentricity were given.
                If the initial line XX’ is not the axis, and if the axis of the conic is inclined at
an angle to it, then the geometry would be same if is replaced by (verify). So eqn.

becomes             l
                        1   e co s      ......................................... E q n (2 )
                    r
Conic section in rectangular coordinates: (origin at directrix)
  In rectangular coordinates, (see fig.12a ) , taking the directrix, DD’ as
  the y-axis, and taking the distance of the focus at a distance p from
  it, i.e., EF = p, and PD = EQ =x, we have,
             PF2 /PD2 = e2 , PF2 = PD2e2 = e2x2, PF2 = FQ2 + PQ2 =
  (EQ – EF)2 + PQ2 =(x – p )2 + y2,
             (x – p )2 + y2 = e2x2, p being called the focal parameter, being
  Or,
  the distance from the focus to the directrix.
                                                                     Z         P(x, y)
             x2(1 – e2) + y2 – 2px +p2 = 0……………………Eqn.(3). D R
  Or,
                                                                          L
             As FL = eSL = eEF, where FL = l and EF = p,          S
                                                                               r
  we have l = pe………………………………………………. Eqn.(4) X’ E V                        F(0,0) Q               X
  Semi-latus rectum = pe.                                               M
                                                                        D’ Z’
                                                                  Fig.12a : general conic
                                                                  section in polar coordinates
Conic section in rectangular coordinates: (origin at focus)

If the origin is shifted to (p, 0), the old
values of x should now be written X +
p in terms of new coordinates and y =
Y. So eqn. (2) becomes,
(X + p)2(1 – e2) + Y2 – 2p(X + p) +p2 = 0                               Z              P(x, y)
                                                                  D
or,X2(1 – e2) +2pX(1 – e2) + p2(1 – e2) +                               R
                                                                                  L
                                                                  S
        Y2 – 2pX - 2p2 +p2 = 0                                                         r

                                                               X’ E     V         F(0,0)   Q     X
 or,,X2(1 – e2) + Y2 - 2e2pX – e2p2 = 0                                       M

We can safely use x and y and forget                                  D’ Z’
                                                              Fig.12a : general conic
about X and Y and write it as                                 section in polar coordinates


x2(1 – e2) + y2 - 2e2px – e2p2 =0Eqn(5)
Conic section in rectangular coordinates: (origin at any point in general)
                                                                                 …………………………………………………… eqn(6)
                                                                             2
                                            ( Ax           By           C)
           2                2           2
( x - h)       (y   k)              e                  2            2
                                                   A            B


Is the equation of general conic section including circle, ellipse, parabola and
hyperbola according as
e = 0, e < 1, e =1, and e > 1. Focus is the point (h, k) and directrix is the st. line . The
cases would be clear in the appropriate sections.
Let the point V be the vertex at the origin (0, 0) and let the directrix DD’ be at a
distance a , i.e., at the point G ( - a, 0). If the focus is at F, VF/VG = e, as VG = a,
VF must be ae, so that F is at (ae, 0). If P(x, y) be any point on the conic, PF/PD =
e, If PD cuts y-axis at R, or, PF/(PR +RD) = e, or, PF/(PR +VG) = e, or, PF/(VQ +VG)
= e, or, r/(x + a) = e,
From here we can go to r/(r cos + a ) = e, ………………………………eqn.(7)
Or,                             ……………………………………………………………...eqn.(8)
                    2           2
         x    y /(x + a) = e

so , or                            …………………………………………………………………………..eqn(9)
                                2           2      2                    2
             x     y =e (x + a)

Or                                      ………………………………………………………………eqn(10)
                        2               2                               2    2   2
           x (1 e ) 2 aex e a     y =0


  This ‘a’ must not be confused with semi major axis of the ellipse.
Here it is the distance of the directrix from the vertex. Now l = LF =
eSL = e(FV + VG) = e(ae +a);so a e l a e …………………………..eqn(11)
Derivation of Eqn of Ellipse in Cartesian Coordinates

   The eqn. for general conic x2(1 – e2) + y2 – 2px +p2 = 0 becomes,
              x2(1 – e2) + y2 – 2 (a/e – ae )x +(a/e – ae)2 = 0 .
   which is the equation of the ellipse. with origin
   at the directrix and focus at (a/e – ae,0).
   For, we already know that distance of the directrix of ellipse from its center is a/e , and
   distance of the focus from the center is ae. So p = a/e – ae.
   Only we have to shift the origin a/e to the right, i.e., replace x by x+ a/e
   So the eqn. taking origin at the centre of ellipse this eqn becomes,
              (x+ a/e)2(1 – e2) + y2 – 2 (a/e – ae )( x+ a/e) +(a/e – ae)2 = 0
   or, x2(1–e2)+y2 –2(a/e–ae)(x +a/e)+(a/e–ae)2+2x(a/e)(1– e2)+(a/e)2(1–e2) = 0
   or, x2(1–e2)+y2 –2(a/e–ae)x–2(a/e–ae) a/e+(a/e–ae)2+
                         2x(a/e– ae)+ (a/e)2(1–e2) = 0
   or, x2(1–e2)+y2 – 2(a/e)2(1 – e2) +(a/e–ae)2 +(a/e)2(1–e2) = 0
   or, x2(1–e2)+y2– (a/e)2(1 – e2) +(a/e–ae)2 = 0 ,
   or, x2(1–e2)+y2– (a/e)2(1 – e2) +(a/e)2(1-e2)2 = 0
   or, x2(1–e2)+y2 - (a/e)2(1–e2) + (a/e)2(1-2e2 +e4) = 0
   or, x2(1–e2)+y2 - (a/e)2(1–e2 - 1+ 2e2 - e4) = 0
   or, x2(1–e2)+y2 - (a/e)2e2(1 –e2) = 0 , or, x2(1–e2)+y2 – a2(1 –e2) = 0
   or, ,                as before; or where                     as before.
            2               2
        x               y                        2       2           2
                                             b       a       1   e
                                        1
            2       2               2
        a       a       1       e
Z             P(x, y)
                                                                        D
Equation of parabola                                                          R
                                                                                        L
                                                                        S
                                                                                            r

