SlideShare ist ein Scribd-Unternehmen logo
1 von 67
Sandstone uranium deposits:
     Looking forward
        Michel CUNEY


        UMR G2R – CREGU – CNRS
          Vandoeuvre les NANCY
PRESENTATION HIGHLIGHTS

 To propose a general framework for the different types of uranium deposits
associated with sandstone within the continuum of the geologic cycle

 To try to go beyond the usual classifications using the recent work of the UDEPO
group and more personal views

Such a general framework should help to set up the different contributions which
will be presented during this meeting concerning deposits from all over the world

 To trace the avenues for future research and exploration of sandstone related
deposits
IAEA classification 2012
1. Intrusive
2. Granite-related
3. Polymetallic iron-oxide breccia complex
4. Volcanic-related
5. Metasomatite
6. Metamorphite
7. Proterozoic unconformity: 82 deposits
8. Collapse-breccia pipe (Arizona Strip, USA)
9. Sandstone: 576 deposits from 1405 compiled in the UDEPO data base
10. Paleo-quartz-pebble conglomerate: 62 deposits
11. Surficial: 60 deposits
12. Lignite and coal
13. Carbonate
14. Phosphate
15. Black shale
IAEA classification 2012
9. Sandstone
9.1. Basal channel
(Dalmatovskoye, Russian Federation; Beverley, Australia)
9.2. Tabular
Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger)
Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA)
Continental fluvial vanadium-uranium (Salt Wash type, USA)
9.3. Rollfront
Continental basin, U associated with intrinsic reductant (Wyoming type, USA)
Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan)
Marginal marine, U associated with extrinsic reductant (South Texas, USA)
9.4. Tectonic-lithologic
(Lodève Basin, France; Franceville Basin, Gabon)
9.5. Mafic dykes/sills in Proterozoic sandstone
(Westmoreland District, Australia; Matoush, Canada)
A GENETIC CLASSIFICATION OF U-DEPOSITS Cuney, 2012
 1 – Fractional crystallization

 2 – Partial melting

 3 – Hydrothermal high level post-orogenic :
      3A – Volcanic - hydrothermal
      3B – Granitic - hydrothermal
 4 – Diagenetic hydrothermal systems:
    4C: Intraformational redox control
        4C1: Tabular: Grants Mineral Belt, Beverley
        4C2: Tectonolithologic: Akouta, Niger
        4C3 : Karsts (breccia pipes): Colorado
    4A: Basin/basement redox control (unconformity related)
    4B: Interformational redox control (Oklo Gabon) but fluids similar to unconf. related U
 5 - Hydrothermal metamorphic (Katanga deposits transitional with diagenetic
                                       hydrothermal systems)
A GENETIC CLASSIFICATION OF U-DEPOSITS Cuney, 2012
   6 – Hydrothermal metasomatic:
       6A – Alkali-metasomatism
       6B – Skarns :Mary Katheleen
 7 – Syn-sedimentary:
       7A: Mechanical sorting: Qz pebble conglomerates
       7B: Redox trapping: black shales
       7C: Crystal-chemical/redox trapping: phosphates

 8 - Intraformational meteoric fluid infiltration
     8A: Sealed paleovalleys: Vitim (Transbaikalia)

     8B: Roll fronts: Powder River Basin (Wyoming)

 9 –- Weathering & evapotranspiration: calcretes

 10 – Other types
U deposits related                                               Calcretes /Lignite/Coal                         U deposits related
   to magmatic                                                   SURFACE WATERS                                    to sedimentary
                                                                         Meteoric / Sea    Conglomerates
      rocks                      Volcanic                                                           Phosphates         basins
                   IOCG(U)                                                       N                      Black shales
                                                                             O                            Basal              Sandstone
                                                                          SI                Ground
        Fract. cryst.    Veins                                      T   EN                     waters       Rollfront        hosted
         Magmatic-             Fluid                              EX                  DI
         Hydrothermal         MIXING                                                     AG                      Tabular
                                                                                                                  Tabular
            Fluids                                                                         EN        Formation
                                                                                              ES        waters     Tectonolithol


                                        -
                                                                                                 IS                .     Breccia Pipes
                                N
                             IO

                                        MAGMATIC FRACTIONATION
                                                                                                            DIAGENETIC
                          AT

MAGMATIC
                        M
                     HU




 FLUIDS                                                                                                       FLUIDS
                  EX




                                                                 GEOLOGIC CYCLE                                           Unconformity
                         CO
                         CO
                           L
                           LL




            Crustal                                                                                                   Metamorphic L.T.
                              IIS
                                SII




                                                                                                 M     Metamorphic
  Skarns
    Skarns                                                                                     IS
                                   ON
                                   ON




                                                                                             PH           fluids    Na-metasomatism
                                                                                                                    -
 Alaskites
   Alaskites          Silicate
                                                                                         M OR                    Metamorphic H.T.
 Crust partial
        Partial        melts
                                                                                       TA
   melting
   Melting        MIX
                     I                                                               ME                         U deposits related
                         NG                                                            Subduction
                                                                                          fluids                to metamorphism


                                                                                                        N
                                 Mantle

                                                                                                    TIO
                                 melting
                                 melting
                                                                     MANTLE                      UC
                                                                                                BD
                                                                  MELTS / FLUIDS
                                                                                              SU
IAEA classification 2012
9. Sandstone
9.1. Basal channel
(Dalmatovskoye, Russian Federation; Beverley, Australia)
9.2. Tabular
Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger)
Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA)
Continental fluvial vanadium-uranium (Salt Wash type, USA)
9.3. Rollfront
Continental basin, U associated with intrinsic reductant (Wyoming type, USA)
Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan)
Marginal marine, U associated with extrinsic reductant (South Texas, USA)
9.4. Tectonic-lithologic
(Lodève Basin, France; Franceville Basin, Gabon)
9.5. Mafic dykes/sills in Proterozoic sandstone
(Westmoreland District, Australia; Matoush, Canada)
9.1. Basal channel (Paleovalley):
 Vitim district, Russian Federation: RAR: 52,000 mt U, Speculative R.: 100,000 mt U
8 deposits over 250km2 with 44,800mtU @ 0.05-0.3 %U, prognosticated R.: 60,000mt U, Khiagda: 15,500 mt U
Paleochannels with up to 50 m thick Oligocene-Miocene colluvial to alluvial grey to multicolored
carbonaceous clay-siltstone, sandstone, conglomerate, intercalated lignite seams. Pyrite and plant debris, ~
0.8% Corg
Geological map of the Khiagda ore field
9.1. Basal channel
Typical cross-section through the Khiagda deposit.
       SW                                                    60 km                           NE
   0                                            0



  30                               basalt


  60
                                        U ore

                                                                     granite
  90
  m                          Neogene sediments (sand, silt, clay)
                                grey     oxidized    reduced

              Source:     Highly potassic calcalkaline Hercynian granites
              Transport: infiltrated meteoric fluids through permeable siliciclastic rocks
              Deposition: reduction by detrital organic matter (20 Ma to present)
IAEA classification 2012
9. Sandstone
9.1. Basal channel
(Dalmatovskoye, Russian Federation; Beverley, Australia)
9.2. Tabular
Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger)
Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA)
Continental fluvial vanadium-uranium (Salt Wash type, USA)
9.3. Rollfront
Continental basin, U associated with intrinsic reductant (Wyoming type, USA)
Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan)
Marginal marine, U associated with extrinsic reductant (South Texas, USA)
9.4. Tectonic-lithologic
(Lodève Basin, France; Franceville Basin, Gabon)
9.5. Mafic dykes/sills in Proterozoic sandstone
(Westmoreland District, Australia; Matoush, Canada)
9.1. Basal channel looking forward

 Model mainly discovered in Russia with some other minor occurrences in NW
Mongolia and Canada (Blizzard)

 Not considered as a major exploration target in other countries.
Should exist in other part of the world where valleys incized in U-rich granites,
filled with organic matter bearing silicicalstic sediments, covered by basalts
 Interesting features :

   • Close to the surface

   • Amenable by in situ leaching

   • Average size and grades
9.2. Tabular
 U disseminated within reduced sediments along lenticular shaped masses
oriented parallel to the stratigraphy

 Individual deposits: x100 t U up to 150,000 t U, @ 0.05 - 0.5% (up to 1%)

                                 3 sub-types :
Continental fluvial, U associated with intrinsic reductant
 Arlit type, Niger

Continental fluvial, U associated with extrinsic humate/bitumen
 Grants type, USA

Continental fluvial vanadium-uranium
 Salt Wash type, USA
9.2. Tabular
Continental fluvial, U associated with intrinsic reductant

 Tabular to lenticular U ore bodies hosted in arkoses rich in detrital C-matter in
continental fluvial channel systems, interbedded with claystone-shale beds.

