SlideShare ist ein Scribd-Unternehmen logo
1 von 36
Downloaden Sie, um offline zu lesen
JAHANGIRABAD INSTITUTE
OF
TECHNOLOGY
ENGINEERING
MATHEMTICS-II
(QUESTION BANK)
NUMERICAL PROBLEMS WITH
THEORY
PREPRAED BY
MOHAMMAD IMRAN
(ASSISTANT PROFESSOR, JIT)
E-mail: mohammad.imran@jit.edu.in
Website: www.jit.edu.in
Mobile no 9648588546
DIFFERENTIAL EQUATION
Linear Differential Equations
Definition: A differential equation in which independent variable and only its first derivative involved
Called “Linear Differential Equation”.
1 2 3
1 2 3 11 2 3
n n n n
n nn n n n
d y d y d y d y dy
a a a a a y Q
dx dx dx dx dx
− − −
−− − −
+ + + + − − − − − − − + + =
Above equation is an example of linear Differential equation of order n. Where 1 2 1, ,............ na a a −
all are constant and Q is any function of x which is called Differential equation with constant coefficients.
Different notations of Differential operator:
First derivative : '
, ,
d
D y
d x
Second Derivative:
2
2 ''
2
, ,
d
D y
d x
Third Derivative :
3
3 '''
3
, ,
d
D y
d x
.
.
.
.
Nth
Derivative : , ,
n
n n
n
d
D y
dx
Order and Degree of A differential Equation :
• The highest derivative in the given differential equation called the “Order of the
Differential Equation”.
For Example consider a differential equation
32
2
2 0
d y dy
y
dx dx
 
+ + = 
 
the order of the differential equation is 2.
• In a differential Equation After made free from the radicals and fraction the degree of
the highest derivative called “Degree of the Differential equation”.
For Example consider a differential equation
32
2
2 0
d y dy
y
dx dx
 
+ + = 
 
the Degree of the differential equation is 1.
Ordinary and Partial Differential Equations :
Differential equation in which unknown function is depends on only one independent
variable called “Ordinary Differential Equation”.
Differential equations in which two or more independent variables are involved called “Partial
Differential Equation”
Linear Differential Equation
Differential equation in which dependent variables and all its first degree derivatives involved called
“Linear Differential Equation”
dy dy
P Qy R
dx dx
+ + =
Where P, Q are constant and R is the function of x only.
Linear Differential Equation of second order with constant coefficients :
2
2
d y dy
P Qy R
dx dx
+ + =
Where P, Q are constant and R is the function of x only.
Non-Linear differential Equation :
A Differential Equation in which dependent variable and its derivative Having degree more
than 1 called “Non-Linear differential Equation”.
Auxiliary Equation :
Suppose we have a Differential Equation as
2
2
3 4 0
d y dy
y
dx dx
− − = ----------------------------------------------------- (1)
Equation (1) we can rewrite as
2
3 4 0D y Dy y− − =
( )2
3 4 0D D y− − =
On equating the coefficient of y with 0 we will get 2
3 4 0D D− − = Which is called “Auxiliary
Equation”.
Solution of different type of Differential Equations :
When given differential equation not having any function ( having “0” ) in right hand side
1
1 21
0
n n
n n
d y d y
a a y
dx dx
−
−
− − =
Case –I : when all the roots of Auxiliary Equation are distinct
Let the roots of Auxiliary Equation are 1 2 3, , ..................... nm m m m than the general solution will be
1 2 3
1 2 3 ............... nm x m x m x m x
ny c e c e c e c e= + + + +
Case –II : when all the roots of Auxiliary Equation are equal than the general solution will be
( )2 1
1 2 3 ...............
m xn
ny c c x c x c x e−
= + + + +
Where m is equal roots of Auxiliary Equation
Case –III: when some roots of Auxiliary Equation are equal and some are different than the
General Solution will be
( ) ( )32 42 1
1 2 3 1 2 3............... ............... nm x m xm xm x m xn
n n n n n ny c c x c x c x e c e c e c e c e−
+ + + += + + + + + + + + +
Case –IV : when roots of Auxiliary Equation are imaginary as iα β± than
( )1 2cos sinx
y e c x c xα
β β= +
Case –V : when roots of Auxiliary Equation are imaginary and repeated twice than
{ } { }( )1 2 3 4cos sinx
y e c c x x c c x xα
β β= + + +
Case –VI : when roots of Auxiliary Equation are Irrational as α β± where β is positive than
( )1 2cosh sinhx
y e c x c xα
β β= +
Case – V: if ,i iα β α β± ± be the two equal pairs of imaginary roots and all other roots real and
Different.
( ) 5
1 2 3 4 5cos ( )sin ..................... nm x m xax
ny e c c x x c c x x c cβ β = + + + + + + 
Some useful expansions :
(i) 1 2 3 4 5
(1 ) 1 ..............................D D D D D D−
− = + + + + + + ∞
(ii) 1 2 3 4 5
(1 ) 1 ..............................D D D D D D−
+ = − + − + − + ∞
(iii) 2 2 3 4
(1 ) 1 2 3 4 5 .............................D D D D D−
+ = − + − + − ∞
(iv) 2 2 3 4
(1 ) 1 2 3 4 5 .............................D D D D D−
− = + + + + + ∞
(v) 3 2 3
(1 ) 1 3 6 10 .............................D D D D−
− = + + + + ∞
(vi) 3 2 3
(1 ) 1 3 6 10 .............................D D D D−
+ = − + − + ∞
Remark :
When given differential equation not having any function ( having “0” ) in
right hand side then there is no need to find out particular integral (P.I) so general
solution will be ࢟ = ࢉ࢕࢓࢖࢒࢏࢓ࢋ࢔࢚࢘࢟	ࢌ࢛࢔ࢉ࢚࢏࢕࢔	(࡯. ࡲ)	
Question : find the general solution of the differential equation
5 3
5 3
0
d y d y
dx dx
− = (2009)
2
1 2 3 4 5( ) x x
y c c x c x c e c e−
= + + + + Ans
Question : find the particular integral of ( )2
4 4 sin 2D D y x− − = (UPTU2010-11
cos2
.
8
x
P I = Ans
Question : Find the particular integral of
2
2
2
2 1
d y
x x
dx
= + − (uptu 2013-14
4 3 2
2
.
12 6 2
x x x
P I
 
= + − 
 
Ans
Question : Find the particular integral of
2
2
2
d y
y x
dx
− = (UPTU 2012
2
1 2. 2x x
C S C e C e x−
 = + − +  Ans
Question: solve the differential equation (UPTU 2009-10
2
2
5 6 sin3 cos2
d y dy
y x x
dx dx
+ − = +
Question : solve
2
2 3
2
2 xd y dy
y x e
dx dx
− + = UPTU 203-14
( )
3
2
1 2. 2 16 128
16
x
x e
C S C C x e x x x = + + + − +  Ans
Question : solve
3 2
2
3 2
6 1
d y d y dy
x
dx dx dx
− − = + UPTU 2001
3 2
3 2
1 2 3
1 25
6 18 3 6
x x x x
CS c c e c e x−  
= + + − + − 
 
Ans
Question : if ( )
2
2
0; ,
d x g
x a a b and g
dt b
+ − = are positive numbers and '
; 0 0
dx
x a whent
dt
= = = , show that
( )'
cos
g
x a a a t
b
= + −
(UPTU 2007
1 2cos sin
g g ag b
CS c x c x
b b b g
   
= + +       
Ans
Question : if
3 2
3 2
3 4 2 0
d y d y dy
y
dx dx dx
− + − =
(uptu 2001
Question : obtain the general solution of the differential equation '' '
2 2 cosx
y y y x e x− + = + uptu 2002
Ans ( ) [ ]1 2
1
. cos sin 1 sin
2 2
x
x xe
C S e c x c x x x= + + + +
[ ] [ ]6
1 2
1 1
. cos3 sin 3 sin 2 cos 2
30 20
x x
C S C e C e x x Ax x ns−
= + − + + −
Question : find the complete solution of
2
3
2
3 2 sin 2xd y dy
y xe x
dx dx
− + = + (uptu 2003
( )
3
2
1 2
3 1
. 3cos2 sin 2
2 2 20
x
x x e
C S c e c e x x x
 
 = + + + + −   
Question : solve the differential equation ( )2 2
1 cos ( 2007x
D y xe x uptu− = +
Question : find the complete solution of
2
2
3 2 sin 2xd y dy
y xe x
dx dx
− + = + (uptu 2001
Question : solve
2
2
2
sin
d y
a y ax
dx
+ = ( UPTU 2008
1 2
cos
. cos sin
2
x ax
C S c ax c ax
a
= + −
Question : solve
3 2
3 2
3 4 2 cosxd y d y dy
y e x
dx dx dx
− + − = + (UPTU 2001, 2006
Ans ( )1 2 3
3sin cos
. cos sin
10
x x x x
C S e c x c x c e
 
= + + +   
Question : solve ( )2
4 sin3 cos2D x x+ = + ( UPTU 2008
Ans ( ) ( )1 2
1 sin 2
. cos2 sin 2 sin 3
5 4
x x
C S c x c x x
 
= + − + 
 
Question : solve the differential equation ( )4 3 2 2
2 3 3 4sinx
D D D y e x+ − = + (UPTU2008
Ans ( ) ( ) [ ]0 3 2
1 2 3 3
3 2
. cos 2sin
20 5
x x x x
C S c c x e c e c e e x x−
= + + + + − −
Question : solve
3 2
3 2
3 2
3 log
d y d y dy
x x x y x x
dx dx dx
+ + + = + UPTU 2001
1
1 2
1 2 3
3 3 1
cos log sin log log
2 2 2
y c x x c x c x x x−
    
= + + + +       
      Ans
Question : solve ( )
2
2
2
log sin log
d y dy
x x y x x
dx dx
+ + = UPTU 2002
Ans ( ) ( ) ( ) ( ) ( ) ( )
2
1 2
1 1
. cos log sin log log sin log log cos log
4 4
C S c x c x x x x x= + + −  
Question : solve the following simultaneous differential equation (UPTU 2011-12, 2013-14
( )4 , 4 4 ,
dx dx dy
x y y
dt dt dt
= − + + = − with condition (0) 1x = (0) 0y = Ans ( ) 2
1 2
t
x c c x e−
= + 2
( ) t
y t te−
=
Question: solve the simultaneous equations UPTU 2008
3 2 , 5 3
dx dy
x y x y
dt dt
= + = +
( ) ( )3 10 3 10
1 2
t t
Ans x c e c e
+ −
= +
( ) ( )
( )3 10 3 10
1 2
1
10 10
2
t t
y c e c e
+ +
= −
QUESTION: Question: solve the simultaneous equations UPTU 2008
5 2 , 2 0
dx dy
x y t x y
dt dt
+ − = + + =
Ans ( ) 3
1 2
1
9 27
t t
x c c t e−
= + + + 3 3 32
1 2
4 2
2 27 9
t t tc t
y c e c te e− − − 
= + + + −  
1
1
27
c = − 2
6 2
27 9
c = − = −
Question : The equations of the motions of a particle are given by UPTU 2009
0, 0
dx dy
wy wx
dt dt
+ = − =
Find the path of the particle and show that it is a circle.
Ans 1 2cos sinx c wt c wt= + , 1 2sin cosy c wt c wt= − , 2 2 2
x y r+ = Which is a equation of circle
Question : solve the following differential equation (uptu 2009
1, 1
dx dy
y x
dt dt
= + = +
Ans 1 2 1t t
x c e c e−
= + − , 1 2 1t t
y c e c e−
= − −
Question: Solve the simultaneous differential equations uptu 2005
2 2
2 2
3 4 0, 0
d x d y
x y x y
dt dt
− − = + + =
( ) ( )
( ) ( )
1 2 2 3 4 4
1 2 3 4
2 2 2 2 2 2t t
t t
x c c c t e c c c t e
y c c t e c c t e
−
−
 =− + + + + + 
= + + +
Ans.
Question: Solve the simultaneous differential equations uptu 2001
2 2
2 2
3 , 4 3 sin 2td x dx d y dx
x e y t
dt dt dt dt
+ + = − + =
1 2 3 4
1 2 1
2 3 4
2
cos sin cos3 sin3 cos2
5 15
1
cos 3 sin 3 sin 2 2 sin
15
1
2 cos 2 sin3 2 cos3
5
t
t
e
x c t c t c t c t t
y c t c t t c t
c t c t c t e
−
−
= + + + + +
= + + −
+ + − −
Question: Solve the simultaneous differential equations uptu 2008
4 3 , 2 5 tdx dy
x y t x y e
dt dt
+ + = + + =
2 7
1 2
2 7
1 2
5 31 1
14 196 8
2 1 9 5
3 7 98 24
t t t
t t t
x c e c e t e
y c e c e t e
− −
− −
= + + − −
=− + − + +
Ans.
Question: Solve the simultaneous differential equations uptu 2003
3 sin , cosDx Dy x t Dx y x t+ + = + − =
( )
( )
3
1 2
3
1 2
1
2sin cos
5
1
2cos sin 2 2
5
t t
t t
x c e c e t t
y t t c e c e
−
−
= + + −
= + − +
Ans.
Question: Solve the simultaneous differential equations uptu 2001
2 2
2 2
4 4 , 4 4 25 16 td x dx d y dy
x y y x e
dt dt dt dt
− + = + + = +
Ans
3 3
1 2 3 4 3 4
3 3
1 2 3 4
25 (3 4 )cos (4 3 )sin
cos sin
t t t
t t t
y c e c e c c t c c t e
x c e c e c t c t e
−
−
= + + − + + + −
= + + + −
Question solve
1/222
2
1
d y dy
dx dx
  