This is an example of how we derive equations of conic               X’ E     V(0, 0) F         Q     X
section from focus directrix definition from the first                              M
principles.                                                                 D’ Z’
In the above figure and with the labels as before, A parabola       Fig.12a : general conic
                                                                    section in polar coordinates
is the curve such that any point on this curve, P(x, y) is at
the same distance from the focus F as the distance from the
directrix, PD. So PF = PD = QE.
Next, if V(0, 0) is a point on the parabola, called its
vertex, then , by above definition, VE = VF. Let us call VE =
a, so that F is the point (a,0). Now, PF2 = r2 = FQ2 +QP2 =
 (x-a)2 +y2. Again PD2 = PR2 + RD2=(x+a) 2
Thus , or y2 = 4ax …………………………… ………..eqn(12)
It the origin is transferred to the point ( - a , 0), or it is
taken to the directrix, then x should be replaced by x – a
, so that the equation to the parabola becomes,
           y2 = 4a(x – a)…………………………. eqn(13a)
It the origin is transferred to the point focus, ( a , 0), then x
should be replaced by
x + a , so that the equation to the parabola becomes,
           2
Equation of rectangular hyperbola
                                                                                  YA
                                                                   R
  In the figure, APB be a curve where P(x, y) is any point on                         R        P(x, y)
  it such that OQ = x = RP and PQ = y = RO; and
                                                                                                          B
             xy = c2…………………..……………………..Eqn(14a)                   X’
                                                                                      O        Q              X
  Such a curve is called a rectangular hyperbola                   A’
  characterized by the feature that the product of its                      P’
  distances from two fixed st.lines at right angles to each                               y= - x
                                                                                                     R’
  other , the coordinate axes in the present case is a positive                  B’       Y’
  constant say c2. The curve has two branches APB and                   Fig.16, rectangular hyperbola
  A’P’B’ in the first and third quadrants If we move further
  to the right of any point P (x, y) the y- coordinate
  decreases and the x- coordinate increases in the inverse
  proportion so that xy remains constant. Down along the
  x- axis, the y- coordinate diminishes to 0 at large distance
  , so that the x- axis touches the curve at ∞. Similarly the
  curve touches the y – axis at ∞. A line touching a curve at
  ∞ is called an asymptote of the curve. Further, the
  branch A’P’B’ is reflection of the branch APB , not about
  any axis, but about the line y = - x shown as a dotted line.
  The fact may be verified by observing that the equation of
  this curve is unchanged by replacing x, y by – x and – y
  respectively. Further, it may be noted that the curve is
  symmetric about the line y = x , for interchanging x and y
  in the eqn makes no difference.
Equation of rectangular hyperbola                                                    YA
                                                                      R
                                                                                         R        P(x, y)
   An analogy with the circle:
   In an ellipse, the sum of distances of any point on it is                                                 B
   constant and equal to its major axis. Similarly, on this curve,   X’
                                                                                         O        Q              X
   the rectangular hyperbola, product of distances from two           A’
   fixed st.lines is constant. ( its distance from y –axis being x             P’
   and the distance from x – axis being y).                                                  y= - x
                                                                                                        R’
   The curve can be transformed by a change of axes , the new                       B’       Y’
   axes got from rotating the existing axes by 450 anticlockwise.          Fig.16, rectangular hyperbola
   The new set of axes, say X and Y form another rectangular
   Cartesian coordinate system about the same origin. If new
   coordinates of P be (X, Y) , we have, from principle of
   transformation of coordinates,
   x = X cos 450 – Y sin 450 and y = X sin 450 + Y cos450………….(b)
   Putting the values in (a),
              (X cos 450 – Y sin 450)( X sin 450 + Y cos 450) = c2
                        (X / 2 – Y / 2)( X / 2 + Y / 2) = c2
   or,
                                   X2 – Y2 = 2c2
   or
                                   X2 – Y2 = a2
   or,
                 2       2
             X       Y
                             1
   or,                           …………………..………………………….(14)
                 2       2
             a       a
Equation of hyperbola
Now the technique of compressing Y-
                                                                  D2       Y   D1                L
coordinate may be applied. Let all Y-        P’
                                                                               M         P
coordinates be compressed in the ratio                      M’
 b          b
    ;so y’= a Y, and x’ = X. Thus the eqn.
 a
                                                  F’                                                 F
                 2      2

reduces to        x'   y'
                             1
                                             X’        A’    N’        O       N     A       Q           X
                2       2
                  a     b
which may be re-written in usual form ,
for the only reason of sheer convenience
   2   2
as, x y 1 ……………… Eqn.(15)                    Q’                  D2’           D1’                       Q
                                                                       Y’                        L’
   2   2
   a   b
We also can arrive at the ratio of                           Fig. 17 : Hyperbola
focal distance to the directory
distance of a point just in the
manner we did for the ellipse.
which can be regarded as the standard
equation of a hyperbola. Just as the
eqn. of ellipse is derived from the eqn.
of a circle, the eqn. of hyperbola is
derived from eqn. of a rectangular
hyperbola in the same manner. Hence
the rectangular hyperbola may be
considered as a counterpart of a circle.
L’
                                                             Y                                               X
                                                                                                                           N’       S’
 TO SHOW THAT AN HYPERBOLA IS                    T’



 ACTUALLY A SECTION OF A CONE

Let a st.line VU revolve around a fixed                                                                          M’

st.line VG making a constant angle with                                                                          a

it at V and generate a double cone as                                           V                                    C(0, 0)
                                                                                                         b
shown in the figure. Let a plane parallel                                                                             L

                                                                                                                 a
to VG and perpendicular to the plane of                                                                          L
                                                                                                                 M

VUW cut the double cone in a curve in                                                   x

two branches LMN and L’M’N’ , M and                                                                              x
                                                                                                 P
M’ being two points on the cone. Let VC                                                                      y
= b , be perpendicular to MM’. Set up a                                                              900                                     Y’
                                                 S                                                                                  T
rectangular Cartesian coordinate                                       r            O                b       R
                                                                                    L

system at C , midpoint of M’M and MM’        U                                                                                           W

being the x-axis and YY’ being y-axis in                                                                                        N

the intersecting plane. Take any point P
on the curve of intersection and draw a                                                                              X’
                                                                                L
                                                                                             G

perpendicular PR onto MM’ and extend                                                         L
                                             Fig. 18 : A hyperbola is really a section of a cone

it until it meets the curve at N.
Coordinates of the point P are x = CR
and y = PR. Take a plane containing PR
and perpendicular to the plane VST .
this plane intersects the cone in a circle
PST having its centre at O and radius
 OP = OS = OT = r.
L’
                                                   Y                                           X
                                                                                                             N’       S’
                                                                              L

 TO SHOW THAT AN HYPERBOLA IS          T’



 ACTUALLY A SECTION OF A CONE

This can be proved from                                                                            M’

                                                                                                   a

congruence of the two triangles                                       V                                C(0, 0)
                                                                                           b            L


VSO and VOT, having the side                                                                       a
                                                                                                   L
                                                                                                   M

VO common, and two equal                                                  x


angles SVO = = OVT and                                                                             x
                                                                                   P
                                                                                                   L
                                                                                               y
having a right angle each. OVCR                                                        900                                     Y’
                                       S                                                                              T
                                                             r            O            b       R

can be proved to be a rectangle    U                                                                                       W

as three of its angles are right                                                                                  N


angles, so that OR = VC = b.                                                                           X’
                                                                      L
                                                                                  G