 U ± Zn, Cu, V, Mo, Zr: pitchblende & coffinite disseminated in reduced, pyritic
sandstone and as finely disseminated argillic-organic U complexes

 Resources are small to large (< 100 to 150 000 t) @ 0.10 to 0.50%

Ex. : Arlit District (Niger) with total resources exceeding 600 000 t.
9.2. Tabular
Continental fluvial, U associated with extrinsic humate/bitumen
U associated with humate/bitumen

 Mineralization disseminated in lenses within continental sandstone intercalated
with shale

 Sandstone represents 60-80% of the volume and but pyroclastics are common

 The host sandstone was deposited in a mid-fan environment within an extensive
fluvial-lacustrine sedimentary system

Resources are medium to large (500-35,000 t @ 0.10-0.40%)

 Ex.: Ambrosia Lake District (USA) with resources in the order of 130 000 t U
9.2. Tabular
Continental fluvial, U associated with extrinsic humate/bitumen
    The primary ore (reduced ore which has undergone little alteration since its
                        formation during early diagenesis)

               = fine-grained mixture of urano-organic complexes :
                                 = cryptocrystalline colfinite
                                 + amorphous organic matter
                          that commonly fills primary pores

  Amorphous organic matter highly aromatic: high O/C ratio: 0.2 - 0.3
      originated as humic acids derived from plant material
   However, irradiation of organic matter (OM) leads to its oxidation
 Are the O/C ratios determined during the 80’s those of the pristine
OM or do they correspond to modified migrated OM from marine origin ?
9.2. Tabular
Continental fluvial vanadium-uranium

 U associated with V in reduced fluvial sandstone within a sequence of
continental red-bed sediments.

 The sedimentary succession comprises:
      * thin, widespread units of reduced sandstone
      * with interbeds of grey clay and carbonaceous debris

 U ore is largely epigenetic, but syngenetic uranium enrichment may have existed

Deposits are small to medium (1-2 000 t U) @ 0.05-0.50% U
High vanadium content often increases their economic viability

 Ex : Salt Wash uranium district, USA
IAEA classification 2012
9. Sandstone
9.1. Basal channel
(Dalmatovskoye, Russian Federation; Beverley, Australia)
9.2. Tabular
Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger)
Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA)
Continental fluvial vanadium-uranium (Salt Wash type, USA)
9.3. Rollfront
Continental basin, U associated with intrinsic reductant (Wyoming type, USA)
Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan)
Marginal marine, U associated with extrinsic reductant (South Texas, USA)
9.4. Tectonic-lithologic
(Lodève Basin, France; Franceville Basin, Gabon)
9.5. Mafic dykes/sills in Proterozoic sandstone
(Westmoreland District, Australia; Matoush, Canada)
9.3. Rollfront
 mineralized zones are crescent shape, oriented down the hydrologic gradient
diffuse boundaries with reduced sandstone on the down-gradient side
 .     …sharp contacts with oxidized sandstone on the up-gradient side
 elongated and sinuous mineralized zones approximately parallel to the strike, .
 .   . perpendicular to the direction of deposition and groundwater flow
 Resources from x 100 to X 1,000 t U @ 0.05% to 0.25%

Continental basin, U associated with intrinsic reductant
 Wyoming type, USA

Continental to marginal marine, U associated with intrinsic reductant
 Chu-Saryisu type, Kazhakstan

Marginal marine, U associated with extrinsic reductant
 South Texas, USA
9.3. Rollfront U deposit genesis

Formed where oxidized groundwater encounters reducing conditions in
                      permeable sandstone

 U in solution is precipitated at the redox interface, forming a crescent-
                        shaped roll-front ore body

             The roll front crosscut the sandstone bedding
 The reduction front migrates gradually in the direction of groundwater
                     flow, creating the ore body
                   with progressive U-accumulation
Se   U, V   Mo




Zonality with Se behind
the front and Mo beyond U and V
9.3. Rollfront
Continental basin, U associated with intrinsic reductant
 U occurs disseminated at the redox boundary at the contact with pyrite-bearing
sandstone and detrital carbonaceous debris on the down-gradient side in arkosic
and subarkosic sandstones deposited in intracratonic or intermontane basins

 These basins are in spatial proximity with proximal to rocks (such as granites,
and tuffs) containing anomalous uranium concentrations

 Most deposits occur within interbedded sequences of fluvial sandstones and
volcanic-rich sediments

 The shapes of deposits is strongly controlled by the permeability of the host
rocks

Resources are small to large (100-1 000 t U @ 0.05-0.20%)

Ex.: Wyoming basins with resources of 250 000 t.
9.3. Rollfront
Continental to marginal marine, U associated with intrinsic reductant


 Deposits are similar to roll front deposits in continental basins, but host
lithologies correspond to a sequence of mixed continental and marginal marine
origin.

 Resources are medium to large (1 000-100 000 t U @ 0.04-0.08% U)

The World’s largest resources of this type (> 800 000 t) are located in the Chu-Sarysu
and Syr-Daria Basins (South Kazakhstan).
Evolution of Kazak Uranium Production
                                         19.450 t U
                                        35% World P.
9.3. Rollfront
Marginal marine, U associated with extrinsic reductant

 U is concentrated in roll-type deposits near faults and in contact with pyrite /
marcasite-bearing sandstone on their downgradient side

 Hosts environment include point bars, lateral bars and crevasse splays
deposited in a fluvial environment and barrier bars and offshore bars in a marine
environment

 Deposits are small to medium (50-5 000 t U @ < 0.05-0.25% U)

Ex.: South Texas Uranium region : resources of 100 000 t U
Oxygenated meteoric ground waters                                          Adams and Smith, 1981




                                          limb
             Extend of
              upward                          roll front
           gas migration                                    Reduced
                                                           sandstone      Reduced
                                       gas
                                           mi                            sandstone
                                             gra
                                                t   ion                               Primary
                                                                                      oxidized
                                                                                     sandstone
(iii) fault controlled influx
 of reducing compounds                                                        Extend of
                                                                             downward

        (South Texas)                                                  H2S
                                                                            gas migration

                                                                   Hydrocarbons
IAEA classification 2012
9. Sandstone
9.1. Basal channel
(Dalmatovskoye, Russian Federation; Beverley, Australia)
9.2. Tabular
Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger)
Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA)
Continental fluvial vanadium-uranium (Salt Wash type, USA)
9.3. Rollfront
Continental basin, U associated with intrinsic reductant (Wyoming type, USA)
Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan)
Marginal marine, U associated with extrinsic reductant (South Texas, USA)
9.4. Tectonic-lithologic
(Lodève Basin, France; Franceville Basin, Gabon)
9.5. Mafic dykes/sills in Proterozoic sandstone
(Westmoreland District, Australia; Matoush, Canada)
9.4. Tectonic-lithologic

discordant to concordant to strata.

 Occur in permeable fault zones and adjacent sandstone beds in reducing
environments created by hydrocarbons and/or detrital organic matter

Uranium is precipitated in open fracture or fault zones related to tectonic
extension.

Individual deposits contain a x 100 mt U up to 5 000 mt U @ 0.1%- to 0.5%.