= −  
   
uptu 2002
Ans 1cos( )y x c c= − + +
Question : Solve
22
2
0
d y dy dy
x x
dx dx dx
 
+ − = 
 
uptu 2010
Ans 2
1 2log( 2 )y x c c= + +
Question : solve 2
" 4 ' (4 2) 0y xy x y− + − = given that
2
x
y e= is an integral included in the complementary
function . uptu 2004
Ans
2
1 2( )x
y e c x c= +
DEFINITION:
Infinite Series of Trigonometric functions
periodic function, used in Fourier analysis.
EVEN FUNCTION:
Let f(x) be a real-valued function of a real variable.
Then f is even if the following equation holds for all
x and -x in the domain of f.
( ) ( )f x f x− =
or
( ) ( ) 0f x f x− − =
Geometrically speaking, the graph face of an even function
is symmetric with respect to the
graph remains unchanged after
about the y-axis.
Examples of even functions are
or any linear combination of these.
ODD FUNCTIONS
Again, let f(x) be a real-valued function of a real variable.
Then f is odd if the following equation holds for all
x and -x in the domain of f:
( ) ( )f x f x− = −
or
( ) ( ) 0f x f x− + =
Geometrically, the graph of an odd function has rotational
symmetry with respect to the origin
remains unchanged after rotation
origin.
Examples of odd functions are x
any linear combination of these.
FOURER SERIES
Trigonometric functions which represents an expansion or approximation of a
periodic function, used in Fourier analysis.
valued function of a real variable.
if the following equation holds for all
Geometrically speaking, the graph face of an even function
with respect to the y-axis, meaning that its
remains unchanged after reflection
Examples of even functions are |x|, x2
, x4
, cos(x), cosh(x),
y linear combination of these.
valued function of a real variable.
if the following equation holds for all
an odd function has rotational
origin, meaning that its graph
rotation of 180 degrees about the
x, x3
, sin(x), sinh(x), erf(x), or
any linear combination of these.
which represents an expansion or approximation of a
Properties involving addition and subtraction
• The sum of two even functions is even, and any constant multiple of an even function is even.
• The sum of two odd functions is odd, and any constant multiple of an odd function is odd.
• The difference between two odd functions is odd.
• The difference between two even functions is even.
• The sum of an even and odd function is neither even nor odd, unless one of the functions is equal to zero
over the given domain.
Properties involving multiplication and division
• The product of two even functions is an even function.
• The product of two odd functions is an even function.
• The product of an even function and an odd function is an odd function.
• The quotient of two even functions is an even function.
• The quotient of two odd functions is an even function.
• The quotient of an even function and an odd function is an odd function.
Properties involving composition
• The composition of two even functions is even.
• The composition of two odd functions is odd.
• The composition of an even function and an odd function is even.
• The composition of any function with an even function is even (but not vice versa).
Other algebraic properties
• Any linear combination of even functions is even, and the even functions form a vector space over the reals.
Similarly, any linear combination of odd functions is odd, and the odd functions also form a vector space
over the reals. In fact, the vector space of all real-valued functions is the direct sum of the subspaces of even
and odd functions. In other words, every function f(x) can be written uniquely as the sum of an even function
and an odd function:
( ) ( ) ( )e of x f x f x= +
where
[ ]
1
( ) ( ) ( )
2
ef x f x f x= + −
is even and
[ ]
1
( ) ( ) ( )
2
of x f x f x= − −
is odd. For example, if f is exp, then fe is cosh and fo is sinh.
• The even functions form a commutative algebra over the reals. However, the odd functions do not form an
algebra over the reals, as they are not closed under multiplication.
Important questions
1. find the Fourier series for the function
2
( )
4
x
f x x xπ π= + − ≤ ≤ uptu 2009
2. find the Fourier series for the function ( ) sin 0 2f x x x x π= ≤ ≤ uptu 2001
3. find the Fourier series for the function
0
( )
0
k x
f x
k x
π
π
− −
= 

uptu 2010
hence show that
1 1 1
1 ........
3 5 7 4
π
− + − + =
4. find the Fourier series for the function
0
( )
0
x x
f x
x x
π
π
− < <
= 
− < <
uptu 2002, 2008
Hence show that
2
2 2 2 2
1 1 1 1
........
1 3 5 7 8
π
− + − + =
5. find the Fourier series for the function
2
( )
4
x
f x x xπ π= + − ≤ ≤ uptu 2009
6. find the Fourier series for the function 2
( )f x x x xπ π= + − ≤ ≤ uptu 2003
Deduce that
2
2 2 2 2
1 1 1 1
........
6 1 2 3 4
π
= + + + +
7. find the Fourier series for the function
0
( ) ( 2 ) ( )
0
x x
f x and f x f x
x x
π π
π
π π
+ − < <
= + =
− − < <
uptu 2006
8. find the Fourier series for the function
1 0
( ) ( 2 ) ( )
1 0
x
f x and f x f x
x
π
π
π
− − < <
= + =
< <
9. find the Fourier series for the function ( ) sinf x x x xπ π= − ≤ ≤ uptu 2008
Deduce that
1 1 1 1 2
........
1.3 3.5 5.7 7.9 4
π −
+ + + + =
10. find the Fourier series for the function ( ) cosf x x x xπ π= − ≤ ≤ uptu 2008
11. Obtain the half range sine series for the function 2
( )f x x= in the interval 0 3x< < uptu 2008
12. Find the half range cosine series for the function
2 0 1
( )
2(2 ) 1 2
t x
f x
t x
< <
= 
− < <
uptu 2001, 06, 07
13. Obtain the fourier cosine series expansion of the periodic function define by the function uptu 2001
( ) sin , 0 1
t
f t t
l
π 
= < < 
 
14. Find the half range sine series for the function ( )f x given in the range (0,1) by the graph OPQ as shown in
the figure. Uptu 2009
The Laplace Transformation
Pierre-Simon Laplace (1749-1827)
Laplace was a French mathematician, astronomer, and physicist who applied the Newtonian theory of
gravitation to the solar system (an important problem of his day). He played a leading role in the
development of the metric system.
The Laplace Transform is widely used in engineering applications (mechanical and electronic),
especially where the driving force is discontinuous. It is also used in process control.
What Does the Laplace Transform Do?
The main idea behind the Laplace Transformation is that we can solve an equation (or system of
equations) containing differential and integral terms by transforming the equation in "t-space" to
one in "s-space". This makes the problem much easier to solve. The kinds of problems where the
Laplace Transform is invaluable occur in electronics. You can take a sneak preview in
the Applications of Laplace section.
If needed we can find the inverse Laplace transform, which gives us the solution back in "t-space".
The Unit Step Function (Heaviside Function)
In engineering applications, we frequently encounter functions whose values change abruptly at
specified values of time t. One common example is when a voltage is switched on or off in an
electrical circuit at a specified value of time t.
The value of t = 0 is usually taken as a convenient time to switch on or off the given voltage.
The switching process can be described mathematically by the function called the Unit Step
Function (otherwise known as the Heaviside function after Oliver Heaviside).
The Unit Step Function
Definition: The unit step function, u(t), is defined as
0 0
{ }
1 0
t
u t
t
<
= 
>
That is, u is a function of time t, and u has value zero when time is negative (before we flip the
switch); and value one when time is positive (from when we flip the switch).
Laplace Transformation
Question : find the Laplace transform of the function
1, 1 2
( )
3 , 2 3
t t
f t
t t
− < <
= 
− < <
uptu 2009
Ans 2 3
2
1
2s s s
e e e
s
− − −
 − + 
Question: find the Laplace transform of the function
2
, 1 2
( ) 1, 2 3
7 3
t t
f t t t
t
 < <

= − < <
 >
uptu 2007
Ans ( ) ( )
2 3
2
3 3 2
2
2 3 3 5 1
s s
e e
s s s
s s s
− −
− + + + −
Question: if ( )
( )
2
2
2
2
cos
4
s
L t
s s
+
=
+
, find 2
(cos )L at Ans
( )
2 2
2 2
2
4
s a
s s a
+
+
uptu 2006
Question: if { }( ) ( ),L f t F s= then prove that { } ( ) [ ]( ) 1 ( )
n
nn
n
d
L t f t F s
ds
= − uptu 2005
Question: Obtain the laplace transform of 2
. .sin 4t
t e t Ans
( )
( )
2
32
4 3 6 13
2 17
s s
s s
− −
− +
uptu 2002
Question: find the laplace transform of the function ( ) . .sin 2t
f t t e t−
= Ans
( )
( )
22
4 1
1 4
s
s
+
 + +
 
uptu 2002
Question: if { }( ) ( ),L f t F s= then prove that
1
( ) ( )
s
L f t F s ds
t
∞
 
= 
 
∫ uptu 2005, 07
Question: find the laplace transform of the
0
sin
( )
t
at
f t dt
t
= ∫ uptu 2004
Question: find the laplace transform of the
cos cos
( )
at bt
f t
t
−
= Ans
2 2
2 2
1
log
2
s b
s a
+
+
uptu 2004
Question: if
cos
( )
at
e bt
f t
t
−
= , find the laplace transform of ( )f t Ans
( )
2 2
2
1
log
2
s b
s a
 +
 
+  
uptu 2003
Question: find { }L erf t and hence prove that { } ( )
3/22
3 8
. 2
4
s
L t erf t
s s
+
=
+
uptu 2001
Question : Express the following function in terms of unit step function : 1, 1 2
( )
3 , 2 3
t t
f t
t t
− < <
= 
− < <
uptu 2009
Ans
2 3
2 2 2
2
s s s
e e e
s s s
− − −
− +
Question : Express the following function in terms of unit step function :
0, 0 1
( ) 1, 1 2
1 2
t
f t t t
t
< <

= − < <
 >
uptu 2002
Ans
2
2 2
s s
e e
s s
− −
−
Question : find the laplace transform of the function
, 0
( )
, 2
t t
f t
t t
π
π π π
< <
= 
− < <
uptu 2003
Ans
( )2
1
1
s s
s
se e
s e
π π
π
π − −
−
− + −
+
Question : find the laplace transform of the function
sin , 0
( )
2
0,
t t
f t
t
π
ω
ω
π π
ω ω