Now PR is in the intersecting                                                     L
                                   Fig. 18 : A hyperbola is really a section of a cone


plane and OR is in the plane of
the circle PST and the two
planes are perpendicular to each
other. So OR PR and it follows
that OP2 = OR2 + PR2.
Or, r2 = b2 + y2…………………….(a)
Continued from the previous slide
                          As OP = r, OR = b and PR = y..
     The relationship between x and y shall be the eqn. to the curve of
     intersection we require, which can be obtained from this eqn.(a) r in terms
     of x. We immediately observe that r = OS = OV tan and OV = CR = x.
                          x2tan2 = b2 + y2………………………………...(b)
     Hence we get,
                is the required equation to the curve of intersection. If we denote
     the length CM = a, observe that CMV = MVO = , so that tan = b/a.
                                   x2b2 = a 2b2 + a2y2 or,
     Now eqn. (b) becomes,
                                                       …………….( c)
                                         2   2
                                            x  y
                                                  1
                                         2   2
                                            a  b
     which is standard equation to a hyperbola . Note that ‘a’ is actually seen to
     be its semi-major axis and ‘b’ is equal to its semi-minor axis, though it is not
     in the plane of the curve. The value of e may be obtained from ,
                                    …………………………………(d)
                     2
                    b
             2           2    2
              e   1    1 tan   sec
                     2
                 a


     which is always greater than 1 for any given acute angle . For a different
     value of e we need a different value of , or in other words, need a different
     cone altogether. From one cone, we get hyperbolas all of same e value
     i.e., sec2 . This is because either we have to choose a different cone or
     different values of a and b; to get different hyperbolas from the same
     cone, i.e., the plane of intersection must be different.
Continued from the previous slide
                           This is a meaning of e for the hyperbola.
                                                                2       2                    2               2
                                                               x      y             x   y
     It may be further noted that in the eqn. of an ellipse a a (1 e ) ,or a b 1
                                                                            1
                                                                2   2       2                2               2



     , where ,                 e is supposed to be less than 1, i.e., b < a. If we make e > 1
                   2   2   2
                  b  a (1 e )

     , e becomes imaginary and we do not get a hyperbola in place of an ellipse, as b
                                                                                    2                2

     becomes imaginary; not evenif we rewrite the same equation as .            x                y
                                                                                                                  1
                                                                                    2    2       2
                                                                                a       a (e                 1)

     On the other hand, if we make b > a in , we get only another ellipse with its
     major and minor axes interchanged.                                                  2               2
                                                                                  x   y
                                                                                          1
     The hyperbola shown in the figure of this article is represented by ; a b           2               2



     where b is the length of the perpendicular from vertex of the cone onto the plane
     of intersection , i.e., onto the plane of the hyperbola. But as it is the standard
     eqn. of hyperbola, b is supposed to be less than a , and it is very much the semi-
     minor axis, which is supposed to be in the plane of the hyperbola. Thus the
     length of the perpendicular from vertex of the cone happens to be equal to the
     semi-minor axis, the two being perpendicular to each other. This is as if the
     minor axis has been rotated through /2 or having been multiplied by i = (-1)
     , perhaps because b2 in the equation of the ellipse is replaced by - b2 in contrast
     to the case of ellipse. Then e 1 b 1 tan             which is always greater than 1.
                                             2
                                    2            2    2
                                                    sec
                                             2
                                         a
The general eqn. of 2nd degree in two variables represents a conic.
The General eqn. of 2nd degree ax2 +2hxy + by2 + 2gx +2fy +c = 0……….…eqn(16)
By a suitable transformation of co-ordinates , the xy-term may be made to vanish.
Suppose the axes are turned through an angle so that, x is replaced by
x cos -y sin and y is replaced by x sin + y cos ,so that (16) becomes
a(x cos - y sin )2 + 2h(x cos - y sin )( x sin + y cos )+ b(x sin
          + y cos )2+2g(x cos - y sin ) + 2f(x sin + y cos ) + c = 0.
The coefficient of 2xy term is h(cos2 -sin2 ) – (a – b) cos sin ,which is 0 if,
                2h cos 2 = (a – b) sin 2 , or tan 2 = 2h/(a – b).
For any real value of h, a and b, can always be found, so that the eqn. can always
be got rid of the xy-term (second term).Even for a = b, cos 2 = 0 and = /4 if we
put a = b from the beginning. And thus can be written in the form
Ax2 +By2 + 2Gx +2Fy +C = 0…………………………………………………………….(17)
Of course c = C as the term does not involve the variables only whom we have
modified. Thus we can take (17) as general equation of second degree in two
variables without any loss of generality.
This equation can be written as follows by completing squares
                                                           ……………………………………...(18)
                        2        2   2   2
                        G        F    G  F
                    Ax       By             C   K ( sa y )
                                     2   2
                         A       B    A  B
                                                             if A 0 and B 0.
The general eqn. of 2nd degree in two variables represents a conic.


If the origin is shifted to the point ,                  eqn.(17) can be written as
                                          G       F
                                              ,
                                          A       B

,                                                     ..................................... (18)
                              2       2
                          x       y
                                          1
                              K       K
                              A       B
(to keep the number of symbols minimum, we write x and y instead of new
symbols, though x and y in (18) are different from x and y in (17)or simply transfer
the origin to                )
                  G       F
                      ,
                  A       B


The eqn. represents an ellipse , real if K/A and K/B both are positive, or
imaginary one , if K/A and K/B both are negative, their roots are imaginary.
This shows that a second degree eqn in two variables Ax2 +By2 + 2Gx +2Fy +C = 0
in which there is no xy-term shall be equation of an ellipse if A and B are of
                              2   2

same sign as that of . G F C  2   2
                         A  B
 Eqn.(18) represents a hyperbola if one of K/A and K/B is negative.
This shows that a second degree eqn in two variables Ax2 +By2 + 2Gx +2Fy +C = 0
in which there is no xy-term shall be equation of an hyperbola if A and B are of
opposite signs.
The general eqn. of 2nd degree in two variables represents a conic.
                                                                        2
                                                               C    F       F
If A = B, this represents a circle , origin at                                  and radius
                                                        ,
                                               2G 2 B G                     B
                                          ………………...(19)
                            K       K
                               or
                             A           B

and only a point , trivial case of circle if K = 0.

If one of A, B, is 0 , say A = 0 and B         0, from eqn.(18) we get,

                     By2 + 2Gx +2Fy +C = 0……………………………………………..…..(20)
Do not put A = 0 direct in that equation.
By completing the square,                2                     2
                                  F       C  F
                            By               2G x                   0
                                    B               2G       2 BG

Or, By2 +2Gx = 0 or,                2G
                                                              ……………………………………..(21)
                                2
                            y            x
                                    B


which represents a parabola if the origin is shifted to
its branches towards negative side of the x-axis if G/A is positive and vice versa.
If G = 0 along with A = 0, from eqn.(17) we get,
In other words, a second degree eqn in two variables
Ax2 +By2 + 2Gx +2Fy +C = 0 in which there is no xy-term shall be
equation of a parabola, if A = 0 , G 0.
                                                         2
           By2 + 2Fy + C = 0    or y F F B C               ………………………………………….(22)
                                              B
which represents two straight lines parallel to each other and parallel to x-axis. The
The general conic represents the following curves
                    under respective conditions.
Summary

          What curve                        Under what condition


          Ellipse                                                2
                                                             h       ab


          Parabola                                               2
                                                             h       ab


          Hyperbola
                                                                         2
                                                                     h       ab
          Circle                            a = b and h =0


          Rectangular hyperbola             a + b =0


                                            Δ =0, where Δ =abc +2fgh – af2 – bg2 – ch2
          Two st lines, real or imaginary