Ex. : Lodève District (France) and the Franceville Basin (Gabon).
9.4. Tectonic-lithologic




Geological cross-section of the north border of the Lodève Permian Basin (FRANCE)
The U mineralization is associated to the main fault systems (from Mathis et al. 1990)
IAEA classification 2012
9. Sandstone
9.1. Basal channel
(Dalmatovskoye, Russian Federation; Beverley, Australia)
9.2. Tabular
Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger)
Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA)
Continental fluvial vanadium-uranium (Salt Wash type, USA)
9.3. Rollfront
Continental basin, U associated with intrinsic reductant (Wyoming type, USA)
Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan)
Marginal marine, U associated with extrinsic reductant (South Texas, USA)
9.4. Tectonic-lithologic
(Lodève Basin, France; Franceville Basin, Gabon)
9.5. Mafic dykes/sills in Proterozoic sandstone
(Westmoreland District, Australia; Matoush, Canada)
9.5. Mafic dykes/sills in Proterozoic sandstone

mineralization is associated with mafic dykes and sills that are interlayered with
or crosscut Proterozoic sandstone formations

 Deposits can be subvertical along the dyke’s borders, sometime within the dykes,
or stratabound within the sandstones along lithological contacts (Westmoreland
District, Australia; Matoush, Canada).

Deposits are small to medium (300-10 000 t U @ 0.05-0.40% U)

Ex.: Westmoreland District, Australia; Matoush, Canada
9.5. Mafic dykes/sills in Proterozoic sandstone
                        Type 1                           Type 2

                        Mafic volcanics


                        sandstone




                        Type 3                           Type 4




                         Mafic Volcanics         Felsic Volcanics             Unconformity
                         Proterozoic sandstone   Uranium mineralization   0        40 m




 Geological setting and types of mineral occurrences in the Westmoreland U field
Relationships between sandstone

uranium deposits & fluids derived

  from hydrocarbon reservoirs
Sandstone Uranium Deposits & Hydrocarbon Reservoirs
South Texas Costal plains (Adams and Smith, 1981)
Ordos, Song-Liao and Tarim basins (China)
      Hydrocarbons are reductants in organic-poor sandstone
hosted U deposits
In Kazakhstan a spatial association between
        HC-bearing reservoirs and overlying sandstone U deposits
        HCs and/or H2S from HC-reservoirs migrated along
structures and could have represented the reductants for U
deposition
 Franceville Basin (Gabon)
Characterisation

of uranium sources in sandstones

     (magmatic inclusions)
U SOURCES
                (i) Outcropping uranium rich granites:
      Typically high K-calc-alkaline, peraluminous leucogranites

            (ii) Alteration of interbedded volcanic ash or tuff
          Typically high-K calcalkaline to peralkaline magmas
Peralkaline magmas typically marked by high Zr content in the U-oxides
                     (Niger ; Muhlenbach, Germany …)


 Characterisation of the volcanic source by magmatic inclusion study
TECTONO-LITHOLOGIC (Akouta, Niger)
AIR MASSIF
Th vs. U volcanics rocks
of Niger (Aïr, Zinder)
and Nigeria
Importance of the uranium derived from

a synsedimentary volcaniclastic contribution

 for uranium deposits hosted in sandstone
ANALCIME
Rhyolite
   pebble
               Volcanic shards

              Evidences of
                a volcanic
               contribution
  melt        in sediments
inclusion
melt
inclusions
MAGMATIC INCLUSIONS
OFFER THE POSSIBILITY TO QUANTIFY THE INITIAL METAL
       and VOLATIL CONTENT OF THE MAGMAS :
 In volcanics (ex. Streltsovka, Russie and others)
 In plutonites (more difficult, because less well preserved)
 In sediments having
a volcanic componant




                               Melt inclusion
METHODOLOGY FOR ESTIMATION OF THE U POTENTIAL
             OF VOLCANIC ROCKS
Analyse of altered whole rocks : ICP-AES et MS

 Sélection of the inclusions and homogeneization at high temperature

 Analyse of the magmatic inclusions : - electronmicroprobe : major elts
                                        - ionic microprobe IMS3f : traces

 Massbalnce calculation between whole rocks / melt inclusions

 Évaluation of the quantity of mtals and et volatils loss / volume of rock
Melt inclusion geochemistry from sandstone quartz grains
Comparison melt inclusion composition from sandstone & Air rhyolites




                                          Air rhyolite
                                              field
Melt inclusion geochemistry from sandstone (Shand diagr.)




                        Al/(Na+K+2Ca)
Th - U geochemistry of magmatic inclusion from sandstone




                                    20
Recent eruptions at the Yellowstone caldera (64 x 40 km)
                   The biggest occurred at 2.1 Ma  Huckleberry Ridge ash bed




The 3rd largest
at Long Valley
in California
produced the Bishop ash bed.                                        Credit: USGS
EVOLUTION of U-GEOCHEMISTRY DURING EARTH HISTORY
                         4
                                0.45 Ga to present
Middle Silurian  land plant apparition  reduced terrestrial clastic sediments
 U trapping in porous organic matter bearing continental sandstone
            Intraformational sandstone hosted deposits :
                         - Tabular
                         - roll front
                         - tectonolithologic ...
            but when the reductant corresponds to migrated fluids deriving
            from deep seated oil reservoir trapped in permeable continetal
            sandstone       the deposits can be older than Silurian
            Ex. : - Oklo deposits
                 - U-rich arkosic sandstone representing the source of most anatectic
             pegmatoids of Rössing type (metamorphosed equivalent of Oklo)
U DEPOSITS FROM THE FRANCEVILLE BASIN:

          TYPICAL EXAMPLES OF

PRE-SILURIAN SANDSTONE HOSTED U-DEPOSIT

   RELATED TO REDUCED FLUID MIGRATION

    FROM AN OIL PRODUCING FORMATION
Franceville Basin GABON
    GABON

                                                        Cameroun
                                                                                              Lastourville
2   Gabon                                                                                       Basin
                                       Guinée

                                                     MASSIF DU
                                                                                 Chaillu                                               Og
                                                                                                                                          o
    Libreville                                      HAUT-GABON

                                                                        Congo
                                                                                 Massif                                                       ou
                                                                                                                                                 é
                                                                                                                                                                      Mole
0                                                                                                            Boyindzi                                               d’Ondili
                                                                                                                        Mounana
                                                     Lastourville
                                                                                                                        Oklo
                                                                                          N
                                                             Og
                                                                oo
                                                                  ué
           OCE




                                                                                                                        rz
                                                                                                                         Okélobondo
                                                Franceville                      10 km
            AN




                                                    MASSIF DU                                                Mabinga
2                                                    CHAILLU
                                                                                                                           Bangombé
                                                                                   Séries du Francevillien
             A




                                                          Congo
                                                                                                                                  rz
                 T




                                                                                                                                                     Mikouloungou
                 L
                     A




                                                                                   Formation FA > 500 m
                     N




                                                                                                                        Moanda
                         T
                         IQ




                                                                                   Socle archéen
                             U
                              E




       0             100 km
                                                                                   Failles majeures                                                             Franceville
                                  10               12                  14          Gisements d’Uranium
                                                                                rz Zones de réaction
                                                                                   Villes principales
FE
         à               Stratigraphic succession
         FC                             From Weber (1968)



         FB2
                  Mn-rich layers
                  Dolomitic layers
                                                 Pelites
         FB1


               U Mineralization
                  Coarse grained with
         FA                                      Sandstone
                  Mnz et Zrn
1000 m




                  Basal conglomerate
                  Archean basement
Oklo - Okélobondo
    Couche C1          Zones de
W   minˇralisˇe        rˇaction                      E
            15       Oklo carri¸re
              1-2
                3-6
                    7-9               Ampˇlites FB

                                         Gr¸s FB
                           13

                            10-16

                                           OK84bis

                                    Okˇlobondo mine
            Socle
100 m                                     Gr¸s FA
          cristallin
Pétrographie minéralisations dans le grès