< <
= 
 < <

uptu 2010
Ans
( )2 2
1
s
s e
π
ω
ω
ω
−
 
+ − 
 
Question : Draw the graph of the following periodic function and find the Laplace transform of the function
, 0
( ) 2002
2 , 0 2
t for t a
f t uptu
a t for t a
< ≤
= 
− < <
Question : state and prove Convolution theorem.
OR
If [ ] [ ] [ ]1 1 1
1 1 2 2 1 2 1 2
0
( ) ( ) ( ) ( ) ( ). ( ) ( ). ( )
t
L F s f t and L F s f t then prove that L F s F s f x f t x dx− − −
= = = −∫
Solution/proof : By using the definition we can write
1 2 1 2
0 0 0
( ). ( ) ( ). ( )
t t
st
L f x f t x dx e f x f t x dx dt
∞
−
   
− = −  
   
∫ ∫ ∫
1 2 1 2
0 0 0
( ). ( ) ( ). ( )
t t
st
L f x f t x dx e f x f t x dxdt
∞
−
 
− = − 
 
∫ ∫∫
By using the change of order the above equation reduced as
1 2 1 2
0 0
( ). ( ) ( ). ( )
t
st
s
L f x f t x dx e f x f t x dxdt
∞ ∞
−
 
− = − 
 
∫ ∫∫
On adding and subtracting x in the power of e we will get
( )
( )
( )
1 2 1 2
0 0
1 2 1 2
0 0
1 2 1 2
0 0
( ). ( ) ( ). ( )
( ). ( ) ( ). ( )
( ). ( ) ( ) . ( )
t
s t x x
s
t
s t x x
s
t
s t xsx
s
L f x f t x dx e f x f t x dxdt
L f x f t x dx e f x f t x dxdt
L f x f t x dx e f x dx e f t x dt
∞ ∞
− − +
∞ ∞
−  − +  
∞ ∞
− −−
 
− = − 
 
 
− = − 
 
 
− = − 
 
∫ ∫∫
∫ ∫ ∫
∫ ∫ ∫
Let t x z dt dz− = ⇒ =
Now the above equation reduced as
[ ]
1 2 1 2
0 0 0
1 2 1 2
0
1
1 2 1 2
0
( ). ( ) ( ) . ( )
( ). ( ) ( ). ( )
( ). ( ) ( ). ( )
t
sx sz
t
t
L f x f t x dx e f x dx e f z dt
L f x f t x dx F s F s
L F s F s f x f t x dx proved
∞ ∞
− −
−
 
− = 
 
 
− = 
 
= −
∫ ∫ ∫
∫
∫
Question : Use the convolution theorem to evaluate
( )
1
2
2
4
s
L
s
−
 
 
 
+  
uptu 2010 Ans
1
sin 2
4
t
Question : Use the convolution theorem to find the inverse of the function
( )
22
s
s a+
uptu 2009
Ans [ ]3
1
sin cos
2
at at at
a
−
Question : using the Convolution theorem find
( ) ( )
2
1
2
,
2 2
s
L a b
s s
−
  
≠ 
+ −  
uptu 2006,04
Ans 2 2
sin sina at b bt
a b
−
−
Question : using the Convolution theorem find
( )( )
1
2 2
1 4
s
L
s s
−
  
 
+ +  
uptu 2006,04
Ans ( )
1
cos cos2
3
t t−
Question : using the convolution theorem, prove that
( )
2
1
3 2
1
cos 1
21
t
L t
s s
−
  
= + − 
+  
uptu 2005
Question: Using Laplace transformation solve the differential equation uptu 2002
2
2
9 2 , (0) 1, 1
2
d x
x t if x x
dt
π 
+ = = = − 
 
Ans. [ ]
1 4 12 sin3 1
cos2 cos3 cos2 4cos3 4sin3
5 5 5 3 5
t
x t t t t t= + + = + +
Question : solve, using Laplace transform method ' " '
(0) 2, (0) 8, 4 4 6 t
y y y y y e−
= − = + + = uptu 2007
Ans. 2 2
6 8 2t t t
y e e te− − −
= − −
Question : solve
2
'
2
2 5 sin (0) 1, (0) 1xd x dy
y e x where y y
dt dx
−
+ + = = = uptu 2004
Ans. ( )
1
sin sin 2
3
x
y e x x−
= +
Question : apply Laplace transform to solve the equation
2
2
cos2 , 0, 0 0
d x dx
y t t t where y for t
dt dt
+ = > = = =
Uptu 2005 Ans
5 4
sin sin 2 cos2
9 9 3
t
y t t t= − + −
Question: solve, by the method of laplace transform, the differential equation
( ) ( )2 2
sin , 0 0D n x a nt x Dx at tα+ = + = = = uptu 2002, 2010
Ans ( )2
sin cos cos sin
2
a
x nt nt nt
n
α α = − 
Question : using the laplace transform, solve the differential equation
"
2 ' (0) 0 '(0) 1y ty y t when y and y+ − = = = Ans , ( )y t C y t c must bevanish= + = uptu 2003
Question : A particle moves in a line so that its displacement x from the fixed point O at any time t, is
given by "
4 ' 5 80sin5x x x t+ + = using Laplace transform, find its displacement at any time t if initially
particle is at rest at 0x = . Uptu 2009
Ans. ( ) ( )2
2 cos 7sin 2 cos5 sin5t
x e t t t t−
= + − +
Question : Voltage at
Ee is applied at 0t = to a circuit of inductance L and R. show that the current (i) at time t is
( )/at Rt LE
e e
R aL
− −
−
−
. uptu 2007
Question : Solve the simultaneous differential equations by using the laplace transform
3 2 , 0
dx dx dy
y t y
dt dt dt
− = + − = with the condition (0) (0) 0x y= = uptu 2008
Ans
2 22
3 3
3 3 3 3
,
2 2 4 4 2 2
t t
t t
x e y t e= + − + = + −
Question : Solve the simultaneous equation , sin , (0) 1, (0) 0tdx dy
y e x t x y
dt dt
− = + = = = uptu 2006
Ans.
1 1
cos 2sin cos , sin cos sin
2 2
t t
x e t t t t y t t e t t   = + + − = − + −   
Question : The co-ordinates (x,y) of the particle moving along a plane curve at any time I are given by
2 cos2 , 2 sin 2 ,( 0)
dx dy
y t x t t
dt dt
− = + = > it is given that at 0, 1 0.t x and y= = = show by using transforms that
the particle moves along the curve 2 2
4 4 5 4x xy y+ + = uptu 2003
Ans: ( )2 2 2 2 2 2
4 4 5 4sin 2 4cos 2 4 sin 2 cos 2 4x xy y t t t t+ + = + = + =
Question : Solve the simultaneous differential equations by Laplace transform 4 0, 2 tdx dy dx
y y e
dt dt dt
+ − = + =
With the condition (0) (0) 0x y= = uptu 2008
Ans.
3
3 /4 4
1 5 8 1
,
3 7 21 7
t
t t t
x e e y e e− 
= − + = − 
 
Question : solve the simultaneous equations ( ) ( )2 2
3 4 0, 1 0D x y x D y− − = + + = for 0,t > given that
0 2 0
dy dx
x y and at t
dt dt
= = = = = uptu 2004
Ans ( )2 cosh , 1 sinhx t t y t t= = −
Question : The co-ordinates (x,y) of the particle moving along a plane curve at any time I are given by
2 sin 2 , 2 cos2 ,( 0)
dx dy
y t y t t
dt dt
+ = − = > it is given that at 0, 1 0.t x and y= = = show by using transforms that
the particle moves along the curve 2 2
4 4 5 4x xy y+ + = uptu 2003
Ans: ( )2 2 2 2 2 2
4 4 5 4sin 2 4cos 2 4 sin 2 cos 2 4x xy y t t t t+ + = + = + =
UNIT- V
APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS
Question: Explain the method of separation of variables. Uptu 2007
Question: Solve the following equation
2
2
2 0
z z z
x x y
∂ ∂ ∂
− + =
∂ ∂ ∂
by the separation of variables method.
Ans.
( ) ( )
{ }1 1 1 1
1 2 3
K x K x Ky
z C e C e C e
+ + − + −
= + uptu 2006
Question : Using the method of separation of variables, solve 3
2 ( ,0) 6 xu u
u whereu x e
x t
−∂ ∂
= + =
∂ ∂
Ans. 3 2
6 x t
u e− −
= uptu 2006
Question : solve the following equation by the method of separation of variables
2
costu
e x
x t
−∂
=
∂ ∂
Given that 0u = when 0t = and 0 0
u
when x
t
∂
= =
∂
Ans. ( )1
1 sinu e x−
= − uptu 2008
Question : Drive the one Dimensional wave equation
2 2
2
2 2
y y
a
t x
∂ ∂
=
∂ ∂
. uptu 2007
Question : Solve completely the equation
2 2
2
2 2
y y
a
t x
∂ ∂
=
∂ ∂
,representing the vibrations of a string of length l,
fixed at both the ends, given that (0, ) 0, ( , ) 0, ( ,0) ( )y t y l t y x f x= = = and ( ,0) 0,0 .y x x l
t
∂
= < <
∂
Ans. sin cosn
n x n ct
y b
l l
π π
= uptu 2005
Question : A string is stretched and fastened to two points ݈ apart. Motion is started by displacing the string in the
form sin
x
y a
l
π 
=  
 
from which it is released at a time 0t = show tat the displacement of any point at a
distance x from one end at time t is given by
( , ) sin cosn
x ct
y x t b
l l
π π   
=    
   
uptu 2004, 09
Question: If a string of the length ݈ is initially at rest in equilibrium position and each of its points is given the
velocity 3
0
sin
t
y x
b
t l
π
=
∂ 
= 
∂ 
, find the displacement ( , )y x t .
Ans:
3 3
( , ) 9sin sin sin sin
12
bl x cl x ct
y x t
c l l l l
π π π π
π
 
= −  
uptu 2001,06
Question : find the temperature in a bar of length 2 whose ends kept at zero and lateral surface insulated if the
initial temperature is
5
sin 3sin
2 2
x xπ π
+
Ans
2 2 2 2
25
4 4
5
sin 3sin
2 2
t t
c c
x x
u e e
π π
π π− −
= + uptu 2007,09
Question : An insulated of of length ݈ has its ends A and B maintained at 0
0 C and 0
100 C respected until steady
conditions prevail. If B is suddenly reduced to 0
0 C and maintained at 0
0 C, find the temperature at a distance x
from A at time t.
Ans : ( )
2 2 2
21 200
1 . sin
t
n c
n
l
n x
u e
n l
π
π
π
−
+
= − uptu 2004,05
Question: Solve
2 2
2 2
0
u u
x y
∂ ∂
+ =
∂ ∂
which satisfies the conditions (0, ) (0, ) ( ,0) 0u y u y u x= = = and
( , ) sin
n x
u x a
l
π 
=  
 