                                            Δ =0 and
          Two parallel st lines                                  2
                                                             h       ab
A

     Conic sections from different points of view
     We have discussed conic sections as plane curves characterised by a
A.                                                                                                        C
     ratio called eccentricity, the ratio of focal distance to distance from                                          D
                                                                                                B
     directrix.
     Ellipse and hyperbola are derived from circle and rectangular hyperbola
B.
     by compression of one coordinate.
     Conic sections are really plane sections of cone.
C.
     A circle is a curve such that square of distance of any point on it from a
D.                                                                                             E
     fixed point , center is constant. An ellipse is a curve such that sum of                                          F
     distances of any point on it from the two foci is constant and is equal to
     major axis. parabola is a curve such that distance of any point on it from
     the focus is equal to that from the directrix. Rectangular hyperbola is a
                                                                                      Conic section as projection of a circle
     curve such that product of the distances of any point on it from two
     mutually perpendicular straight lines is constant. Hyperbola is a curve
     such that product of distances of any point on it from its asymptotes is
     constant. Hyperbola is a curve such that difference of distances of any
     point on it from two fixed points, foci is constant.
     Conic sections are projections of circles. Take the parabola EBF in the
E.
     figure for example. Join every point of it to the vertex of the cone A.
     Each of the straight lines joining a point of the parabola to the vertex
     passes through the circle BCD. In this way, there is one and only one
     point on the circle for any point on the parabola and vice versa, i.e., the
     parabola or the circle are projections of each other or equivalent to each
     other. This is also a point of view as to what conic sections are.
     Lastly we discussed how every second degree equation in two variable is
F.
     a conic section and vice versa.
     There are other points of views as well , e.g. a conic section is inverse of a
G.
     circle, i.e. when we take k/r, θ instead of coordinates r and θ. Still there
     are other points of view we would discuss later on.

Weitere ähnliche Inhalte

Ähnlich wie Conic Sections by Narayana Dash

Ähnlich wie Conic Sections by Narayana Dash (6)

Curve1
Curve1Curve1
Curve1
 
Cone
ConeCone
Cone
 
Conic section
Conic sectionConic section
Conic section
 
Ophthalmology 5th year, 3rd lecture (Dr. Tara)
Ophthalmology 5th year, 3rd lecture (Dr. Tara)Ophthalmology 5th year, 3rd lecture (Dr. Tara)
Ophthalmology 5th year, 3rd lecture (Dr. Tara)
 
math conic sections.pptx
math conic sections.pptxmath conic sections.pptx
math conic sections.pptx
 
Lecture 2.1.1 Hyperbola is really a section of a cone
Lecture 2.1.1 Hyperbola is really a section of a coneLecture 2.1.1 Hyperbola is really a section of a cone
Lecture 2.1.1 Hyperbola is really a section of a cone
 

Mehr von narayana dash

Lecture 2.1 shortest derivation of equation of ellipse and meaning of eccentr...
Lecture 2.1 shortest derivation of equation of ellipse and meaning of eccentr...Lecture 2.1 shortest derivation of equation of ellipse and meaning of eccentr...
Lecture 2.1 shortest derivation of equation of ellipse and meaning of eccentr...narayana dash
 
Lecture 5.1.5 graphs of quadratic equations
Lecture 5.1.5 graphs of quadratic equationsLecture 5.1.5 graphs of quadratic equations
Lecture 5.1.5 graphs of quadratic equationsnarayana dash
 
Is ellipse really a section of cone
Is ellipse really a section of coneIs ellipse really a section of cone
Is ellipse really a section of conenarayana dash
 
Introduction to polynomials
Introduction to polynomialsIntroduction to polynomials
Introduction to polynomialsnarayana dash
 
Lecture 1.16 is parabola really a section of a cone?
Lecture 1.16 is parabola really a section of a cone?Lecture 1.16 is parabola really a section of a cone?
Lecture 1.16 is parabola really a section of a cone?narayana dash
 
Lecture 1.6 further graphs and transformations of quadratic equations
Lecture 1.6 further graphs and transformations of quadratic equationsLecture 1.6 further graphs and transformations of quadratic equations
Lecture 1.6 further graphs and transformations of quadratic equationsnarayana dash
 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsnarayana dash
 
Lecture 1.3 methods of solutions of quadratic equations
Lecture 1.3 methods of solutions of quadratic equationsLecture 1.3 methods of solutions of quadratic equations
Lecture 1.3 methods of solutions of quadratic equationsnarayana dash
 
Lecture 1.5 graphs of quadratic equations
Lecture 1.5 graphs of quadratic equationsLecture 1.5 graphs of quadratic equations
Lecture 1.5 graphs of quadratic equationsnarayana dash
 
Lecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circleLecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circlenarayana dash
 
Lecture1.8 Geometric method for solving or evaluating quadratic expressions
Lecture1.8 Geometric method for solving or evaluating quadratic expressionsLecture1.8 Geometric method for solving or evaluating quadratic expressions
Lecture1.8 Geometric method for solving or evaluating quadratic expressionsnarayana dash
 
rediscover mathematics from 0 and 1
rediscover mathematics from 0 and 1rediscover mathematics from 0 and 1
rediscover mathematics from 0 and 1narayana dash
 
Examples Of Central Forces
Examples Of Central ForcesExamples Of Central Forces
Examples Of Central Forcesnarayana dash
 

Mehr von narayana dash (13)

Lecture 2.1 shortest derivation of equation of ellipse and meaning of eccentr...
Lecture 2.1 shortest derivation of equation of ellipse and meaning of eccentr...Lecture 2.1 shortest derivation of equation of ellipse and meaning of eccentr...
Lecture 2.1 shortest derivation of equation of ellipse and meaning of eccentr...
 
Lecture 5.1.5 graphs of quadratic equations
Lecture 5.1.5 graphs of quadratic equationsLecture 5.1.5 graphs of quadratic equations
Lecture 5.1.5 graphs of quadratic equations
 
Is ellipse really a section of cone
Is ellipse really a section of coneIs ellipse really a section of cone
Is ellipse really a section of cone
 
Introduction to polynomials
Introduction to polynomialsIntroduction to polynomials
Introduction to polynomials
 
Lecture 1.16 is parabola really a section of a cone?
Lecture 1.16 is parabola really a section of a cone?Lecture 1.16 is parabola really a section of a cone?
Lecture 1.16 is parabola really a section of a cone?
 