                                     Ca
                   Qzd




                                            Qzd


Ech. OBD.96-9c :                            Ech. OBD.96-23 :
  Okélobondo
                    MO minéralisée U-Pb-S     Okélobondo
M                                                  Fracture
                                                    N-S
o   FB pelites                                                           Redox fron
                                                                                      t


d   Fluide Hydrocarboné U mineralisation



e          Evaporitic layers
              FA carbonates    F1


l   Fine grained non-                                            Coarse silicified




                                       F4
    Silicified FA                                                 FA sandstone
                                                Silicification




                                        -
                                     F3
     Zr-P-Pb-TR-UVI



          F2

      Diagenetic brine
      expulsed duringUVI
                                                            erate
        compaction                                     nglom
                                                 sal co
                               UVI          FA Ba

            UVI                 Recharge Météorique                            Basement
                                “chaude” et peu salée
U-enrichment in metamorphosed epicontinental platform sediments
            Archean: Litsk area, NE Kola Peninsula, Russia, U pegmatoids
    “Hudsonian” S.L. : Wollaston and Mudjatik synsedimentary U enrichment :
     in meta-arkoses (Duddridge Lake), calcsilicates (Burbridge Lake & Cup Lake)
                         in pegmatoids (Charlebois alaskites).
                            Steward Lake, Québec, Canada
   Northern Québec, Ungava Bay and Baffin Island, U-pegmatoids : Lake Harbour
                Litsk district, Kola Peninsula, Russia, U pegmatoids,
                       Wheeler Basin, Colorado: U- pegmatoids
                            Orrefjell, Norway: U-pegmatoids
                 Southern Finland : Late orogenic potassic granites
           Crocker Well, Olary Province, Flinders Range, South Australia
               Six Kangaroos area of Cloncurry-Mt. Isa District, Australia
 Nanambu, Nimbuwah, and Rum Jungle complexes, Katherine-Darwin area, Australia
  “Grenvillian” S.L. Occurrences : Bancroft, Ontario : 4 mines (5,700 t U produced),
Mt Laurier, Johan Beetz, Havre St Pierre, Sept Iles, Port Cartier, St Augustin, Québec
“Pan-African” Occurrences : Rössing, SH, Rössing South, Valencia , Ida, Goanikontes,
LOOKING FORWARD
Major avenues for research & exploration for sandstone U deposits (1) :
 Sandstone related deposits represent more than 1/3rd of world U deposits and
considerable resources are still wating to be discovered in many parts of the world
 In the new UDEPO data base new types of sandstone related U deposits have
been introduced to account to their diversity
 Transitions exists between some synsedimentary uranium deposits, tabular
sandstone type models, unconformity related model and some metamorphic
uranium deposits (Katanga).
The role of oil reservoir fluids (brines and associated marine hydrocarbons)
migrated through faults into sandstone reservoirs as a major reductant for
sandstone hosted U deposits:
        change the exploration strategy:
         looking for oil traps at the scale of the sedimentary basins
         change in the distribution of oxidized vs reduced zones for roll fronts
        open permeable pre-Silurian siliclastic formations for exploration
LOOKING FORWARD
Major avenues for research & exploration for sandstone U deposits (2) :

 Looking more systematically for volcanic U contribution in continental
sandstones by magmatic inclusion studies  improve the quality of the U source


Australia is the first U province of the world but presents a huge deficit of
sandstone related U deposits:  large potential for further discoveries


Vitim-type paleovalleys largely underexplored worldwide (except Russia, Mongolia)


 Sustainable development of sandstone U deposits by the recovery of associated
rare elements (rhenium, REE, … )

Weitere ähnliche Inhalte

Was ist angesagt?

Module 2 Week 2 Crustal Processes
Module 2 Week 2 Crustal ProcessesModule 2 Week 2 Crustal Processes
Module 2 Week 2 Crustal ProcessesStuart Kirkham
 
reservoir system and depositional env
reservoir system and depositional envreservoir system and depositional env
reservoir system and depositional envfauzan
 
Foraminifera , micro fossil
Foraminifera , micro fossil Foraminifera , micro fossil
Foraminifera , micro fossil Omer M. Ahmed
 
Amphiboles
AmphibolesAmphiboles
Amphibolesjo
 
Lineation and their types
Lineation and their typesLineation and their types
Lineation and their typesparag sonwane
 
Understanding the sedimentary rocks - Geotalk 2 (MGSS)
Understanding the sedimentary rocks - Geotalk 2 (MGSS)Understanding the sedimentary rocks - Geotalk 2 (MGSS)
Understanding the sedimentary rocks - Geotalk 2 (MGSS)KYI KHIN
 
TURBIDITES: MODE OF FORMATION OF TURBIDITES AND ITS ECONOMIC IMPORTANCE
TURBIDITES: MODE OF FORMATION OF TURBIDITES AND ITS ECONOMIC IMPORTANCETURBIDITES: MODE OF FORMATION OF TURBIDITES AND ITS ECONOMIC IMPORTANCE
TURBIDITES: MODE OF FORMATION OF TURBIDITES AND ITS ECONOMIC IMPORTANCEJames Opemipo OLOMO
 
Ichnology,classification & significance of trace fossil
Ichnology,classification & significance of trace fossilIchnology,classification & significance of trace fossil
Ichnology,classification & significance of trace fossilUjjavalPatel16
 
Stratigraphy i
Stratigraphy iStratigraphy i
Stratigraphy i04799saran
 
primary sedimentary structures
primary sedimentary structuresprimary sedimentary structures
primary sedimentary structurespolarocky
 
CHEMICAL MINERALOGY REACTIONS
CHEMICAL MINERALOGY REACTIONSCHEMICAL MINERALOGY REACTIONS
CHEMICAL MINERALOGY REACTIONSparag sonwane
 
Foliation and lineation
Foliation and lineationFoliation and lineation
Foliation and lineationMd Asif Hasan
 
Biostratigraphic units Geology By Misson Choudhury
Biostratigraphic units Geology By Misson Choudhury Biostratigraphic units Geology By Misson Choudhury
Biostratigraphic units Geology By Misson Choudhury Misson Choudhury
 
Role of Trace Elements In Petrogenesis
Role of Trace Elements In Petrogenesis Role of Trace Elements In Petrogenesis
Role of Trace Elements In Petrogenesis Gokul Anand
 
Paired metamorphic belts
Paired metamorphic beltsPaired metamorphic belts
Paired metamorphic beltsPramoda Raj
 

Was ist angesagt? (20)

Module 2 Week 2 Crustal Processes
Module 2 Week 2 Crustal ProcessesModule 2 Week 2 Crustal Processes
Module 2 Week 2 Crustal Processes
 
reservoir system and depositional env
reservoir system and depositional envreservoir system and depositional env
reservoir system and depositional env
 
Foraminifera , micro fossil
Foraminifera , micro fossil Foraminifera , micro fossil
Foraminifera , micro fossil
 
Amphiboles
AmphibolesAmphiboles
Amphiboles
 
Lineation and their types
Lineation and their typesLineation and their types
Lineation and their types
 
Fract&fault
Fract&faultFract&fault
Fract&fault
 
Understanding the sedimentary rocks - Geotalk 2 (MGSS)
Understanding the sedimentary rocks - Geotalk 2 (MGSS)Understanding the sedimentary rocks - Geotalk 2 (MGSS)
Understanding the sedimentary rocks - Geotalk 2 (MGSS)
 
TURBIDITES: MODE OF FORMATION OF TURBIDITES AND ITS ECONOMIC IMPORTANCE
TURBIDITES: MODE OF FORMATION OF TURBIDITES AND ITS ECONOMIC IMPORTANCETURBIDITES: MODE OF FORMATION OF TURBIDITES AND ITS ECONOMIC IMPORTANCE
TURBIDITES: MODE OF FORMATION OF TURBIDITES AND ITS ECONOMIC IMPORTANCE
 
Ichnology,classification & significance of trace fossil
Ichnology,classification & significance of trace fossilIchnology,classification & significance of trace fossil
Ichnology,classification & significance of trace fossil
 