Ans.
sinh
sin
sinh
n y
n x l
u
n al
l
π
π
π
 
 
   =  
  
 
 
uptu 2004
Question : Solve
2 2
2 2
0,0 ,0
u u
x y
x y
π π
∂ ∂
+ = < < < <
∂ ∂
, which satisfies the conditions
2
(0, ) ( , ) ( , ) 0 ( ,0) sinu y u y u x and u x xπ π= = = =
Ans. 2
1,3,5,..
8 sin sinh ( )
( 4)sinhn
nx n y
u
n n n
π
π π
∞
=
− −
=
−
∑ (from AKTU Question Bank
SERIES SOLUTION OF SECOND ORDER DIFFERENTIAL EQUATIONS
Question : solve the series the legendre’s equation of order one
( )2
1 " 2 ' 2 0 ................ (1)x y xy y− − + =
Solution : here x=0 is an ordinary point. Let a trial solution of (1) in the form ogf series in x be
2 3
0 1 2 3 .............. .... (2)n
ny c c x c x c x c x= + + + + + + − − − − − −
Different equation (2) we get
2
1 2 3
2
2 3 4
' 2 3 ..............
" 2 6 12 ..........
y c c x c x
y c c x c x
= + + +
= + + +
On putting the values of y,y’ and y” in equation (1) we get
( )( ) ( ) ( )2 2 2 2 3
2 3 4 1 2 3 0 1 2 31 2 6 12 ..... 2 2 3 ..... 2 ..... 0x c c x c x x c c x c x c c x c x c x− + + + − + + + + + + + + =
( ) ( ) ( ) ( )2 3
2 0 3 1 1 4 2 2 2 5 3 3 32 2 6 2 2 12 2 4 2 20 6 6 2 .... 0c c c c c x c c c c x c c c c x+ + − + + − − + + − − + + = on equating
the powers of x to zero we get
2 0 3 4 2 0 5 7 9 6 0
1 1 1
, 0, , 0
3 3 5
c c c c c c c c c and c c= − = = = − = = = = −
On substitute these above values in equation (2) we get
2 4 6
0 1 0 0 0
2 4 6
0 1
1 1
......
3 5
1 1
1 ....
3 5
y c c x c x c x c x
y c x x x c x
= + − − − −
 
= − − − − + 
 
Question : Using the Frobenius method, obtain a series solution in powers of x for differential equation
( ) ( )
2
2
2 1 1 3 0
d y dy
x x x y
dx dx
− + − + = UPTU 2010
Solution : we have ( ) ( )
2
2
2 1 1 3 0 (1)
d y dy
x x x y
dx dx
− + − + = − − − − − − −
Here 2
1 2( ) ( )xP x and x P x are analytic at x=0. So x=0 is a regular singular point, as assume the solution in the form
( )
( )( )
0
1
0
2
2
2
0
1
m k
k
k
m k
k
k
m k
k
k
y a x
dy
a m k x
dx
d y
a m k m k x
dx
∞
+
=
∞
+ −
=
∞
+ −
=
=
= +
= + + −
∑
∑
∑
On putting the values of
2
2
, ,
dy d y
y
dx dx
in equation (1) we get
( ) ( )( ) ( ) ( )2 1
0 0 0
2 1 1 1 3 0m k m k m k
k k k
k k k
x x a m k m k x x a m k x a x
∞ ∞ ∞
+ − + − +
= = =
− + + − + − + + =∑ ∑ ∑
( )( ) ( )( ) ( )
( )1 1
0 0 0 0
0
2 1 2 1
3 0
m k
km k m k m k
k k k
k k k k
m k
k
k
a m k x
a m k m k x a m k m k x a m k x
a x
+∞ ∞ ∞ ∞
+ − + + −
= = = =
∞
+
=
+
+ + − − + + − + + −
+ =
∑ ∑ ∑ ∑
∑
We can rewrite as
2 2
0
2 2 1
0
2 2 2 2 2 2 3
2 2 2 2 2 2 0
m k
k
k
m k
k
k
a m mk m mk k k m k x
a m mk m mk k k m k x
∞
+
=
∞
+ −
=
 − − + − − + − − + 
 + + − + + − + + = 
∑
∑
( )2 2 2 2 1
0 0
2 4 2 3 2 4 1 2 0m k m k
k k
k k
a m mk m k k x a m k m k k x
∞ ∞
+ + −
= =
   − − + − + + + + − + − =   ∑ ∑
( )[ ] ( )[ ] 1
0 0
1 2 2 3 2 2 1 0 (2)m k m k
k k
k k
a m k m k x a m k m k x
∞ ∞
+ + −
= =
+ − − − + + + + − = − − −∑ ∑
The coefficient of the lowest degree term 1m
x −
in equation (2) is obtain by substituting k=0 in second summation
of (2) only equating it by zero we get
( )0 02 1 0 0, 1/ 2, 0a m m m a− = ⇒ = = ≠
The coefficient of the next lowest degree term m
x in (2) is obtained by substituting k=0 in first summation and k=1
in the second summation, we get
( )( ) ( )( )0 11 2 3 1 2 1 0a m m a m m+ − + + + + =
( )( )
( )( )
( )
( )
1
1
1 2 3
1 2 1
2 3
2 1
m m
a
m m
m
a
m
+ − +
= −
+ +
−
= −
+
On equating the coefficient of 2
x
On putting 1k k→ + in second summation of (2) we get the coefficient of m
x and equating to zero we get
( )( ) ( )( )
( )
( )
( )
1
1
1
1 2 2 3 1 2 2 1 0
2 2 3
2 2 1
2 2 3
2 2 1
k k
k k
k k
a m k m k a m k m k
m k
a a
m k
m k
a a
m k
+
+
+
+ + − + + + + + + + =
− + +
= −
+ +
− −
=
+ +
( )
( )
1 0
2 1
2 2 3
0
2 2 1
2 2 3
1
2 2 1
m k
if k a a
m k
m k
if k a a
m k
− −
= =
+ +
− −
= =
+ +
( )
( )
( )
3 2
4 3
5 4
2 2 3
2
2 2 1
2 2 3
3
2 2 1
2 2 3
4
2 2 1
m k
if k a a
m k
m k
if k a a
m k
m k
if k a a
m k
− −
= =
+ +
− −
= =
+ +
− −
= =
+ +
m=0 M=1/2
( )
1 0
2 1 0 0
3 2 0
4 3 0 0
5 4 0 0
2 3 4 5
1 0
2
3 4 5
1 0
3
1 1
3
3 3
1 1
5 5
3 3 1 3
7 7 5 35
5 5 3 1
9 9 35 21
1 3 1
1 3 ....
5 35 21
3 3 3 3
1 3 ....
1.3 3.5 5.7 7.9
a a
a a a a
a a a
a a a a
a a a a
y a x x x x x
x
y a x x x x
= −
= − = − − =
= =
 
= = = 
 
 
= = = 
 
 
= − + + + + + 
 
 
= − + + + + + 
 
( )
1 0 0
2 1
3 4 5
1 3
2 2
2 0 0
2 0
1
2 3
2
1
2 1
2
1
2 1
2
0
1
2 3
2
...... 0
1
a a a
a a
a a a
y a x a x
y a x x
 
− 
 = = −
 
+ 
 
 
− 
 = =
 
+ 
 
= = = =
= −
= −
General solution
( )
2
3 4 5
0
3 3 3 3
1 3 .... 1
1.3 3.5 5.7 7.9
x
y A x x x x Ba x x
 
= − + + + + + + − 
 
Ans
Question: using extended power series method find one solution of the differential equation 2
" ' 0xy y x y+ + = .
Indicate the form of a second solution which is linearly independent of the first obtained above .
(UPTU 2007
Solution: we have 2
( ) ( )xP x and x Q x are analytic therefore x=0 is a regular singular point of the equation
2
2
2
0
d y dy
x x y
dx dx
+ + =
Suppose
( )
1
2
2
2
( )
( ) 1
m k
k
m k
k
m k
k
y a x
dy
a m k x
dx
d y
a m k m k x
dx
+
+ −
+ −
=
= +
= + + −
∑
∑
∑
On putting all these above values of y , y’ and y” in (1) we get
( )
( )
( )
( ){ }
{ }
2 1 2
1 1 2
1 2
1 2
1
( ) 1 ( ) 0
( ) 1 ( ) 0
( ) 1 ( ) 0
( ) 1 1 0
( ) 1 1
m k m k m k
k k k
m k m k m k
k k k
m k m k
k k
m k m k
k k
m k
k k
x a m k m k x a m k x x a x
a m k m k x a m k x a x
a m k m k m k x a x
a m k m k x a x
a m k m k x a x
+ − + − +
+ − + − + +
+ − + +
+ − + +
+ −
+ + − + + + =
+ + − + + + =
 + + − + + + = 
 + + − + + = 
 + + − + + 
∑ ∑ ∑
∑ ∑ ∑
∑ ∑
∑ ∑
∑
( )
2
1 2
2 1 2
0
( ) 0
( ) 0 (2)
m k
m k m k
k k
m k m k
k k
a m k m k x a x
a m k x a x
+ +
+ − + +
+ − + +
=
 + + + = 
 + + = − − − − − − − − 
∑
∑ ∑
∑ ∑
The coefficient of the lowest degree term 1m
x −
in (2) is obtained by the putting k=0 in the first summation of (2)
only and equating it to zero. Then the indicial equation is 2 2
0 0 0 0,0a m m m= ⇒ = ⇒ =
Coefficient of next lowest degree term m
x in (2) is obtained putting k=1 in the first summation only and equating it
to zero
( )
2
1 11 0 0a m a+ = ⇒
Equating the cifficient of 1m
x +
for k =2 we get
( )
2
2 22 0 0a m a+ = ⇒
Now on equating the coefficient of 2m k
x + +
to zero we have
( )
( )
2
3
3 2
3 0
3
k k
k
k
a m k a
a
a
m k
+
+
+ + + =
= −
+ +
I
( )
( )
( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 02
4 1 7 102
5 2 8 112
6 3 02 2 2
9 6 02 2 2 2
3 6 9
0 2 2 2 2 2 2
1
0
3
1
1 0, 0
4
1
2 0, 0
5
1 1
3
6 3 6
1 1
9 3 6 9
1 ............. (3)
3 3 6 3 6 9
m
if k a a
m
if k a a a a
m
if k a a a a
m
if k a a a
m m m
a a a
m m m m
x x x
y x a
m m m m m m
= = −
+
= = − = = =
+
= = − = = =
+
= = − =
+ + +
= − =
+ + + +
 
= − + − + − − − − − − 
+ + + + + +  
For m=0
To find the first solution , put m=0 in (3) we get
( ) ( ) ( ) ( ) ( ) ( )
3 6 9
1 0 2 2 2 2 2 2
1 ............. (4)
3 3 6 3 6 9
x x x
y a
 
= − + − + − − − − − 
  
To find the second independent solution, differentiate (3) w.r.t m then
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 6 9
0 2 2 2 2 2 2
3 6 6 9
3 3 2 2 3 3 2 2
0 9 9
2 3 2 2 3 3
log 1 .............
3 3 6 3 6 9
2 2 2 2
3 3 6 3 6 3 6 9
(5)
2 2
.............
3 6 9 3 6 9
m
m
y x x x
x x a
m m m m m m m
x x x x
m m m m m m m m
x a
x x
m m m m m m
 ∂
= − + − + 
∂ + + + + + +  
 
− − + 
+ + + + + + + + 
+ − − − − − 
 + +
 + + + + + + 
putting m=0 in equation (5) we get
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 6 9
2 0 2 2 2 2 2 2
3 6 6 9
3 3 2 2 3 3 2 2
0 9 9
2 3 2 2 3 3
log 1 .............
3 3 6 3 6 9
2 2 2 2
3 3 6 3 6 3 6 9
(6)
2 2
.............
3 6 9 3 6 9
x x x
y x a
x x x x
a
x x
 
= − + − + 
  
 
− − + 
 
+ − − − − − 
 + +
  
hence, the general solution is given by (4) and (6)
( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2
3 6 9 3 6 9
1 0 2 02 2 2 2 2 2 2 2 2 2 2 2
3 6 6 9
3 3 2 2 3 3 2 2
2 0 9 9
2 3 2 2 3 3
1 ............. log 1 ..........
3 3 6 3 6 9 3 3 6 3 6 9
2 2 2 2
3 3 6 3 6 3 6 9
2 2
.............
3 6 9 3 6 9
y c y c y
x x x x x x
y c a c x a
x x x x
c a
x x
y c
= +
  
= − + − + + − + − +  
    
 
− − + 
 
+  
 + +
  
= ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 6 9
1 2 0 2 2 2 2 2 2
3 6 6 9
3 3 2 2 3 3 2 2
2 0 9 9
2 3 2 2 3 3
log 1 .............
3 3 6 3 6 9
3 3 6 3 6 3 6 9
2.
.............
3 6 9 3 6 9
x x x
c x a
x x x x
c a Ans
x x
 