Lecture 1.6 further graphs and transformations of quadratic equations
Lecture 1.6 further graphs and transformations of quadratic equationsLecture 1.6 further graphs and transformations of quadratic equations
Lecture 1.6 further graphs and transformations of quadratic equations
 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functions
 
Lecture 1.3 methods of solutions of quadratic equations
Lecture 1.3 methods of solutions of quadratic equationsLecture 1.3 methods of solutions of quadratic equations
Lecture 1.3 methods of solutions of quadratic equations
 
Lecture 1.5 graphs of quadratic equations
Lecture 1.5 graphs of quadratic equationsLecture 1.5 graphs of quadratic equations
Lecture 1.5 graphs of quadratic equations
 
Lecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circleLecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circle
 
Lecture1.8 Geometric method for solving or evaluating quadratic expressions
Lecture1.8 Geometric method for solving or evaluating quadratic expressionsLecture1.8 Geometric method for solving or evaluating quadratic expressions
Lecture1.8 Geometric method for solving or evaluating quadratic expressions
 
rediscover mathematics from 0 and 1
rediscover mathematics from 0 and 1rediscover mathematics from 0 and 1
rediscover mathematics from 0 and 1
 
Examples Of Central Forces
Examples Of Central ForcesExamples Of Central Forces
Examples Of Central Forces
 

Kürzlich hochgeladen

Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...KokoStevan
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 

Kürzlich hochgeladen (20)

Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 

Conic Sections by Narayana Dash

  • 1. Paths of planets, satellites and comets are beautiful curves called conic sections. They are obtained when a cone is intersected by a plane surface. And also they have many other beautiful and interesting facts about them. For example they are such curves that distance from any point on the curve from a fixed point bears a constant ratio to distance from a fixed st line.
  • 2. A cone cut by a plane a)Perpendicular to its Different axis of the cone gives Sections Of a circle, if not A Double through its vertex; Cone through the vertex only a point is got. b) In an angle with the axis, gives an ellipse. c) Parallel to its slant height or generator gives a parabola. d) Parallel to its axis, gives two branches of a Fig 1a Fig1b Fig 1c Fig 1d hyperbola. circle ellipse parabola hyperbola Fig 1 : Conic sections. a) plane section perpendicular to axis of cone – circle, if it is through the vertex , a e) Through the point. b) plane section with an angle with a plane perpendicular to axis axis, gives two any of the generators – ellipse. of cone and not parallel to c) plane section parallel to a generator of the cone – parabola . straight lines. d) plane section parallel to axis of cone not through it – hyperbola, if through the axis of the cone – two straight lines.
  • 3. We know the axis of earth always The pole star ORBIT OF points towards the pole star. In fact that is the reason of changing seasons. THE EARTH If every point of the orbit is joined to the pole star, we get a cone ; not an odd shaped one, but a round smooth one called a right circular cone. Again the Sun is not placed at its center; but a t point called its focus, far away from the center. Planets and satellites move in elliptical orbits Comets who are seen periodically move around the Sun in vey long elliptical orbits. The Earth Some travelling comets at high speed are not captured by the Sun, they just bend around it once and pass away in parabolic orbits. Still some comets are in so high speed that they are deflected back from the Sun and turn away in hyperbolic orbits. This is some sort of collision. The Sun
  • 4. Conic sections are THE ‘ECCENTRICITY’ OF A CONIC SECTION curves such that ratio of distance from any point on it from a fixed point, called focus, bears a constant ratio ‘e’ or eccentricity to its distance from a fixed straight line, called The Circle and the ellipse are bound orbits. The moon’s directrix. The orbit is almost circular orbit. Orbit of the earth is elliptical. Bodies with total energy negative are captured curve is a circle if and move in bound orbits. This means potential energy of e = 0, ellipse if e < attraction exceeds kinetic energy which is always positive. Parabola is the orbit of a planet or comet 1, parabola if e = critically captured; it takes a turn and escapes the other way, in ‘escape velocity’ corresponding to zero total 1, hyperbola if e > energy of the escaping body. The body possesses total 1, and two st lines if energy positive, i.e., it is in high velocity, outweighing attractive forces, it is deflected in hyperbolic orbit. This is e = ∞. some sort of collision, nay collision broader sense.
  • 5. Equation of an ellipse Y 2 2 x y 1 2 2 a a P a Q (x y) O X’ X M b R N 2 2 y x 1 2 2 2 2 y x a b 1 2 2 Y’ b b 2 2 Let the eqn. of the circle be written in form ……………………………………..………….(a) X Y 1 2 2 a a Transform the coordinates to x and y ,only by compressing Y coordinates by a factor b/a where b/a < 1;i.e.,x = X, and y = b .Y/a ; OR X = x and Y = a .y/b.………………………………….(b) The curve PMN is now changed to the curve QMN because of the transformation of coordinates to new coordinates x and y. A relationship between x and y shall be its equation. Since x and y are related to X and Y as in (b) and X and Y are related to each other as in (a), we can rewrite (a) as, 2 2 ay 2 2 x y 2 x 2 b 1 1 2 2 a b 2 2 a a which is the only one relationship between x and y we sought for, and becomes the eqn. of the new curve ( called ellipse).
  • 6. A meaning Of eccentricity ‘e’ The circle has a centre and the ellipse has also a centre. But the centre of the ellipse is not that important as the centre of the circle. The ellipse has no such radial symmetry as in the case of circle. Instead, there are two other points of importance along the main axis or the major axis , one on each side of the center , each being called a focus. How far the focus is moved from the center so that the circle is flattened to become an ellipse is measured by its eccentricity. We explore below how the focus and eccentricity are related . In the eqn.of the ellipse , put b = fa or b/a = f, (evidently f < 1, as b < a). This reduces the eqn tox2f2 + y2 = a2f2…………….(a) The left side looks like square of a distance (as we knew distance formula between the points (x, y) and (x1, y1), d =√{(x- x1) 2+ (y- y1) 2} and the form of the equation indicates us to make the expression a complete square so as to see what distance it might be. Put e2 = 1 – f2 (certainly we can, as f < 1) so that x2f2 becomes x2 (1 – e2 ), and a2f2 becomes a2 (1 – e2 ), Thus the eqn. becomes x2 + a2e2 + y2 = a2 + e2x2 In further endeavour to complete squares, we add – 2aex to both sides and get (x – ae)2 + (y – 0)2 = e2(x – a/e)2………..(b)
  • 7. Spokes of a wheel being pulled by two Visualisation of e rods called directrices; the center splits into two points moved away from each other called foci.
  • 8. The sum of focal distances from any point on the ellipse = 2a, the major axis. Choose the origin midway between the two fixed points and choose the x-axis along the line joining the two fixed points. There is no loss of generality as we can shift the origin and the axes later as we please. Thus the coordinates of the two fixed points may be taken as (k, 0) and ( - k, 0) ; or as (ae, 0) and ( - ae, 0) if we denote k /a = e. Later on we would observe that this is really the eccentricity e. If (x, y) be the coordinates of the point , the sum of whose distances from (ae, 0) and ( - ae, 0) is 2a; we have, the steps are: ( x ae ), y 2 2 2 2 ( x ae ) y 2a 2 2 2 2 2 2 2 2 2 2x 2a e 2y 2 (x ae ) y (x ae ) y 4a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 x ae y 2a x ae y 4x a e 2 2 2 2 x y x y 1 1 2 2 2 2 2 2 2 2 2 2 2 2 a a (1 e) a b a xe x ae y
  • 9. Equation of any conic section in Z Y P(x, y) D polar coordinates (origin at focus). R L S We would derive the equations of all conic sections in a uniform manner from the fact r that the eccentricity e of the conic is the ratio of distance of any point on it from the focus to the length of perpendicular drawn from the point on the directrix. A chord through X’ E V F(0,0) Q X the focus parallel to the directrix is called latus rectum , LM in the figure and let its length be 2l. In the figure, let P be any point (x, y) or (r, ) in polar coordinates,(OX M being called the ‘initial line’ and , measured from this line anticlockwise being called D’ Z’ Y’ ‘vectorial angle’ and r being called the ‘radius vector’).As such r/PD = e shall be our equation for all conic sections. Now, as L is a point on the conic, and LS = EF, and e =LF / Fig.12a : general conic EF = e. So that we have, EF = l/e. Draw ZZ’ a line through the vertex V of the section in polar coordinates conic, meeting PD at R. Now r/PD = e, or r = e.PD = e(PR + RD) = e(QF + FE)= e(r cos + l/e) = er cos + l Or, r = er cos + l , or, r - er cos = l, or, r(1 - e cos ) = l, or, r = l/(1 - e cos ) …………………………..Eqn.(1) which is the equation of a parabola for e = 1, ellipse for e < 1, hyperbola for e > 1. The circle is a special case of ellipse where e = 0 and two straight lines ,a special case of hyperbola where e = .This would be evident by and by in later sections. If the curve is drawn to the left of the origin and the axes of coordinates x, y or r, are taken as usual , the eqn.(1) becomes r = l/(1 + e cos ) ………………………….. Eqn.(1a) (observe that cos( - ) = - cos ), The curve is seen to be symmetrical about the x- axis as cos = cos ( - ), so that could be replaced by - . The semi-latus rectum l serves as a parameter for the conic section to describe the relationship between r and . The necessity of a parameter in addition to position of focus is actually to fix the position of the directrix as will be evident in the next paragraph. The directrix line could not have been fixed if only position of focus and eccentricity were given. If the initial line XX’ is not the axis, and if the axis of the conic is inclined at an angle to it, then the geometry would be same if is replaced by (verify). So eqn. becomes l 1 e co s ......................................... E q n (2 ) r