Biostratigraphy
BiostratigraphyBiostratigraphy
Biostratigraphy
 
Stratigraphy i
Stratigraphy iStratigraphy i
Stratigraphy i
 
primary sedimentary structures
primary sedimentary structuresprimary sedimentary structures
primary sedimentary structures
 
CHEMICAL MINERALOGY REACTIONS
CHEMICAL MINERALOGY REACTIONSCHEMICAL MINERALOGY REACTIONS
CHEMICAL MINERALOGY REACTIONS
 
Foliation and lineation
Foliation and lineationFoliation and lineation
Foliation and lineation
 
Biostratigraphic units Geology By Misson Choudhury
Biostratigraphic units Geology By Misson Choudhury Biostratigraphic units Geology By Misson Choudhury
Biostratigraphic units Geology By Misson Choudhury
 
ROCKS
ROCKSROCKS
ROCKS
 
Tecotnites
TecotnitesTecotnites
Tecotnites
 
Role of Trace Elements In Petrogenesis
Role of Trace Elements In Petrogenesis Role of Trace Elements In Petrogenesis
Role of Trace Elements In Petrogenesis
 
OLIVINE GROUP OF MINERALS
OLIVINE GROUP OF MINERALSOLIVINE GROUP OF MINERALS
OLIVINE GROUP OF MINERALS
 
Paired metamorphic belts
Paired metamorphic beltsPaired metamorphic belts
Paired metamorphic belts
 

Andere mochten auch

Andere mochten auch (15)

Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...
Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...
Understanding Uranium Roll-Front Ore Body Formation Aids in Mine Closure Chal...
 
03 boberg 2012 iaea - wy uranium province
03 boberg 2012   iaea - wy uranium province03 boberg 2012   iaea - wy uranium province
03 boberg 2012 iaea - wy uranium province
 
02 boberg iaea roll front development & expl
02 boberg iaea   roll front  development & expl02 boberg iaea   roll front  development & expl
02 boberg iaea roll front development & expl
 
Uranium Ore Deposits
Uranium Ore DepositsUranium Ore Deposits
Uranium Ore Deposits
 
Austria Conference-07 kh-iaea-mongolian rift basins-2012
Austria Conference-07 kh-iaea-mongolian rift basins-2012Austria Conference-07 kh-iaea-mongolian rift basins-2012
Austria Conference-07 kh-iaea-mongolian rift basins-2012
 
U.6 / CH2 - Animals
U.6 / CH2 - AnimalsU.6 / CH2 - Animals
U.6 / CH2 - Animals
 
The Ultimate Aeolian Journey
The Ultimate Aeolian JourneyThe Ultimate Aeolian Journey
The Ultimate Aeolian Journey
 
Eolian
EolianEolian
Eolian
 
Sandstone As A Resevoir rock 2012
Sandstone As A Resevoir rock  2012Sandstone As A Resevoir rock  2012
Sandstone As A Resevoir rock 2012
 
Sedimentary structures smallas
Sedimentary structures smallasSedimentary structures smallas
Sedimentary structures smallas
 
Aeolian process and landform by shivam soni B.Sc student of Department of App...
Aeolian process and landform by shivam soni B.Sc student of Department of App...Aeolian process and landform by shivam soni B.Sc student of Department of App...
Aeolian process and landform by shivam soni B.Sc student of Department of App...
 
Classification of Sandstone
Classification of SandstoneClassification of Sandstone
Classification of Sandstone
 
Topic 2 the mining cycle
Topic 2  the mining cycleTopic 2  the mining cycle
Topic 2 the mining cycle
 
URANIUM ORE DEPOSITS IN EGYPT
URANIUM ORE DEPOSITS IN EGYPTURANIUM ORE DEPOSITS IN EGYPT
URANIUM ORE DEPOSITS IN EGYPT
 
Salt Range Field Report
Salt Range Field ReportSalt Range Field Report
Salt Range Field Report
 

Mehr von Monatom Mgl

4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хуульMonatom Mgl
 
12.компанийн тухай хууль
12.компанийн тухай хууль12.компанийн тухай хууль
12.компанийн тухай хуульMonatom Mgl
 
11.газрын тухай хууль
11.газрын тухай хууль11.газрын тухай хууль
11.газрын тухай хуульMonatom Mgl
 
10.газрын тухай хууль
10.газрын тухай хууль10.газрын тухай хууль
10.газрын тухай хуульMonatom Mgl
 
9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хууль9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хуульMonatom Mgl
 
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хуульMonatom Mgl
 
6.усны тухай хууль
6.усны тухай хууль6.усны тухай хууль
6.усны тухай хуульMonatom Mgl
 
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хуульMonatom Mgl
 
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хуульMonatom Mgl
 
3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хууль3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хуульMonatom Mgl
 
1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хууль1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хуульMonatom Mgl
 
13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хууль13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хуульMonatom Mgl
 
03 iaea conference becker
03 iaea conference becker03 iaea conference becker
03 iaea conference beckerMonatom Mgl
 
Tm on origin of sandston uranium deposits
Tm on origin of sandston uranium depositsTm on origin of sandston uranium deposits
Tm on origin of sandston uranium depositsMonatom Mgl
 
Summary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tmSummary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tmMonatom Mgl
 
Session 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowskaSession 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowskaMonatom Mgl
 
04 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 201204 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 2012Monatom Mgl
 

Mehr von Monatom Mgl (20)

Iaea
IaeaIaea
Iaea
 
Scan
ScanScan
Scan
 
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль
 
12.компанийн тухай хууль
12.компанийн тухай хууль12.компанийн тухай хууль
12.компанийн тухай хууль
 
11.газрын тухай хууль
11.газрын тухай хууль11.газрын тухай хууль
11.газрын тухай хууль
 
10.газрын тухай хууль
10.газрын тухай хууль10.газрын тухай хууль
10.газрын тухай хууль
 
9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хууль9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хууль
 
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
 
6.усны тухай хууль
6.усны тухай хууль6.усны тухай хууль
6.усны тухай хууль
 
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
 
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль
 
3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хууль3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хууль
 
1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хууль1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хууль
 
13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хууль13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хууль
 
03 iaea conference becker
03 iaea conference becker03 iaea conference becker
03 iaea conference becker
 
Tm on origin of sandston uranium deposits
Tm on origin of sandston uranium depositsTm on origin of sandston uranium deposits
Tm on origin of sandston uranium deposits
 
Summary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tmSummary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tm
 
Session 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowskaSession 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowska
 
Tmus programme
Tmus programmeTmus programme
Tmus programme
 
04 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 201204 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 2012
 