+ − + − + + 
  
 
− − + 
 
 
 + +
  
Question : solve the differential equation
2
2
0
d y dy
x y
dx dx
+ − = (UPTU C.O, 2003
Solution : on comparing with the equation
2
2
( ) ( ) 0
1 1( ) ( )
d y dy
P x Q x y wehave
dx dx
P x and Q x
x x
+ + =
−= =
Because at x=0 both ( )P x and ( )Q x are not analytic
0x∴ = is a singular point
Also ( ) 1xP x = and 2
( )x Q x x=−
Both ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point
Now suppose that 1 2 3
0 1 2 3 ....... (1)m m m m
y a x a x a x a x+ + +
= + + + + − − − − − − − −
Now
( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )
1 1 2
0 1 2 3
2 1 1
0 1 2 3
' 1 2 3 .......
" 1 1 2 1 3 2 .......
m m m m
m m m m
y ma x m a x m a x m a x
y m m a x m m a x m m a x m m a x
− + +
− − +
= + + + + + + + − − − − − − − −
= − + + + + + + + + +
On substituting the all these above values in given equation we will get
( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )
( )
2 1 1
0 1 2 3
1 1 2
0 1 2 3
1 2 3
0 1 2 3
1 1 2 1 3 2 .......
1 2 3 ......
....... 0
m m m m
m m m m
m m m m
x m m a x m m a x m m a x m m a x
ma x m a x m a x m a x
a x a x a x a x
− − +
− + +
+ + +
 − + + + + + + + + + 
+ + + + + + + +
− + + + + =
The coefficient of 1m
x −
=0 Then the indicial equation is
( ) 0 01 0 0,0m m a ma m− + = ⇒ = which are equal
Coefficient of next lowest degree term 0m
x =
( ) ( ) ( )
( )
2
1 1 0 1 0
0
1 2
1 1 0 1
1
m ma m a a m a a
a
a
m
+ + + − = ⇒ + =
=
+
Equating the coefficient of 1
0m
x +
=
( )( ) ( ) ( )
( ) ( ) ( )
2
2 2 1 2 1
01
2 2 2 2
2 1 2 0 2
2 1 2
m m a m a a m a a
aa
a
m m m
+ + + + − = ⇒ + =
= =
+ + +
( ) ( ) ( )
0
3 2 2 2
1 2 3
a
a
m m m
=
+ + +
Using equation (1)
( ) ( ) ( ) ( ) ( ) ( )
2 3
0 2 2 2 2 2 2
1 .......... (2)
1 1 2 1 2 3
m x x x
y a x
m m m m m m
 
= + + + + − − − − 
+ + + + + +  
( ) ( )
2 3
1 0 0 2 2
( ) 1 .......... (3)
2! 3!
m
x x
y y a x x=
 
= = + + + + − − − − 
  
To find the second independent solution, partially differentiate (1) w.r.t m then
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
2 9
0 2 2 2 2 2 2
2
3 2 2
0
3
2 2 2
log 1 .............
1 1 2 1 2 3
2 2 1 1
1 21 1 2
2 1 1 1
.....
1 2 31 2 3
m
m
y x x x
a x x
m m m m m m m
x
x
m mm m m
x a
x
m m mm m m
 ∂
= + + + + 
∂ + + + + + +  
   
− − +  
+ ++ + +    
+  
   
− + + −  + + ++ + +    
Now the second solution
( )
( ) ( ) ( ) ( )
( ) ( )
2 3
2 3
2 0 02 2 2 2
0
2 3
1 0 2 2
1 1 1 1 1
log 1 ............. 2 1 1 ......
2 2 32! 3! 2! 3!
1 1 1 1 1
log 2 1 1 ......
2 2 32! 3!
m
y x x
y a x x a x x x
m
y x a x x x
=
   ∂     
= = + + + + − + + + + + −       
∂           
    
= − + + + + + −    
     
Hence the complete solution is
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
1 1 2 2
2 3
2 3
1 2 0 2 02 2 2 2
2 3
2
2 2 2 2
1 1 1 1 1
log 1 .......... 2. 1 1 ......
2 2 32! 3! 2! 3!
1 1 1 1 1
log 1 .......... 2. 1 1
2 2 32! 3! 2! 3!
y c y c y
x x
y c c x a x c a x x x
x x
y A B x x B x x
= +
      
= + + + + + − + + + + + −      
         
     
= + + + + + − + + + + +     
    
3
......x Ans
 
− 
  
Question: Solve in the series the differential equation
2
2 2
2
5 0
d y
x x x y
dx
+ + = UPTU 2002
Solution : we have
2
2 2
2
5 0
d y
x x x y
dx
+ + =
on comparing above given differential equation with
2
2
( ) ( ) 0
5( ) ( ) 1
d y dy
P x Q x y wehave
dx dx
P x and Q x
x
+ + =
= =
Because at x=0 both ( )P x and ( )Q x are not analytic
0x∴ = is a singular point
Also ( ) 5xP x = and 2 2
( )x Q x x=
Both ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point
Now suppose that 1 2 3
0 1 2 3 ....... (1)m m m m
y a x a x a x a x+ + +
= + + + + − − − − − − − −
Now
( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )
1 1 2
0 1 2 3
2 1 1
0 1 2 3
' 1 2 3 ....... (2)
" 1 1 2 1 3 2 ....... (3)
m m m m
m m m m
y ma x m a x m a x m a x
y m m a x m m a x m m a x m m a x
− + +
− − +
= + + + + + + + − − − − − − − −
= − + + + + + + + + + − −
On substituting the all these above values in given equation we will get
( ) ( )( ) ( )( )
( ) ( )( )
( )
2 2 1
0 1 2
1 1
0 1 2
2 1 2 3
0 1 2 3
1 1 2 1 .......
5 1 2 ......
....... 0 (4)
m m m
m m m
m m m m
x m m a x m m a x m m a x
x ma x m a x m a x
x a x a x a x a x
− −
− +
+ + +
 − + + + + + + 
+ + + + + +
+ + + + + = − − − − − −
The coefficient of m
x =0 Then the indicial equation is
( )
( )
( )
0 0
2
0
0
1 5 0
4 0
4 0
0, 4
m m a ma
m m a
m m a
m
− + =
+ =
+ =
= −
which are distinct
Coefficient of next lowest degree term 1
0m
x +
=
( ) ( ) ( )( )1 1 1
1
1 5 1 0 5 1 0
0 (5) [ 5, 1
m ma m a m m a
a m
+ + + = ⇒ + + =
= − − − − − − ≠− −
Equating the coefficient of 2
0m
x +
=
( )( ) ( )
( )( )
( )( )
2 2 0
2 0
0
2
2 1 5 2 0
2 6 0
(6)
1 6
m m a m a a
m m a a
a
a
m m
+ + + + + =
+ + + =
−
= − − − − − −
+ +
Equating the coefficient of 2
0m
x +
=
( ) ( ) ( )
3 3 1
3 1
1
3 2 2 2
3
5 7 9
( 3)( 2) 5( 3) 0
( 3)( 7) 0
1 2 3
0
0 (7)
m m a m a a
m m a a
a
a
m m m
a
similarly a a a
+ + + + + =
+ + + =
−
=
+ + +
=
= = = − − − − − −
Coefficient of 4
0m
x +
=
4 4 2
4 2
02
4
( 4)( 3) 5( 3) 0
( 4)( 8)
. (8)
( 4)( 8) ( 2)( 4)( 6)( 8)
m m a m a a
m m a a
aa
a etc
m m m m m m
+ + + + + =
+ + = −
−
= = − − − − −
+ + + + + +
These give
( )( ) ( )( )( )( )
2 3
0 1 .......... (9)
2 6 2 4 6 8
m x x
y a x
m m m m m m
 
= − + + − − − − 
+ + + + + +  
On putting 0m = in eq (9) we get
2 4
1 0 0( ) 1 .......... (10)
2.6 2.4.6.8
m
x x
y y a=
 
= = − + + − − − − 
 
On putting 4m = − in the series given by equation (9). The coefficients becomes infinite.
To skip this problem we will put 0 0 ( 4)a b m= + so that
( )
( )
( )( ) ( )( )( )
2 3
0
4
4 .......... (11)
2 6 2 6 8
m m x x
y b x m
m m m m m
 +
= + − + + − − − − 
+ + + + +  
( )
( )
( )
( )
22
2 4
0 2 2
2 3 2
3 32 768 20
log 1 .............
8 12 16 76 96
m
m my m m
b x x x x
m m m m m m
 + +∂ + + = + − +
 ∂ + + + + + 
Now the second solution
( )
( )
( )
2 4
4
2 0
4
4 6 2 4
4 4
2 0 0
4
4 6
4
2 0
4
log 1 .............
4 4
log 0 0 ... 1 ....
( 2)(2)(4) 16 ( 2)(2)(4) 16
log .....
16 16
m
m
m
y x x
y b x x
m
y x x x x
y b x x b x
m
y x x
y b x x
m
−
=−
− −
=−
−
=−
 ∂ 
= = + − +   
∂   
   ∂ 
= = − + − + + + − +     
∂ − −     
 ∂ − 
= = − − +  
∂   
2 4
4
0 1 ...
(4) 4
x x
b x−  
+ − + 
 
Hence the Hence
complete solution is
( )
( )
1 1 2 2
2 4 4 6 2 4
4 4
1 0 2 0 2 0
2 4 2 4 6
4
1 .......... log ..... 1 ...
2.6 2.4.6.8 16 16 (4) 4
1
1 .......... 1 ... log .....
12 384 (4) 4 16 16
y c y c y
x x x x x x
y c a c b x x c b x
x x x x x
y A Bx B x An
− −
−
= +
     
= − + + + − − − + + − +    
     
     
= − + + + + − + − + +    
     
s
Question : solve the given differential equation " 2 ' 0xy y xy+ + = UPTUU 2003
Solution : we have
" 2 ' 0xy y xy+ + =
on comparing above given differential equation with
2
2
( ) ( ) 0
2( ) ( ) 1
d y dy
P x Q x y wehave
dx dx
P x and Q x
x
+ + =
= =
Because at x=0 ( )P x
0x∴ = is a singular point
Also ( ) 2xP x = and 2 2
( )x Q x x=
Both at x=0 ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point
Now suppose that 1 2 3
0 1 2 3 ....... (1)m m m m
y a x a x a x a x+ + +
= + + + + − − − − − − − −
Now
( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )
1 1 2
0 1 2 3
2 1 1
0 1 2 3
' 1 2 3 ....... (2)
" 1 1 2 1 3 2 ....... (3)
m m m m
m m m m
y ma x m a x m a x m a x
y m m a x m m a x m m a x m m a x
− + +
− − +
= + + + + + + + − − − − − − − −
= − + + + + + + + + + − −
On substituting the all these above values in given equation we will get
( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )
( )
2 1 1
0 1 2 3
1 1 2
0 1 2 3
1 2 3
0 1 2 3
1 1 2 1 3 2 .......
2 1 2 3 ......
....... 0
m m m m
m m m m
m m m m
x m m a x m m a x m m a x m m a x
ma x m a x m a x m a x
x a x a x a x a x
− − +
− + +
+ + +
 − + + + + + + + + + 
+ + + + + + + +
+ + + + + =
The coefficient of 1m
x −
=0 Then the indicial equation is
( )
( )
0 0
2
0
2
1 2 0
0
0
0, 1
m m a ma
m m a
m m
m
− + =
+ =
+ =
= −
which are distinct
Coefficient of next lowest degree term 0m
x =
( ) ( )
( )( )
( )
1 1
1
1
1 2 1 0
1 2 0
1 0
m ma m a
m m a
m a
+ + + =
+ + =
+ =
Since m+1 may be zero ,hence 1a is arbitrary ( 1a becomes in determinant)
Hence the solution will contain 0a and 1a as arbitrary constants. The complete solution will be given by the
putting 1m = − in y
Equating the coefficient of 1
0m
x +
=
( )( ) ( )
( )( )
( )( )
2 2 0
2 0
0
2
2 1 2 0
2 3 0
3 2
m m a m a a
m m a a
a
a
m m
+ + + + + =
⇒ + + + =
−
=
+ +
Equating the coefficient of 2
0m
x +
=
( )( )
3 3 1
3 1
1
3
( 3)( 2) 2( 3) 0
( 3)( 4) 0
3 4
m m a m a a
m m a a
a
a
m m
+ + + + + =
+ + + =
−
=
+ +
Equating the coefficient of 3
0m
x +
=
4 4 2
4 2
2
4
0
4
( 4)( 3) 2( 4) 0
( 4)( 5) 0
( 4)( 5)
( 2)( 3)( 4)( 5)
m m a m a a
m m a a
a
a
m m
a
a
m m m m
+ + + + + =
+ + + =
−
=
+ +
=
+ + + +
Equating the coefficient of 4
0m
x +
=
5 5 3
5 3
5 3
3
5
1
5
( 5)( 4) 2( 5) 0
( 5)( 6) 0
( 5)( 6)
( 5)( 6)
( 3)( 4)( 5)( 6)
m m a m a a
m m a a
m m a a
a
a
m m
a
a so on
m m m m
+ + + + + =
+ + + =
+ + = −
−
=
+ +
=
+ + + +
On putting all above values in equation (1) we get
( )( ) ( )( )
2 3 40 01
0 1
51
3 2 3 4 ( 2)( 3)( 4)( 5)
( 3)( 4)( 5)( 6)
m
a aa
a a x x x x
m m m m m m m m
y x
a
x
m m m m
 