  • 10. Conic section in rectangular coordinates: (origin at directrix) In rectangular coordinates, (see fig.12a ) , taking the directrix, DD’ as the y-axis, and taking the distance of the focus at a distance p from it, i.e., EF = p, and PD = EQ =x, we have, PF2 /PD2 = e2 , PF2 = PD2e2 = e2x2, PF2 = FQ2 + PQ2 = (EQ – EF)2 + PQ2 =(x – p )2 + y2, (x – p )2 + y2 = e2x2, p being called the focal parameter, being Or, the distance from the focus to the directrix. Z P(x, y) x2(1 – e2) + y2 – 2px +p2 = 0……………………Eqn.(3). D R Or, L As FL = eSL = eEF, where FL = l and EF = p, S r we have l = pe………………………………………………. Eqn.(4) X’ E V F(0,0) Q X Semi-latus rectum = pe. M D’ Z’ Fig.12a : general conic section in polar coordinates
  • 11. Conic section in rectangular coordinates: (origin at focus) If the origin is shifted to (p, 0), the old values of x should now be written X + p in terms of new coordinates and y = Y. So eqn. (2) becomes, (X + p)2(1 – e2) + Y2 – 2p(X + p) +p2 = 0 Z P(x, y) D or,X2(1 – e2) +2pX(1 – e2) + p2(1 – e2) + R L S Y2 – 2pX - 2p2 +p2 = 0 r X’ E V F(0,0) Q X or,,X2(1 – e2) + Y2 - 2e2pX – e2p2 = 0 M We can safely use x and y and forget D’ Z’ Fig.12a : general conic about X and Y and write it as section in polar coordinates x2(1 – e2) + y2 - 2e2px – e2p2 =0Eqn(5)
  • 12. Conic section in rectangular coordinates: (origin at any point in general) …………………………………………………… eqn(6) 2 ( Ax By C) 2 2 2 ( x - h) (y k) e 2 2 A B Is the equation of general conic section including circle, ellipse, parabola and hyperbola according as e = 0, e < 1, e =1, and e > 1. Focus is the point (h, k) and directrix is the st. line . The cases would be clear in the appropriate sections. Let the point V be the vertex at the origin (0, 0) and let the directrix DD’ be at a distance a , i.e., at the point G ( - a, 0). If the focus is at F, VF/VG = e, as VG = a, VF must be ae, so that F is at (ae, 0). If P(x, y) be any point on the conic, PF/PD = e, If PD cuts y-axis at R, or, PF/(PR +RD) = e, or, PF/(PR +VG) = e, or, PF/(VQ +VG) = e, or, r/(x + a) = e, From here we can go to r/(r cos + a ) = e, ………………………………eqn.(7) Or, ……………………………………………………………...eqn.(8) 2 2 x y /(x + a) = e so , or …………………………………………………………………………..eqn(9) 2 2 2 2 x y =e (x + a) Or ………………………………………………………………eqn(10) 2 2 2 2 2 x (1 e ) 2 aex e a y =0 This ‘a’ must not be confused with semi major axis of the ellipse. Here it is the distance of the directrix from the vertex. Now l = LF = eSL = e(FV + VG) = e(ae +a);so a e l a e …………………………..eqn(11)
  • 13. Derivation of Eqn of Ellipse in Cartesian Coordinates The eqn. for general conic x2(1 – e2) + y2 – 2px +p2 = 0 becomes, x2(1 – e2) + y2 – 2 (a/e – ae )x +(a/e – ae)2 = 0 . which is the equation of the ellipse. with origin at the directrix and focus at (a/e – ae,0). For, we already know that distance of the directrix of ellipse from its center is a/e , and distance of the focus from the center is ae. So p = a/e – ae. Only we have to shift the origin a/e to the right, i.e., replace x by x+ a/e So the eqn. taking origin at the centre of ellipse this eqn becomes, (x+ a/e)2(1 – e2) + y2 – 2 (a/e – ae )( x+ a/e) +(a/e – ae)2 = 0 or, x2(1–e2)+y2 –2(a/e–ae)(x +a/e)+(a/e–ae)2+2x(a/e)(1– e2)+(a/e)2(1–e2) = 0 or, x2(1–e2)+y2 –2(a/e–ae)x–2(a/e–ae) a/e+(a/e–ae)2+ 2x(a/e– ae)+ (a/e)2(1–e2) = 0 or, x2(1–e2)+y2 – 2(a/e)2(1 – e2) +(a/e–ae)2 +(a/e)2(1–e2) = 0 or, x2(1–e2)+y2– (a/e)2(1 – e2) +(a/e–ae)2 = 0 , or, x2(1–e2)+y2– (a/e)2(1 – e2) +(a/e)2(1-e2)2 = 0 or, x2(1–e2)+y2 - (a/e)2(1–e2) + (a/e)2(1-2e2 +e4) = 0 or, x2(1–e2)+y2 - (a/e)2(1–e2 - 1+ 2e2 - e4) = 0 or, x2(1–e2)+y2 - (a/e)2e2(1 –e2) = 0 , or, x2(1–e2)+y2 – a2(1 –e2) = 0 or, , as before; or where as before. 2 2 x y 2 2 2 b a 1 e 1 2 2 2 a a 1 e
  • 14. Z P(x, y) D Equation of parabola R L S r This is an example of how we derive equations of conic X’ E V(0, 0) F Q X section from focus directrix definition from the first M principles. D’ Z’ In the above figure and with the labels as before, A parabola Fig.12a : general conic section in polar coordinates is the curve such that any point on this curve, P(x, y) is at the same distance from the focus F as the distance from the directrix, PD. So PF = PD = QE. Next, if V(0, 0) is a point on the parabola, called its vertex, then , by above definition, VE = VF. Let us call VE = a, so that F is the point (a,0). Now, PF2 = r2 = FQ2 +QP2 = (x-a)2 +y2. Again PD2 = PR2 + RD2=(x+a) 2 Thus , or y2 = 4ax …………………………… ………..eqn(12) It the origin is transferred to the point ( - a , 0), or it is taken to the directrix, then x should be replaced by x – a , so that the equation to the parabola becomes, y2 = 4a(x – a)…………………………. eqn(13a) It the origin is transferred to the point focus, ( a , 0), then x should be replaced by x + a , so that the equation to the parabola becomes, 2
  • 15. Equation of rectangular hyperbola YA R In the figure, APB be a curve where P(x, y) is any point on R P(x, y) it such that OQ = x = RP and PQ = y = RO; and B xy = c2…………………..……………………..Eqn(14a) X’ O Q X Such a curve is called a rectangular hyperbola A’ characterized by the feature that the product of its P’ distances from two fixed st.lines at right angles to each y= - x R’ other , the coordinate axes in the present case is a positive B’ Y’ constant say c2. The curve has two branches APB and Fig.16, rectangular hyperbola A’P’B’ in the first and third quadrants If we move further to the right of any point P (x, y) the y- coordinate decreases and the x- coordinate increases in the inverse proportion so that xy remains constant. Down along the x- axis, the y- coordinate diminishes to 0 at large distance , so that the x- axis touches the curve at ∞. Similarly the curve touches the y – axis at ∞. A line touching a curve at ∞ is called an asymptote of the curve. Further, the branch A’P’B’ is reflection of the branch APB , not about any axis, but about the line y = - x shown as a dotted line. The fact may be verified by observing that the equation of this curve is unchanged by replacing x, y by – x and – y respectively. Further, it may be noted that the curve is symmetric about the line y = x , for interchanging x and y in the eqn makes no difference.
  • 16. Equation of rectangular hyperbola YA R R P(x, y) An analogy with the circle: In an ellipse, the sum of distances of any point on it is B constant and equal to its major axis. Similarly, on this curve, X’ O Q X the rectangular hyperbola, product of distances from two A’ fixed st.lines is constant. ( its distance from y –axis being x P’ and the distance from x – axis being y). y= - x R’ The curve can be transformed by a change of axes , the new B’ Y’ axes got from rotating the existing axes by 450 anticlockwise. Fig.16, rectangular hyperbola The new set of axes, say X and Y form another rectangular Cartesian coordinate system about the same origin. If new coordinates of P be (X, Y) , we have, from principle of transformation of coordinates, x = X cos 450 – Y sin 450 and y = X sin 450 + Y cos450………….(b) Putting the values in (a), (X cos 450 – Y sin 450)( X sin 450 + Y cos 450) = c2 (X / 2 – Y / 2)( X / 2 + Y / 2) = c2 or, X2 – Y2 = 2c2 or X2 – Y2 = a2 or, 2 2 X Y 1 or, …………………..………………………….(14) 2 2 a a
  • 17. Equation of hyperbola Now the technique of compressing Y- D2 Y D1 L coordinate may be applied. Let all Y- P’ M P coordinates be compressed in the ratio M’ b b ;so y’= a Y, and x’ = X. Thus the eqn. a F’ F 2 2 reduces to x' y' 1 X’ A’ N’ O N A Q X 2 2 a b which may be re-written in usual form , for the only reason of sheer convenience 2 2 as, x y 1 ……………… Eqn.(15) Q’ D2’ D1’ Q Y’ L’ 2 2 a b We also can arrive at the ratio of Fig. 17 : Hyperbola focal distance to the directory distance of a point just in the manner we did for the ellipse. which can be regarded as the standard equation of a hyperbola. Just as the eqn. of ellipse is derived from the eqn. of a circle, the eqn. of hyperbola is derived from eqn. of a rectangular hyperbola in the same manner. Hence the rectangular hyperbola may be considered as a counterpart of a circle.
  • 18. L’ Y X N’ S’ TO SHOW THAT AN HYPERBOLA IS T’ ACTUALLY A SECTION OF A CONE Let a st.line VU revolve around a fixed M’ st.line VG making a constant angle with a it at V and generate a double cone as V C(0, 0) b shown in the figure. Let a plane parallel L a to VG and perpendicular to the plane of L M VUW cut the double cone in a curve in x two branches LMN and L’M’N’ , M and x P M’ being two points on the cone. Let VC y = b , be perpendicular to MM’. Set up a 900 Y’ S T rectangular Cartesian coordinate r O b R L system at C , midpoint of M’M and MM’ U W being the x-axis and YY’ being y-axis in N the intersecting plane. Take any point P on the curve of intersection and draw a X’ L G perpendicular PR onto MM’ and extend L Fig. 18 : A hyperbola is really a section of a cone it until it meets the curve at N. Coordinates of the point P are x = CR and y = PR. Take a plane containing PR and perpendicular to the plane VST . this plane intersects the cone in a circle PST having its centre at O and radius OP = OS = OT = r.