1 u deposits sandstones looking forward cuney

  • 1. Sandstone uranium deposits: Looking forward Michel CUNEY UMR G2R – CREGU – CNRS Vandoeuvre les NANCY
  • 2. PRESENTATION HIGHLIGHTS  To propose a general framework for the different types of uranium deposits associated with sandstone within the continuum of the geologic cycle  To try to go beyond the usual classifications using the recent work of the UDEPO group and more personal views Such a general framework should help to set up the different contributions which will be presented during this meeting concerning deposits from all over the world  To trace the avenues for future research and exploration of sandstone related deposits
  • 3. IAEA classification 2012 1. Intrusive 2. Granite-related 3. Polymetallic iron-oxide breccia complex 4. Volcanic-related 5. Metasomatite 6. Metamorphite 7. Proterozoic unconformity: 82 deposits 8. Collapse-breccia pipe (Arizona Strip, USA) 9. Sandstone: 576 deposits from 1405 compiled in the UDEPO data base 10. Paleo-quartz-pebble conglomerate: 62 deposits 11. Surficial: 60 deposits 12. Lignite and coal 13. Carbonate 14. Phosphate 15. Black shale
  • 4. IAEA classification 2012 9. Sandstone 9.1. Basal channel (Dalmatovskoye, Russian Federation; Beverley, Australia) 9.2. Tabular Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger) Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA) Continental fluvial vanadium-uranium (Salt Wash type, USA) 9.3. Rollfront Continental basin, U associated with intrinsic reductant (Wyoming type, USA) Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan) Marginal marine, U associated with extrinsic reductant (South Texas, USA) 9.4. Tectonic-lithologic (Lodève Basin, France; Franceville Basin, Gabon) 9.5. Mafic dykes/sills in Proterozoic sandstone (Westmoreland District, Australia; Matoush, Canada)
  • 5. A GENETIC CLASSIFICATION OF U-DEPOSITS Cuney, 2012  1 – Fractional crystallization  2 – Partial melting  3 – Hydrothermal high level post-orogenic :  3A – Volcanic - hydrothermal  3B – Granitic - hydrothermal  4 – Diagenetic hydrothermal systems:  4C: Intraformational redox control 4C1: Tabular: Grants Mineral Belt, Beverley 4C2: Tectonolithologic: Akouta, Niger 4C3 : Karsts (breccia pipes): Colorado  4A: Basin/basement redox control (unconformity related)  4B: Interformational redox control (Oklo Gabon) but fluids similar to unconf. related U  5 - Hydrothermal metamorphic (Katanga deposits transitional with diagenetic hydrothermal systems)
  • 6. A GENETIC CLASSIFICATION OF U-DEPOSITS Cuney, 2012  6 – Hydrothermal metasomatic:  6A – Alkali-metasomatism  6B – Skarns :Mary Katheleen  7 – Syn-sedimentary:  7A: Mechanical sorting: Qz pebble conglomerates  7B: Redox trapping: black shales  7C: Crystal-chemical/redox trapping: phosphates  8 - Intraformational meteoric fluid infiltration  8A: Sealed paleovalleys: Vitim (Transbaikalia)  8B: Roll fronts: Powder River Basin (Wyoming)  9 –- Weathering & evapotranspiration: calcretes  10 – Other types
  • 7. U deposits related Calcretes /Lignite/Coal U deposits related to magmatic SURFACE WATERS to sedimentary Meteoric / Sea Conglomerates rocks Volcanic Phosphates basins IOCG(U) N Black shales O Basal Sandstone SI Ground Fract. cryst. Veins T EN waters Rollfront hosted Magmatic- Fluid EX DI Hydrothermal MIXING AG Tabular Tabular Fluids EN Formation ES waters Tectonolithol - IS . Breccia Pipes N IO MAGMATIC FRACTIONATION DIAGENETIC AT MAGMATIC M HU FLUIDS FLUIDS EX GEOLOGIC CYCLE Unconformity CO CO L LL Crustal Metamorphic L.T. IIS SII M Metamorphic Skarns Skarns IS ON ON PH fluids Na-metasomatism - Alaskites Alaskites Silicate M OR Metamorphic H.T. Crust partial Partial melts TA melting Melting MIX I ME U deposits related NG Subduction fluids to metamorphism N Mantle TIO melting melting MANTLE UC BD MELTS / FLUIDS SU
  • 8. IAEA classification 2012 9. Sandstone 9.1. Basal channel (Dalmatovskoye, Russian Federation; Beverley, Australia) 9.2. Tabular Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger) Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA) Continental fluvial vanadium-uranium (Salt Wash type, USA) 9.3. Rollfront Continental basin, U associated with intrinsic reductant (Wyoming type, USA) Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan) Marginal marine, U associated with extrinsic reductant (South Texas, USA) 9.4. Tectonic-lithologic (Lodève Basin, France; Franceville Basin, Gabon) 9.5. Mafic dykes/sills in Proterozoic sandstone (Westmoreland District, Australia; Matoush, Canada)
  • 9. 9.1. Basal channel (Paleovalley): Vitim district, Russian Federation: RAR: 52,000 mt U, Speculative R.: 100,000 mt U 8 deposits over 250km2 with 44,800mtU @ 0.05-0.3 %U, prognosticated R.: 60,000mt U, Khiagda: 15,500 mt U Paleochannels with up to 50 m thick Oligocene-Miocene colluvial to alluvial grey to multicolored carbonaceous clay-siltstone, sandstone, conglomerate, intercalated lignite seams. Pyrite and plant debris, ~ 0.8% Corg Geological map of the Khiagda ore field
  • 10. 9.1. Basal channel Typical cross-section through the Khiagda deposit. SW 60 km NE 0 0 30 basalt 60 U ore granite 90 m Neogene sediments (sand, silt, clay) grey oxidized reduced Source: Highly potassic calcalkaline Hercynian granites Transport: infiltrated meteoric fluids through permeable siliciclastic rocks Deposition: reduction by detrital organic matter (20 Ma to present)
  • 11. IAEA classification 2012 9. Sandstone 9.1. Basal channel (Dalmatovskoye, Russian Federation; Beverley, Australia) 9.2. Tabular Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger) Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA) Continental fluvial vanadium-uranium (Salt Wash type, USA) 9.3. Rollfront Continental basin, U associated with intrinsic reductant (Wyoming type, USA) Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan) Marginal marine, U associated with extrinsic reductant (South Texas, USA) 9.4. Tectonic-lithologic (Lodève Basin, France; Franceville Basin, Gabon) 9.5. Mafic dykes/sills in Proterozoic sandstone (Westmoreland District, Australia; Matoush, Canada)
  • 12. 9.1. Basal channel looking forward  Model mainly discovered in Russia with some other minor occurrences in NW Mongolia and Canada (Blizzard)  Not considered as a major exploration target in other countries. Should exist in other part of the world where valleys incized in U-rich granites, filled with organic matter bearing silicicalstic sediments, covered by basalts  Interesting features : • Close to the surface • Amenable by in situ leaching • Average size and grades
  • 13. 9.2. Tabular  U disseminated within reduced sediments along lenticular shaped masses oriented parallel to the stratigraphy  Individual deposits: x100 t U up to 150,000 t U, @ 0.05 - 0.5% (up to 1%) 3 sub-types : Continental fluvial, U associated with intrinsic reductant  Arlit type, Niger Continental fluvial, U associated with extrinsic humate/bitumen  Grants type, USA Continental fluvial vanadium-uranium  Salt Wash type, USA
  • 14. 9.2. Tabular Continental fluvial, U associated with intrinsic reductant  Tabular to lenticular U ore bodies hosted in arkoses rich in detrital C-matter in continental fluvial channel systems, interbedded with claystone-shale beds.  U ± Zn, Cu, V, Mo, Zr: pitchblende & coffinite disseminated in reduced, pyritic sandstone and as finely disseminated argillic-organic U complexes  Resources are small to large (< 100 to 150 000 t) @ 0.10 to 0.50% Ex. : Arlit District (Niger) with total resources exceeding 600 000 t.
  • 15. 9.2. Tabular Continental fluvial, U associated with extrinsic humate/bitumen U associated with humate/bitumen  Mineralization disseminated in lenses within continental sandstone intercalated with shale  Sandstone represents 60-80% of the volume and but pyroclastics are common  The host sandstone was deposited in a mid-fan environment within an extensive fluvial-lacustrine sedimentary system Resources are medium to large (500-35,000 t @ 0.10-0.40%) Ex.: Ambrosia Lake District (USA) with resources in the order of 130 000 t U