+ − − + + + + + + + + +
 =
 
+ 
+ + + + 
( )( )
( )( )
( )
2 4
0
3 5
1
2 4 3 5
1
0 11
1 ...
3 2 ( 2)( 3)( 4)( 5)
....
3 4 ( 3)( 4)( 5)( 6)
1 ... ....
1.2 1.2.3.4. 2.3 2.3.4.5
m
m
x x
a
m m m m m m
y x
x x
a x
m m m m m m
Now
x x x x
y x a a x−
=−
   
− + −  
+ + + + + +   
=  
   − + −  + + + + + +   
    
= − + − + − + −    
    
Hence the solution is
( )
( )
1
0 1
1
cos sin
m
y y
y a x a x
x
=−
=
= +
( ) ( ) ( )
0
3 2 2 2
1 2 3
a
a
m m m
=
+ + +
Using equation (1)
( ) ( ) ( ) ( ) ( ) ( )
2 3
0 2 2 2 2 2 2
1 .......... (2)
1 1 2 1 2 3
m x x x
y a x
m m m m m m
 
= + + + + − − − − 
+ + + + + +  
( ) ( )
2 3
1 0 0 2 2
( ) 1 .......... (3)
2! 3!
m
x x
y y a x x=
 
= = + + + + − − − − 
  
To find the second independent solution, partially differentiate (1) w.r.t m then
( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
2 9
0 2 2 2 2 2 2
2
3 2 2
0
3
2 2 2
log 1 .............
1 1 2 1 2 3
2 2 1 1
1 21 1 2
2 1 1 1
.....
1 2 31 2 3
m
m
y x x x
a x x
m m m m m m m
x
x
m mm m m
x a
x
m m mm m m
 ∂
= + + + + 
∂ + + + + + +  
   
− − +  
+ ++ + +    
+  
   
− + + −  + + ++ + +    
Now the second solution
( )
( ) ( ) ( ) ( )
( ) ( )
2 3
2 3
2 0 02 2 2 2
0
2 3
1 0 2 2
1 1 1 1 1
log 1 ............. 2 1 1 ......
2 2 32! 3! 2! 3!
1 1 1 1 1
log 2 1 1 ......
2 2 32! 3!
m
y x x
y a x x a x x x
m
y x a x x x
=
   ∂     
= = + + + + − + + + + + −       
∂           
    
= − + + + + + −    
     
Hence the complete solution is
( )
( ) ( ) ( ) ( )
( )
( ) ( ) ( ) ( )
1 1 2 2
2 3
2 3
1 2 0 2 02 2 2 2
2 3
2
2 2 2 2
1 1 1 1 1
log 1 .......... 2. 1 1 ......
2 2 32! 3! 2! 3!
1 1 1 1 1
log 1 .......... 2. 1 1
2 2 32! 3! 2! 3!
y c y c y
x x
y c c x a x c a x x x
x x
y A B x x B x x
= +
      
= + + + + + − + + + + + −      
         
     
= + + + + + − + + + + +     
    
3
......x Ans
 
− 
  

Weitere ähnliche Inhalte

Was ist angesagt?

Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)
Matthew Leingang
 

Was ist angesagt? (20)

Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 3
 
Linear dependence(ld) &amp;linear independence(li)
Linear dependence(ld)  &amp;linear independence(li)Linear dependence(ld)  &amp;linear independence(li)
Linear dependence(ld) &amp;linear independence(li)
 
Differential Equation
Differential EquationDifferential Equation
Differential Equation
 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equations
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Interpolation
InterpolationInterpolation
Interpolation
 
Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)Lesson 8: Basic Differentiation Rules (Section 21 slides)
Lesson 8: Basic Differentiation Rules (Section 21 slides)
 
Power series
Power series Power series
Power series
 
Application of Differential Equation
Application of Differential EquationApplication of Differential Equation
Application of Differential Equation
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Newton backward interpolation
Newton backward interpolationNewton backward interpolation
Newton backward interpolation
 
Higher order differential equation
Higher order differential equationHigher order differential equation
Higher order differential equation
 
Digital logic design part1
Digital logic design part1Digital logic design part1
Digital logic design part1
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Double integration
Double integrationDouble integration
Double integration
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference Formula
 
Fourier series
Fourier seriesFourier series
Fourier series
 
z transforms
z transformsz transforms
z transforms
 
2nd order ode applications
2nd order ode applications2nd order ode applications
2nd order ode applications
 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with Example
 

Ähnlich wie Question bank Engineering Mathematics- ii

Question 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docxQuestion 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docx
makdul
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
joseluisroyo
 
Question 1 1. Evaluate using integration by parts. .docx
Question 1  1.  Evaluate using integration by parts. .docxQuestion 1  1.  Evaluate using integration by parts. .docx
Question 1 1. Evaluate using integration by parts. .docx
makdul
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
Carlos Fuentes
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
tutulk
 
Algebra ii honors study guide
Algebra ii honors study guideAlgebra ii honors study guide
Algebra ii honors study guide
morrobea
 
Algebra ii honors study guide
Algebra ii honors study guideAlgebra ii honors study guide
Algebra ii honors study guide
morrobea
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
HebaEng
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
Carlos Fuentes
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
Sanjay Singh
 
04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf
RajuSingh806014
 

Ähnlich wie Question bank Engineering Mathematics- ii (20)

Question 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docxQuestion 1 1. Evaluate using integration by parts. l.docx
Question 1 1. Evaluate using integration by parts. l.docx
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Question 1 1. Evaluate using integration by parts. .docx
Question 1  1.  Evaluate using integration by parts. .docxQuestion 1  1.  Evaluate using integration by parts. .docx
Question 1 1. Evaluate using integration by parts. .docx
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 
differential-calculus-1-23.pdf
differential-calculus-1-23.pdfdifferential-calculus-1-23.pdf
differential-calculus-1-23.pdf
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
 
Definite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by PartsDefinite Integrals 8/ Integration by Parts
Definite Integrals 8/ Integration by Parts
 
Algebra ii honors study guide
Algebra ii honors study guideAlgebra ii honors study guide
Algebra ii honors study guide
 
Algebra ii honors study guide
Algebra ii honors study guideAlgebra ii honors study guide
Algebra ii honors study guide
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
Differentiation.pdf
Differentiation.pdfDifferentiation.pdf
Differentiation.pdf
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
1 to hop
1 to hop1 to hop
1 to hop
 
Diff-Eqs
Diff-EqsDiff-Eqs
Diff-Eqs
 
04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf04 Differential EquationEx. Module-5.pdf
04 Differential EquationEx. Module-5.pdf
 
sim-140907230908-phpapp01.pptx
sim-140907230908-phpapp01.pptxsim-140907230908-phpapp01.pptx
sim-140907230908-phpapp01.pptx
 
Sim math 9 factoring
Sim math 9 factoringSim math 9 factoring
Sim math 9 factoring
 

Mehr von Mohammad Imran

Mehr von Mohammad Imran (12)

Atomic number ,mass , symbols and nature
Atomic number ,mass , symbols and natureAtomic number ,mass , symbols and nature
Atomic number ,mass , symbols and nature
 
Discussion forum
Discussion forumDiscussion forum
Discussion forum
 
Z transformation
Z transformationZ transformation
Z transformation
 
Complex variables
Complex variablesComplex variables
Complex variables
 
Important Questions of fourier series with theoretical study Engg. Mathem...
Important Questions  of  fourier series with theoretical study   Engg. Mathem...Important Questions  of  fourier series with theoretical study   Engg. Mathem...
Important Questions of fourier series with theoretical study Engg. Mathem...
 
Engg. math 1 question bank by mohammad imran
Engg. math  1 question bank by mohammad imran Engg. math  1 question bank by mohammad imran
Engg. math 1 question bank by mohammad imran
 
Solved numerical problems of fourier series
Solved numerical problems of fourier seriesSolved numerical problems of fourier series
Solved numerical problems of fourier series
 
notes of Mathematics- III (Theory & numerical part)
notes of Mathematics- III (Theory & numerical part)notes of Mathematics- III (Theory & numerical part)
notes of Mathematics- III (Theory & numerical part)
 
Fp
FpFp
Fp
 
Theory of fourier series
Theory of fourier seriesTheory of fourier series
Theory of fourier series
 
Solution of Engg. mathematics - I (AKTU ) by mohd imran
Solution of Engg. mathematics - I (AKTU ) by mohd imranSolution of Engg. mathematics - I (AKTU ) by mohd imran
Solution of Engg. mathematics - I (AKTU ) by mohd imran
 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imran
 

Kürzlich hochgeladen

Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 

Kürzlich hochgeladen (20)

Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Air Compressor reciprocating single stage
Air Compressor reciprocating single stageAir Compressor reciprocating single stage
Air Compressor reciprocating single stage
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 