  • 19. L’ Y X N’ S’ L TO SHOW THAT AN HYPERBOLA IS T’ ACTUALLY A SECTION OF A CONE This can be proved from M’ a congruence of the two triangles V C(0, 0) b L VSO and VOT, having the side a L M VO common, and two equal x angles SVO = = OVT and x P L y having a right angle each. OVCR 900 Y’ S T r O b R can be proved to be a rectangle U W as three of its angles are right N angles, so that OR = VC = b. X’ L G Now PR is in the intersecting L Fig. 18 : A hyperbola is really a section of a cone plane and OR is in the plane of the circle PST and the two planes are perpendicular to each other. So OR PR and it follows that OP2 = OR2 + PR2. Or, r2 = b2 + y2…………………….(a)
  • 20. Continued from the previous slide As OP = r, OR = b and PR = y.. The relationship between x and y shall be the eqn. to the curve of intersection we require, which can be obtained from this eqn.(a) r in terms of x. We immediately observe that r = OS = OV tan and OV = CR = x. x2tan2 = b2 + y2………………………………...(b) Hence we get, is the required equation to the curve of intersection. If we denote the length CM = a, observe that CMV = MVO = , so that tan = b/a. x2b2 = a 2b2 + a2y2 or, Now eqn. (b) becomes, …………….( c) 2 2 x y 1 2 2 a b which is standard equation to a hyperbola . Note that ‘a’ is actually seen to be its semi-major axis and ‘b’ is equal to its semi-minor axis, though it is not in the plane of the curve. The value of e may be obtained from , …………………………………(d) 2 b 2 2 2 e 1 1 tan sec 2 a which is always greater than 1 for any given acute angle . For a different value of e we need a different value of , or in other words, need a different cone altogether. From one cone, we get hyperbolas all of same e value i.e., sec2 . This is because either we have to choose a different cone or different values of a and b; to get different hyperbolas from the same cone, i.e., the plane of intersection must be different.
  • 21. Continued from the previous slide This is a meaning of e for the hyperbola. 2 2 2 2 x y x y It may be further noted that in the eqn. of an ellipse a a (1 e ) ,or a b 1 1 2 2 2 2 2 , where , e is supposed to be less than 1, i.e., b < a. If we make e > 1 2 2 2 b a (1 e ) , e becomes imaginary and we do not get a hyperbola in place of an ellipse, as b 2 2 becomes imaginary; not evenif we rewrite the same equation as . x y 1 2 2 2 a a (e 1) On the other hand, if we make b > a in , we get only another ellipse with its major and minor axes interchanged. 2 2 x y 1 The hyperbola shown in the figure of this article is represented by ; a b 2 2 where b is the length of the perpendicular from vertex of the cone onto the plane of intersection , i.e., onto the plane of the hyperbola. But as it is the standard eqn. of hyperbola, b is supposed to be less than a , and it is very much the semi- minor axis, which is supposed to be in the plane of the hyperbola. Thus the length of the perpendicular from vertex of the cone happens to be equal to the semi-minor axis, the two being perpendicular to each other. This is as if the minor axis has been rotated through /2 or having been multiplied by i = (-1) , perhaps because b2 in the equation of the ellipse is replaced by - b2 in contrast to the case of ellipse. Then e 1 b 1 tan which is always greater than 1. 2 2 2 2 sec 2 a
  • 22. The general eqn. of 2nd degree in two variables represents a conic. The General eqn. of 2nd degree ax2 +2hxy + by2 + 2gx +2fy +c = 0……….…eqn(16) By a suitable transformation of co-ordinates , the xy-term may be made to vanish. Suppose the axes are turned through an angle so that, x is replaced by x cos -y sin and y is replaced by x sin + y cos ,so that (16) becomes a(x cos - y sin )2 + 2h(x cos - y sin )( x sin + y cos )+ b(x sin + y cos )2+2g(x cos - y sin ) + 2f(x sin + y cos ) + c = 0. The coefficient of 2xy term is h(cos2 -sin2 ) – (a – b) cos sin ,which is 0 if, 2h cos 2 = (a – b) sin 2 , or tan 2 = 2h/(a – b). For any real value of h, a and b, can always be found, so that the eqn. can always be got rid of the xy-term (second term).Even for a = b, cos 2 = 0 and = /4 if we put a = b from the beginning. And thus can be written in the form Ax2 +By2 + 2Gx +2Fy +C = 0…………………………………………………………….(17) Of course c = C as the term does not involve the variables only whom we have modified. Thus we can take (17) as general equation of second degree in two variables without any loss of generality. This equation can be written as follows by completing squares ……………………………………...(18) 2 2 2 2 G F G F Ax By C K ( sa y ) 2 2 A B A B if A 0 and B 0.
  • 23. The general eqn. of 2nd degree in two variables represents a conic. If the origin is shifted to the point , eqn.(17) can be written as G F , A B , ..................................... (18) 2 2 x y 1 K K A B (to keep the number of symbols minimum, we write x and y instead of new symbols, though x and y in (18) are different from x and y in (17)or simply transfer the origin to ) G F , A B The eqn. represents an ellipse , real if K/A and K/B both are positive, or imaginary one , if K/A and K/B both are negative, their roots are imaginary. This shows that a second degree eqn in two variables Ax2 +By2 + 2Gx +2Fy +C = 0 in which there is no xy-term shall be equation of an ellipse if A and B are of 2 2 same sign as that of . G F C 2 2 A B Eqn.(18) represents a hyperbola if one of K/A and K/B is negative. This shows that a second degree eqn in two variables Ax2 +By2 + 2Gx +2Fy +C = 0 in which there is no xy-term shall be equation of an hyperbola if A and B are of opposite signs.
  • 24. The general eqn. of 2nd degree in two variables represents a conic. 2 C F F If A = B, this represents a circle , origin at and radius , 2G 2 B G B ………………...(19) K K or A B and only a point , trivial case of circle if K = 0. If one of A, B, is 0 , say A = 0 and B 0, from eqn.(18) we get, By2 + 2Gx +2Fy +C = 0……………………………………………..…..(20) Do not put A = 0 direct in that equation. By completing the square, 2 2 F C F By 2G x 0 B 2G 2 BG Or, By2 +2Gx = 0 or, 2G ……………………………………..(21) 2 y x B which represents a parabola if the origin is shifted to its branches towards negative side of the x-axis if G/A is positive and vice versa. If G = 0 along with A = 0, from eqn.(17) we get, In other words, a second degree eqn in two variables Ax2 +By2 + 2Gx +2Fy +C = 0 in which there is no xy-term shall be equation of a parabola, if A = 0 , G 0. 2 By2 + 2Fy + C = 0 or y F F B C ………………………………………….(22) B which represents two straight lines parallel to each other and parallel to x-axis. The
  • 25. The general conic represents the following curves under respective conditions. Summary What curve Under what condition Ellipse 2 h ab Parabola 2 h ab Hyperbola 2 h ab Circle a = b and h =0 Rectangular hyperbola a + b =0 Δ =0, where Δ =abc +2fgh – af2 – bg2 – ch2 Two st lines, real or imaginary Δ =0 and Two parallel st lines 2 h ab
  • 26. A Conic sections from different points of view We have discussed conic sections as plane curves characterised by a A. C ratio called eccentricity, the ratio of focal distance to distance from D B directrix. Ellipse and hyperbola are derived from circle and rectangular hyperbola B. by compression of one coordinate. Conic sections are really plane sections of cone. C. A circle is a curve such that square of distance of any point on it from a D. E fixed point , center is constant. An ellipse is a curve such that sum of F distances of any point on it from the two foci is constant and is equal to major axis. parabola is a curve such that distance of any point on it from the focus is equal to that from the directrix. Rectangular hyperbola is a Conic section as projection of a circle curve such that product of the distances of any point on it from two mutually perpendicular straight lines is constant. Hyperbola is a curve such that product of distances of any point on it from its asymptotes is constant. Hyperbola is a curve such that difference of distances of any point on it from two fixed points, foci is constant. Conic sections are projections of circles. Take the parabola EBF in the E. figure for example. Join every point of it to the vertex of the cone A. Each of the straight lines joining a point of the parabola to the vertex passes through the circle BCD. In this way, there is one and only one point on the circle for any point on the parabola and vice versa, i.e., the parabola or the circle are projections of each other or equivalent to each other. This is also a point of view as to what conic sections are. Lastly we discussed how every second degree equation in two variable is F. a conic section and vice versa. There are other points of views as well , e.g. a conic section is inverse of a G. circle, i.e. when we take k/r, θ instead of coordinates r and θ. Still there are other points of view we would discuss later on.