  • 16. 9.2. Tabular Continental fluvial, U associated with extrinsic humate/bitumen The primary ore (reduced ore which has undergone little alteration since its formation during early diagenesis) = fine-grained mixture of urano-organic complexes : = cryptocrystalline colfinite + amorphous organic matter that commonly fills primary pores Amorphous organic matter highly aromatic: high O/C ratio: 0.2 - 0.3 originated as humic acids derived from plant material  However, irradiation of organic matter (OM) leads to its oxidation Are the O/C ratios determined during the 80’s those of the pristine OM or do they correspond to modified migrated OM from marine origin ?
  • 17. 9.2. Tabular Continental fluvial vanadium-uranium  U associated with V in reduced fluvial sandstone within a sequence of continental red-bed sediments.  The sedimentary succession comprises: * thin, widespread units of reduced sandstone * with interbeds of grey clay and carbonaceous debris  U ore is largely epigenetic, but syngenetic uranium enrichment may have existed Deposits are small to medium (1-2 000 t U) @ 0.05-0.50% U High vanadium content often increases their economic viability  Ex : Salt Wash uranium district, USA
  • 18. IAEA classification 2012 9. Sandstone 9.1. Basal channel (Dalmatovskoye, Russian Federation; Beverley, Australia) 9.2. Tabular Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger) Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA) Continental fluvial vanadium-uranium (Salt Wash type, USA) 9.3. Rollfront Continental basin, U associated with intrinsic reductant (Wyoming type, USA) Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan) Marginal marine, U associated with extrinsic reductant (South Texas, USA) 9.4. Tectonic-lithologic (Lodève Basin, France; Franceville Basin, Gabon) 9.5. Mafic dykes/sills in Proterozoic sandstone (Westmoreland District, Australia; Matoush, Canada)
  • 19. 9.3. Rollfront  mineralized zones are crescent shape, oriented down the hydrologic gradient diffuse boundaries with reduced sandstone on the down-gradient side . …sharp contacts with oxidized sandstone on the up-gradient side  elongated and sinuous mineralized zones approximately parallel to the strike, . . . perpendicular to the direction of deposition and groundwater flow  Resources from x 100 to X 1,000 t U @ 0.05% to 0.25% Continental basin, U associated with intrinsic reductant  Wyoming type, USA Continental to marginal marine, U associated with intrinsic reductant  Chu-Saryisu type, Kazhakstan Marginal marine, U associated with extrinsic reductant  South Texas, USA
  • 20. 9.3. Rollfront U deposit genesis Formed where oxidized groundwater encounters reducing conditions in permeable sandstone U in solution is precipitated at the redox interface, forming a crescent- shaped roll-front ore body The roll front crosscut the sandstone bedding The reduction front migrates gradually in the direction of groundwater flow, creating the ore body with progressive U-accumulation
  • 21. Se U, V Mo Zonality with Se behind the front and Mo beyond U and V
  • 22. 9.3. Rollfront Continental basin, U associated with intrinsic reductant  U occurs disseminated at the redox boundary at the contact with pyrite-bearing sandstone and detrital carbonaceous debris on the down-gradient side in arkosic and subarkosic sandstones deposited in intracratonic or intermontane basins  These basins are in spatial proximity with proximal to rocks (such as granites, and tuffs) containing anomalous uranium concentrations  Most deposits occur within interbedded sequences of fluvial sandstones and volcanic-rich sediments  The shapes of deposits is strongly controlled by the permeability of the host rocks Resources are small to large (100-1 000 t U @ 0.05-0.20%) Ex.: Wyoming basins with resources of 250 000 t.
  • 23. 9.3. Rollfront Continental to marginal marine, U associated with intrinsic reductant  Deposits are similar to roll front deposits in continental basins, but host lithologies correspond to a sequence of mixed continental and marginal marine origin.  Resources are medium to large (1 000-100 000 t U @ 0.04-0.08% U) The World’s largest resources of this type (> 800 000 t) are located in the Chu-Sarysu and Syr-Daria Basins (South Kazakhstan).
  • 24.
  • 25.
  • 26. Evolution of Kazak Uranium Production 19.450 t U 35% World P.
  • 27. 9.3. Rollfront Marginal marine, U associated with extrinsic reductant  U is concentrated in roll-type deposits near faults and in contact with pyrite / marcasite-bearing sandstone on their downgradient side  Hosts environment include point bars, lateral bars and crevasse splays deposited in a fluvial environment and barrier bars and offshore bars in a marine environment  Deposits are small to medium (50-5 000 t U @ < 0.05-0.25% U) Ex.: South Texas Uranium region : resources of 100 000 t U
  • 28. Oxygenated meteoric ground waters Adams and Smith, 1981 limb Extend of upward roll front gas migration Reduced sandstone Reduced gas mi sandstone gra t ion Primary oxidized sandstone (iii) fault controlled influx of reducing compounds Extend of downward (South Texas) H2S gas migration Hydrocarbons
  • 29. IAEA classification 2012 9. Sandstone 9.1. Basal channel (Dalmatovskoye, Russian Federation; Beverley, Australia) 9.2. Tabular Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger) Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA) Continental fluvial vanadium-uranium (Salt Wash type, USA) 9.3. Rollfront Continental basin, U associated with intrinsic reductant (Wyoming type, USA) Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan) Marginal marine, U associated with extrinsic reductant (South Texas, USA) 9.4. Tectonic-lithologic (Lodève Basin, France; Franceville Basin, Gabon) 9.5. Mafic dykes/sills in Proterozoic sandstone (Westmoreland District, Australia; Matoush, Canada)
  • 30. 9.4. Tectonic-lithologic discordant to concordant to strata.  Occur in permeable fault zones and adjacent sandstone beds in reducing environments created by hydrocarbons and/or detrital organic matter Uranium is precipitated in open fracture or fault zones related to tectonic extension. Individual deposits contain a x 100 mt U up to 5 000 mt U @ 0.1%- to 0.5%. Ex. : Lodève District (France) and the Franceville Basin (Gabon).
  • 31. 9.4. Tectonic-lithologic Geological cross-section of the north border of the Lodève Permian Basin (FRANCE) The U mineralization is associated to the main fault systems (from Mathis et al. 1990)
  • 32. IAEA classification 2012 9. Sandstone 9.1. Basal channel (Dalmatovskoye, Russian Federation; Beverley, Australia) 9.2. Tabular Continental fluvial, U associated with intrinsic reductant (Arlit type, Niger) Continental fluvial, U associated with extrinsic humate/bitumen (Grants type, USA) Continental fluvial vanadium-uranium (Salt Wash type, USA) 9.3. Rollfront Continental basin, U associated with intrinsic reductant (Wyoming type, USA) Continental to marginal marine, U associated with intrinsic reductant (Chu-Saryisu type, Kazhakstan) Marginal marine, U associated with extrinsic reductant (South Texas, USA) 9.4. Tectonic-lithologic (Lodève Basin, France; Franceville Basin, Gabon) 9.5. Mafic dykes/sills in Proterozoic sandstone (Westmoreland District, Australia; Matoush, Canada)
  • 33. 9.5. Mafic dykes/sills in Proterozoic sandstone mineralization is associated with mafic dykes and sills that are interlayered with or crosscut Proterozoic sandstone formations  Deposits can be subvertical along the dyke’s borders, sometime within the dykes, or stratabound within the sandstones along lithological contacts (Westmoreland District, Australia; Matoush, Canada). Deposits are small to medium (300-10 000 t U @ 0.05-0.40% U) Ex.: Westmoreland District, Australia; Matoush, Canada
  • 34. 9.5. Mafic dykes/sills in Proterozoic sandstone Type 1 Type 2 Mafic volcanics sandstone Type 3 Type 4 Mafic Volcanics Felsic Volcanics Unconformity Proterozoic sandstone Uranium mineralization 0 40 m Geological setting and types of mineral occurrences in the Westmoreland U field
  • 35. Relationships between sandstone uranium deposits & fluids derived from hydrocarbon reservoirs