Question bank Engineering Mathematics- ii

  • 1. JAHANGIRABAD INSTITUTE OF TECHNOLOGY ENGINEERING MATHEMTICS-II (QUESTION BANK) NUMERICAL PROBLEMS WITH THEORY PREPRAED BY MOHAMMAD IMRAN (ASSISTANT PROFESSOR, JIT) E-mail: mohammad.imran@jit.edu.in Website: www.jit.edu.in Mobile no 9648588546
  • 2. DIFFERENTIAL EQUATION Linear Differential Equations Definition: A differential equation in which independent variable and only its first derivative involved Called “Linear Differential Equation”. 1 2 3 1 2 3 11 2 3 n n n n n nn n n n d y d y d y d y dy a a a a a y Q dx dx dx dx dx − − − −− − − + + + + − − − − − − − + + = Above equation is an example of linear Differential equation of order n. Where 1 2 1, ,............ na a a − all are constant and Q is any function of x which is called Differential equation with constant coefficients. Different notations of Differential operator: First derivative : ' , , d D y d x Second Derivative: 2 2 '' 2 , , d D y d x Third Derivative : 3 3 ''' 3 , , d D y d x . . . . Nth Derivative : , , n n n n d D y dx Order and Degree of A differential Equation : • The highest derivative in the given differential equation called the “Order of the Differential Equation”. For Example consider a differential equation 32 2 2 0 d y dy y dx dx   + + =    the order of the differential equation is 2. • In a differential Equation After made free from the radicals and fraction the degree of the highest derivative called “Degree of the Differential equation”.
  • 3. For Example consider a differential equation 32 2 2 0 d y dy y dx dx   + + =    the Degree of the differential equation is 1. Ordinary and Partial Differential Equations : Differential equation in which unknown function is depends on only one independent variable called “Ordinary Differential Equation”. Differential equations in which two or more independent variables are involved called “Partial Differential Equation” Linear Differential Equation Differential equation in which dependent variables and all its first degree derivatives involved called “Linear Differential Equation” dy dy P Qy R dx dx + + = Where P, Q are constant and R is the function of x only. Linear Differential Equation of second order with constant coefficients : 2 2 d y dy P Qy R dx dx + + = Where P, Q are constant and R is the function of x only. Non-Linear differential Equation : A Differential Equation in which dependent variable and its derivative Having degree more than 1 called “Non-Linear differential Equation”. Auxiliary Equation : Suppose we have a Differential Equation as 2 2 3 4 0 d y dy y dx dx − − = ----------------------------------------------------- (1)
  • 4. Equation (1) we can rewrite as 2 3 4 0D y Dy y− − = ( )2 3 4 0D D y− − = On equating the coefficient of y with 0 we will get 2 3 4 0D D− − = Which is called “Auxiliary Equation”. Solution of different type of Differential Equations : When given differential equation not having any function ( having “0” ) in right hand side 1 1 21 0 n n n n d y d y a a y dx dx − − − − = Case –I : when all the roots of Auxiliary Equation are distinct Let the roots of Auxiliary Equation are 1 2 3, , ..................... nm m m m than the general solution will be 1 2 3 1 2 3 ............... nm x m x m x m x ny c e c e c e c e= + + + + Case –II : when all the roots of Auxiliary Equation are equal than the general solution will be ( )2 1 1 2 3 ............... m xn ny c c x c x c x e− = + + + + Where m is equal roots of Auxiliary Equation Case –III: when some roots of Auxiliary Equation are equal and some are different than the General Solution will be ( ) ( )32 42 1 1 2 3 1 2 3............... ............... nm x m xm xm x m xn n n n n n ny c c x c x c x e c e c e c e c e− + + + += + + + + + + + + + Case –IV : when roots of Auxiliary Equation are imaginary as iα β± than ( )1 2cos sinx y e c x c xα β β= + Case –V : when roots of Auxiliary Equation are imaginary and repeated twice than { } { }( )1 2 3 4cos sinx y e c c x x c c x xα β β= + + + Case –VI : when roots of Auxiliary Equation are Irrational as α β± where β is positive than
  • 5. ( )1 2cosh sinhx y e c x c xα β β= + Case – V: if ,i iα β α β± ± be the two equal pairs of imaginary roots and all other roots real and Different. ( ) 5 1 2 3 4 5cos ( )sin ..................... nm x m xax ny e c c x x c c x x c cβ β = + + + + + +  Some useful expansions : (i) 1 2 3 4 5 (1 ) 1 ..............................D D D D D D− − = + + + + + + ∞ (ii) 1 2 3 4 5 (1 ) 1 ..............................D D D D D D− + = − + − + − + ∞ (iii) 2 2 3 4 (1 ) 1 2 3 4 5 .............................D D D D D− + = − + − + − ∞ (iv) 2 2 3 4 (1 ) 1 2 3 4 5 .............................D D D D D− − = + + + + + ∞ (v) 3 2 3 (1 ) 1 3 6 10 .............................D D D D− − = + + + + ∞ (vi) 3 2 3 (1 ) 1 3 6 10 .............................D D D D− + = − + − + ∞ Remark : When given differential equation not having any function ( having “0” ) in right hand side then there is no need to find out particular integral (P.I) so general solution will be ࢟ = ࢉ࢕࢓࢖࢒࢏࢓ࢋ࢔࢚࢘࢟ ࢌ࢛࢔ࢉ࢚࢏࢕࢔ (࡯. ࡲ) Question : find the general solution of the differential equation 5 3 5 3 0 d y d y dx dx − = (2009) 2 1 2 3 4 5( ) x x y c c x c x c e c e− = + + + + Ans Question : find the particular integral of ( )2 4 4 sin 2D D y x− − = (UPTU2010-11 cos2 . 8 x P I = Ans Question : Find the particular integral of 2 2 2 2 1 d y x x dx = + − (uptu 2013-14
  • 6. 4 3 2 2 . 12 6 2 x x x P I   = + −    Ans Question : Find the particular integral of 2 2 2 d y y x dx − = (UPTU 2012 2 1 2. 2x x C S C e C e x−  = + − +  Ans Question: solve the differential equation (UPTU 2009-10 2 2 5 6 sin3 cos2 d y dy y x x dx dx + − = + Question : solve 2 2 3 2 2 xd y dy y x e dx dx − + = UPTU 203-14 ( ) 3 2 1 2. 2 16 128 16 x x e C S C C x e x x x = + + + − +  Ans Question : solve 3 2 2 3 2 6 1 d y d y dy x dx dx dx − − = + UPTU 2001 3 2 3 2 1 2 3 1 25 6 18 3 6 x x x x CS c c e c e x−   = + + − + −    Ans Question : if ( ) 2 2 0; , d x g x a a b and g dt b + − = are positive numbers and ' ; 0 0 dx x a whent dt = = = , show that ( )' cos g x a a a t b = + − (UPTU 2007 1 2cos sin g g ag b CS c x c x b b b g     = + +        Ans Question : if 3 2 3 2 3 4 2 0 d y d y dy y dx dx dx − + − = (uptu 2001 Question : obtain the general solution of the differential equation '' ' 2 2 cosx y y y x e x− + = + uptu 2002 Ans ( ) [ ]1 2 1 . cos sin 1 sin 2 2 x x xe C S e c x c x x x= + + + + [ ] [ ]6 1 2 1 1 . cos3 sin 3 sin 2 cos 2 30 20 x x C S C e C e x x Ax x ns− = + − + + −
  • 7. Question : find the complete solution of 2 3 2 3 2 sin 2xd y dy y xe x dx dx − + = + (uptu 2003 ( ) 3 2 1 2 3 1 . 3cos2 sin 2 2 2 20 x x x e C S c e c e x x x    = + + + + −    Question : solve the differential equation ( )2 2 1 cos ( 2007x D y xe x uptu− = + Question : find the complete solution of 2 2 3 2 sin 2xd y dy y xe x dx dx − + = + (uptu 2001 Question : solve 2 2 2 sin d y a y ax dx + = ( UPTU 2008 1 2 cos . cos sin 2 x ax C S c ax c ax a = + − Question : solve 3 2 3 2 3 4 2 cosxd y d y dy y e x dx dx dx − + − = + (UPTU 2001, 2006 Ans ( )1 2 3 3sin cos . cos sin 10 x x x x C S e c x c x c e   = + + +    Question : solve ( )2 4 sin3 cos2D x x+ = + ( UPTU 2008 Ans ( ) ( )1 2 1 sin 2 . cos2 sin 2 sin 3 5 4 x x C S c x c x x   = + − +    Question : solve the differential equation ( )4 3 2 2 2 3 3 4sinx D D D y e x+ − = + (UPTU2008 Ans ( ) ( ) [ ]0 3 2 1 2 3 3 3 2 . cos 2sin 20 5 x x x x C S c c x e c e c e e x x− = + + + + − − Question : solve 3 2 3 2 3 2 3 log d y d y dy x x x y x x dx dx dx + + + = + UPTU 2001 1 1 2 1 2 3 3 3 1 cos log sin log log 2 2 2 y c x x c x c x x x−      = + + + +              Ans Question : solve ( ) 2 2 2 log sin log d y dy x x y x x dx dx + + = UPTU 2002
  • 8. Ans ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 1 1 . cos log sin log log sin log log cos log 4 4 C S c x c x x x x x= + + −   Question : solve the following simultaneous differential equation (UPTU 2011-12, 2013-14 ( )4 , 4 4 , dx dx dy x y y dt dt dt = − + + = − with condition (0) 1x = (0) 0y = Ans ( ) 2 1 2 t x c c x e− = + 2 ( ) t y t te− = Question: solve the simultaneous equations UPTU 2008 3 2 , 5 3 dx dy x y x y dt dt = + = + ( ) ( )3 10 3 10 1 2 t t Ans x c e c e + − = + ( ) ( ) ( )3 10 3 10 1 2 1 10 10 2 t t y c e c e + + = − QUESTION: Question: solve the simultaneous equations UPTU 2008 5 2 , 2 0 dx dy x y t x y dt dt + − = + + = Ans ( ) 3 1 2 1 9 27 t t x c c t e− = + + + 3 3 32 1 2 4 2 2 27 9 t t tc t y c e c te e− − −  = + + + −   1 1 27 c = − 2 6 2 27 9 c = − = − Question : The equations of the motions of a particle are given by UPTU 2009 0, 0 dx dy wy wx dt dt + = − = Find the path of the particle and show that it is a circle. Ans 1 2cos sinx c wt c wt= + , 1 2sin cosy c wt c wt= − , 2 2 2 x y r+ = Which is a equation of circle Question : solve the following differential equation (uptu 2009 1, 1 dx dy y x dt dt = + = + Ans 1 2 1t t x c e c e− = + − , 1 2 1t t y c e c e− = − − Question: Solve the simultaneous differential equations uptu 2005 2 2 2 2 3 4 0, 0 d x d y x y x y dt dt − − = + + = ( ) ( ) ( ) ( ) 1 2 2 3 4 4 1 2 3 4 2 2 2 2 2 2t t t t x c c c t e c c c t e y c c t e c c t e − −  =− + + + + +  = + + + Ans. Question: Solve the simultaneous differential equations uptu 2001
  • 9. 2 2 2 2 3 , 4 3 sin 2td x dx d y dx x e y t dt dt dt dt + + = − + = 1 2 3 4 1 2 1 2 3 4 2 cos sin cos3 sin3 cos2 5 15 1 cos 3 sin 3 sin 2 2 sin 15 1 2 cos 2 sin3 2 cos3 5 t t e x c t c t c t c t t y c t c t t c t c t c t c t e − − = + + + + + = + + − + + − − Question: Solve the simultaneous differential equations uptu 2008 4 3 , 2 5 tdx dy x y t x y e dt dt + + = + + = 2 7 1 2 2 7 1 2 5 31 1 14 196 8 2 1 9 5 3 7 98 24 t t t t t t x c e c e t e y c e c e t e − − − − = + + − − =− + − + + Ans. Question: Solve the simultaneous differential equations uptu 2003 3 sin , cosDx Dy x t Dx y x t+ + = + − = ( ) ( ) 3 1 2 3 1 2 1 2sin cos 5 1 2cos sin 2 2 5 t t t t x c e c e t t y t t c e c e − − = + + − = + − + Ans. Question: Solve the simultaneous differential equations uptu 2001 2 2 2 2 4 4 , 4 4 25 16 td x dx d y dy x y y x e dt dt dt dt − + = + + = + Ans 3 3 1 2 3 4 3 4 3 3 1 2 3 4 25 (3 4 )cos (4 3 )sin cos sin t t t t t t y c e c e c c t c c t e x c e c e c t c t e − − = + + − + + + − = + + + − Question solve 1/222 2 1 d y dy dx dx    = −       uptu 2002 Ans 1cos( )y x c c= − + + Question : Solve 22 2 0 d y dy dy x x dx dx dx   + − =    uptu 2010 Ans 2 1 2log( 2 )y x c c= + +
  • 10. Question : solve 2 " 4 ' (4 2) 0y xy x y− + − = given that 2 x y e= is an integral included in the complementary function . uptu 2004 Ans 2 1 2( )x y e c x c= +