  • 36. Sandstone Uranium Deposits & Hydrocarbon Reservoirs South Texas Costal plains (Adams and Smith, 1981) Ordos, Song-Liao and Tarim basins (China) Hydrocarbons are reductants in organic-poor sandstone hosted U deposits In Kazakhstan a spatial association between  HC-bearing reservoirs and overlying sandstone U deposits  HCs and/or H2S from HC-reservoirs migrated along structures and could have represented the reductants for U deposition  Franceville Basin (Gabon)
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42. Characterisation of uranium sources in sandstones (magmatic inclusions)
  • 43. U SOURCES (i) Outcropping uranium rich granites: Typically high K-calc-alkaline, peraluminous leucogranites (ii) Alteration of interbedded volcanic ash or tuff Typically high-K calcalkaline to peralkaline magmas Peralkaline magmas typically marked by high Zr content in the U-oxides (Niger ; Muhlenbach, Germany …) Characterisation of the volcanic source by magmatic inclusion study
  • 46. Th vs. U volcanics rocks of Niger (Aïr, Zinder) and Nigeria
  • 47. Importance of the uranium derived from a synsedimentary volcaniclastic contribution for uranium deposits hosted in sandstone
  • 49. Rhyolite pebble Volcanic shards Evidences of a volcanic contribution melt in sediments inclusion
  • 51. MAGMATIC INCLUSIONS OFFER THE POSSIBILITY TO QUANTIFY THE INITIAL METAL and VOLATIL CONTENT OF THE MAGMAS :  In volcanics (ex. Streltsovka, Russie and others)  In plutonites (more difficult, because less well preserved)  In sediments having a volcanic componant Melt inclusion
  • 52. METHODOLOGY FOR ESTIMATION OF THE U POTENTIAL OF VOLCANIC ROCKS Analyse of altered whole rocks : ICP-AES et MS  Sélection of the inclusions and homogeneization at high temperature  Analyse of the magmatic inclusions : - electronmicroprobe : major elts - ionic microprobe IMS3f : traces  Massbalnce calculation between whole rocks / melt inclusions  Évaluation of the quantity of mtals and et volatils loss / volume of rock
  • 53. Melt inclusion geochemistry from sandstone quartz grains
  • 54. Comparison melt inclusion composition from sandstone & Air rhyolites Air rhyolite field
  • 55. Melt inclusion geochemistry from sandstone (Shand diagr.) Al/(Na+K+2Ca)
  • 56. Th - U geochemistry of magmatic inclusion from sandstone 20
  • 57. Recent eruptions at the Yellowstone caldera (64 x 40 km) The biggest occurred at 2.1 Ma  Huckleberry Ridge ash bed The 3rd largest at Long Valley in California produced the Bishop ash bed. Credit: USGS
  • 58. EVOLUTION of U-GEOCHEMISTRY DURING EARTH HISTORY 4 0.45 Ga to present Middle Silurian  land plant apparition  reduced terrestrial clastic sediments U trapping in porous organic matter bearing continental sandstone Intraformational sandstone hosted deposits : - Tabular - roll front - tectonolithologic ... but when the reductant corresponds to migrated fluids deriving from deep seated oil reservoir trapped in permeable continetal sandstone  the deposits can be older than Silurian Ex. : - Oklo deposits - U-rich arkosic sandstone representing the source of most anatectic pegmatoids of Rössing type (metamorphosed equivalent of Oklo)
  • 59. U DEPOSITS FROM THE FRANCEVILLE BASIN: TYPICAL EXAMPLES OF PRE-SILURIAN SANDSTONE HOSTED U-DEPOSIT RELATED TO REDUCED FLUID MIGRATION FROM AN OIL PRODUCING FORMATION
  • 60. Franceville Basin GABON GABON Cameroun Lastourville 2 Gabon Basin Guinée MASSIF DU Chaillu Og o Libreville HAUT-GABON Congo Massif ou é Mole 0 Boyindzi d’Ondili Mounana Lastourville Oklo N Og oo ué OCE rz Okélobondo Franceville 10 km AN MASSIF DU Mabinga 2 CHAILLU Bangombé Séries du Francevillien A Congo rz T Mikouloungou L A Formation FA > 500 m N Moanda T IQ Socle archéen U E 0 100 km Failles majeures Franceville 10 12 14 Gisements d’Uranium rz Zones de réaction Villes principales
  • 61. FE à Stratigraphic succession FC From Weber (1968) FB2 Mn-rich layers Dolomitic layers Pelites FB1 U Mineralization Coarse grained with FA Sandstone Mnz et Zrn 1000 m Basal conglomerate Archean basement
  • 62. Oklo - Okélobondo Couche C1 Zones de W minˇralisˇe rˇaction E 15 Oklo carri¸re 1-2 3-6 7-9 Ampˇlites FB Gr¸s FB 13 10-16 OK84bis Okˇlobondo mine Socle 100 m Gr¸s FA cristallin
  • 63. Pétrographie minéralisations dans le grès Ca Qzd Qzd Ech. OBD.96-9c : Ech. OBD.96-23 : Okélobondo MO minéralisée U-Pb-S Okélobondo
  • 64. M Fracture N-S o FB pelites Redox fron t d Fluide Hydrocarboné U mineralisation e Evaporitic layers FA carbonates F1 l Fine grained non- Coarse silicified F4 Silicified FA FA sandstone Silicification - F3 Zr-P-Pb-TR-UVI F2 Diagenetic brine expulsed duringUVI erate compaction nglom sal co UVI FA Ba UVI Recharge Météorique Basement “chaude” et peu salée
  • 65. U-enrichment in metamorphosed epicontinental platform sediments Archean: Litsk area, NE Kola Peninsula, Russia, U pegmatoids “Hudsonian” S.L. : Wollaston and Mudjatik synsedimentary U enrichment : in meta-arkoses (Duddridge Lake), calcsilicates (Burbridge Lake & Cup Lake) in pegmatoids (Charlebois alaskites). Steward Lake, Québec, Canada Northern Québec, Ungava Bay and Baffin Island, U-pegmatoids : Lake Harbour Litsk district, Kola Peninsula, Russia, U pegmatoids, Wheeler Basin, Colorado: U- pegmatoids Orrefjell, Norway: U-pegmatoids Southern Finland : Late orogenic potassic granites Crocker Well, Olary Province, Flinders Range, South Australia Six Kangaroos area of Cloncurry-Mt. Isa District, Australia Nanambu, Nimbuwah, and Rum Jungle complexes, Katherine-Darwin area, Australia “Grenvillian” S.L. Occurrences : Bancroft, Ontario : 4 mines (5,700 t U produced), Mt Laurier, Johan Beetz, Havre St Pierre, Sept Iles, Port Cartier, St Augustin, Québec “Pan-African” Occurrences : Rössing, SH, Rössing South, Valencia , Ida, Goanikontes,
  • 66. LOOKING FORWARD Major avenues for research & exploration for sandstone U deposits (1) :  Sandstone related deposits represent more than 1/3rd of world U deposits and considerable resources are still wating to be discovered in many parts of the world  In the new UDEPO data base new types of sandstone related U deposits have been introduced to account to their diversity  Transitions exists between some synsedimentary uranium deposits, tabular sandstone type models, unconformity related model and some metamorphic uranium deposits (Katanga). The role of oil reservoir fluids (brines and associated marine hydrocarbons) migrated through faults into sandstone reservoirs as a major reductant for sandstone hosted U deposits:  change the exploration strategy:  looking for oil traps at the scale of the sedimentary basins  change in the distribution of oxidized vs reduced zones for roll fronts  open permeable pre-Silurian siliclastic formations for exploration
  • 67. LOOKING FORWARD Major avenues for research & exploration for sandstone U deposits (2) :  Looking more systematically for volcanic U contribution in continental sandstones by magmatic inclusion studies  improve the quality of the U source Australia is the first U province of the world but presents a huge deficit of sandstone related U deposits:  large potential for further discoveries Vitim-type paleovalleys largely underexplored worldwide (except Russia, Mongolia)  Sustainable development of sandstone U deposits by the recovery of associated rare elements (rhenium, REE, … )

Hinweis der Redaktion

  1. Le bassin sédimentaire de Franceville est situé au Sud-Est du Gabon. De forme elliptique, il est allongé selon un axe NW-SE sur environ 135 km. 16 zones de réaction nucléaires ont été découvertes dans la carrière d ’Oklo, 1 dans la mine d ’Okélobondo et 1 dernière dans la carrière de Bangombé
  2. La série francevillienne repose sur un socle cristallin archéen. Elle est composée de 5 formations indexées de FA à FE. La minéralisation uranifère est localisée au toit des grès du FA, sous les pélites du FB.
  3. Les 17 réacteurs nucléaires naturels découverts dans la carrière d ’Oklo et la mine d ’Okélobondo appatiennent à une couche minéralisée des grès au sommet de la formation FA sous les pélites du FB. Tous ces réacteurs sauf une partie du R2 ont été exploités.