  • 11. DEFINITION: Infinite Series of Trigonometric functions periodic function, used in Fourier analysis. EVEN FUNCTION: Let f(x) be a real-valued function of a real variable. Then f is even if the following equation holds for all x and -x in the domain of f. ( ) ( )f x f x− = or ( ) ( ) 0f x f x− − = Geometrically speaking, the graph face of an even function is symmetric with respect to the graph remains unchanged after about the y-axis. Examples of even functions are or any linear combination of these. ODD FUNCTIONS Again, let f(x) be a real-valued function of a real variable. Then f is odd if the following equation holds for all x and -x in the domain of f: ( ) ( )f x f x− = − or ( ) ( ) 0f x f x− + = Geometrically, the graph of an odd function has rotational symmetry with respect to the origin remains unchanged after rotation origin. Examples of odd functions are x any linear combination of these. FOURER SERIES Trigonometric functions which represents an expansion or approximation of a periodic function, used in Fourier analysis. valued function of a real variable. if the following equation holds for all Geometrically speaking, the graph face of an even function with respect to the y-axis, meaning that its remains unchanged after reflection Examples of even functions are |x|, x2 , x4 , cos(x), cosh(x), y linear combination of these. valued function of a real variable. if the following equation holds for all an odd function has rotational origin, meaning that its graph rotation of 180 degrees about the x, x3 , sin(x), sinh(x), erf(x), or any linear combination of these. which represents an expansion or approximation of a
  • 12. Properties involving addition and subtraction • The sum of two even functions is even, and any constant multiple of an even function is even. • The sum of two odd functions is odd, and any constant multiple of an odd function is odd. • The difference between two odd functions is odd. • The difference between two even functions is even. • The sum of an even and odd function is neither even nor odd, unless one of the functions is equal to zero over the given domain. Properties involving multiplication and division • The product of two even functions is an even function. • The product of two odd functions is an even function. • The product of an even function and an odd function is an odd function. • The quotient of two even functions is an even function. • The quotient of two odd functions is an even function. • The quotient of an even function and an odd function is an odd function. Properties involving composition • The composition of two even functions is even. • The composition of two odd functions is odd. • The composition of an even function and an odd function is even. • The composition of any function with an even function is even (but not vice versa). Other algebraic properties • Any linear combination of even functions is even, and the even functions form a vector space over the reals. Similarly, any linear combination of odd functions is odd, and the odd functions also form a vector space over the reals. In fact, the vector space of all real-valued functions is the direct sum of the subspaces of even and odd functions. In other words, every function f(x) can be written uniquely as the sum of an even function and an odd function: ( ) ( ) ( )e of x f x f x= + where [ ] 1 ( ) ( ) ( ) 2 ef x f x f x= + − is even and [ ] 1 ( ) ( ) ( ) 2 of x f x f x= − − is odd. For example, if f is exp, then fe is cosh and fo is sinh. • The even functions form a commutative algebra over the reals. However, the odd functions do not form an algebra over the reals, as they are not closed under multiplication.
  • 13. Important questions 1. find the Fourier series for the function 2 ( ) 4 x f x x xπ π= + − ≤ ≤ uptu 2009 2. find the Fourier series for the function ( ) sin 0 2f x x x x π= ≤ ≤ uptu 2001 3. find the Fourier series for the function 0 ( ) 0 k x f x k x π π − − =   uptu 2010 hence show that 1 1 1 1 ........ 3 5 7 4 π − + − + = 4. find the Fourier series for the function 0 ( ) 0 x x f x x x π π − < < =  − < < uptu 2002, 2008 Hence show that 2 2 2 2 2 1 1 1 1 ........ 1 3 5 7 8 π − + − + = 5. find the Fourier series for the function 2 ( ) 4 x f x x xπ π= + − ≤ ≤ uptu 2009 6. find the Fourier series for the function 2 ( )f x x x xπ π= + − ≤ ≤ uptu 2003 Deduce that 2 2 2 2 2 1 1 1 1 ........ 6 1 2 3 4 π = + + + + 7. find the Fourier series for the function 0 ( ) ( 2 ) ( ) 0 x x f x and f x f x x x π π π π π + − < < = + = − − < < uptu 2006 8. find the Fourier series for the function 1 0 ( ) ( 2 ) ( ) 1 0 x f x and f x f x x π π π − − < < = + = < < 9. find the Fourier series for the function ( ) sinf x x x xπ π= − ≤ ≤ uptu 2008 Deduce that 1 1 1 1 2 ........ 1.3 3.5 5.7 7.9 4 π − + + + + = 10. find the Fourier series for the function ( ) cosf x x x xπ π= − ≤ ≤ uptu 2008 11. Obtain the half range sine series for the function 2 ( )f x x= in the interval 0 3x< < uptu 2008 12. Find the half range cosine series for the function 2 0 1 ( ) 2(2 ) 1 2 t x f x t x < < =  − < < uptu 2001, 06, 07 13. Obtain the fourier cosine series expansion of the periodic function define by the function uptu 2001 ( ) sin , 0 1 t f t t l π  = < <    14. Find the half range sine series for the function ( )f x given in the range (0,1) by the graph OPQ as shown in the figure. Uptu 2009
  • 14. The Laplace Transformation Pierre-Simon Laplace (1749-1827) Laplace was a French mathematician, astronomer, and physicist who applied the Newtonian theory of gravitation to the solar system (an important problem of his day). He played a leading role in the development of the metric system. The Laplace Transform is widely used in engineering applications (mechanical and electronic), especially where the driving force is discontinuous. It is also used in process control. What Does the Laplace Transform Do? The main idea behind the Laplace Transformation is that we can solve an equation (or system of equations) containing differential and integral terms by transforming the equation in "t-space" to one in "s-space". This makes the problem much easier to solve. The kinds of problems where the Laplace Transform is invaluable occur in electronics. You can take a sneak preview in the Applications of Laplace section. If needed we can find the inverse Laplace transform, which gives us the solution back in "t-space". The Unit Step Function (Heaviside Function) In engineering applications, we frequently encounter functions whose values change abruptly at specified values of time t. One common example is when a voltage is switched on or off in an electrical circuit at a specified value of time t. The value of t = 0 is usually taken as a convenient time to switch on or off the given voltage.
  • 15. The switching process can be described mathematically by the function called the Unit Step Function (otherwise known as the Heaviside function after Oliver Heaviside). The Unit Step Function Definition: The unit step function, u(t), is defined as 0 0 { } 1 0 t u t t < =  > That is, u is a function of time t, and u has value zero when time is negative (before we flip the switch); and value one when time is positive (from when we flip the switch). Laplace Transformation Question : find the Laplace transform of the function 1, 1 2 ( ) 3 , 2 3 t t f t t t − < < =  − < < uptu 2009 Ans 2 3 2 1 2s s s e e e s − − −  − +  Question: find the Laplace transform of the function 2 , 1 2 ( ) 1, 2 3 7 3 t t f t t t t  < <  = − < <  > uptu 2007 Ans ( ) ( ) 2 3 2 3 3 2 2 2 3 3 5 1 s s e e s s s s s s − − − + + + − Question: if ( ) ( ) 2 2 2 2 cos 4 s L t s s + = + , find 2 (cos )L at Ans ( ) 2 2 2 2 2 4 s a s s a + + uptu 2006 Question: if { }( ) ( ),L f t F s= then prove that { } ( ) [ ]( ) 1 ( ) n nn n d L t f t F s ds = − uptu 2005 Question: Obtain the laplace transform of 2 . .sin 4t t e t Ans ( ) ( ) 2 32 4 3 6 13 2 17 s s s s − − − + uptu 2002
  • 16. Question: find the laplace transform of the function ( ) . .sin 2t f t t e t− = Ans ( ) ( ) 22 4 1 1 4 s s +  + +   uptu 2002 Question: if { }( ) ( ),L f t F s= then prove that 1 ( ) ( ) s L f t F s ds t ∞   =    ∫ uptu 2005, 07 Question: find the laplace transform of the 0 sin ( ) t at f t dt t = ∫ uptu 2004 Question: find the laplace transform of the cos cos ( ) at bt f t t − = Ans 2 2 2 2 1 log 2 s b s a + + uptu 2004 Question: if cos ( ) at e bt f t t − = , find the laplace transform of ( )f t Ans ( ) 2 2 2 1 log 2 s b s a  +   +   uptu 2003 Question: find { }L erf t and hence prove that { } ( ) 3/22 3 8 . 2 4 s L t erf t s s + = + uptu 2001 Question : Express the following function in terms of unit step function : 1, 1 2 ( ) 3 , 2 3 t t f t t t − < < =  − < < uptu 2009 Ans 2 3 2 2 2 2 s s s e e e s s s − − − − + Question : Express the following function in terms of unit step function : 0, 0 1 ( ) 1, 1 2 1 2 t f t t t t < <  = − < <  > uptu 2002 Ans 2 2 2 s s e e s s − − − Question : find the laplace transform of the function , 0 ( ) , 2 t t f t t t π π π π < < =  − < < uptu 2003
  • 17. Ans ( )2 1 1 s s s se e s e π π π π − − − − + − + Question : find the laplace transform of the function sin , 0 ( ) 2 0, t t f t t π ω ω π π ω ω  < < =   < <  uptu 2010 Ans ( )2 2 1 s s e π ω ω ω −   + −    Question : Draw the graph of the following periodic function and find the Laplace transform of the function , 0 ( ) 2002 2 , 0 2 t for t a f t uptu a t for t a < ≤ =  − < < Question : state and prove Convolution theorem. OR If [ ] [ ] [ ]1 1 1 1 1 2 2 1 2 1 2 0 ( ) ( ) ( ) ( ) ( ). ( ) ( ). ( ) t L F s f t and L F s f t then prove that L F s F s f x f t x dx− − − = = = −∫ Solution/proof : By using the definition we can write 1 2 1 2 0 0 0 ( ). ( ) ( ). ( ) t t st L f x f t x dx e f x f t x dx dt ∞ −     − = −       ∫ ∫ ∫ 1 2 1 2 0 0 0 ( ). ( ) ( ). ( ) t t st L f x f t x dx e f x f t x dxdt ∞ −   − = −    ∫ ∫∫ By using the change of order the above equation reduced as 1 2 1 2 0 0 ( ). ( ) ( ). ( ) t st s L f x f t x dx e f x f t x dxdt ∞ ∞ −   − = −    ∫ ∫∫ On adding and subtracting x in the power of e we will get
  • 18. ( ) ( ) ( ) 1 2 1 2 0 0 1 2 1 2 0 0 1 2 1 2 0 0 ( ). ( ) ( ). ( ) ( ). ( ) ( ). ( ) ( ). ( ) ( ) . ( ) t s t x x s t s t x x s t s t xsx s L f x f t x dx e f x f t x dxdt L f x f t x dx e f x f t x dxdt L f x f t x dx e f x dx e f t x dt ∞ ∞ − − + ∞ ∞ −  − +   ∞ ∞ − −−   − = −      − = −      − = −    ∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫ Let t x z dt dz− = ⇒ = Now the above equation reduced as [ ] 1 2 1 2 0 0 0 1 2 1 2 0 1 1 2 1 2 0 ( ). ( ) ( ) . ( ) ( ). ( ) ( ). ( ) ( ). ( ) ( ). ( ) t sx sz t t L f x f t x dx e f x dx e f z dt L f x f t x dx F s F s L F s F s f x f t x dx proved ∞ ∞ − − −   − =      − =    = − ∫ ∫ ∫ ∫ ∫ Question : Use the convolution theorem to evaluate ( ) 1 2 2 4 s L s −       +   uptu 2010 Ans 1 sin 2 4 t Question : Use the convolution theorem to find the inverse of the function ( ) 22 s s a+ uptu 2009 Ans [ ]3 1 sin cos 2 at at at a − Question : using the Convolution theorem find ( ) ( ) 2 1 2 , 2 2 s L a b s s −    ≠  + −   uptu 2006,04 Ans 2 2 sin sina at b bt a b − − Question : using the Convolution theorem find ( )( ) 1 2 2 1 4 s L s s −      + +   uptu 2006,04 Ans ( ) 1 cos cos2 3 t t−
  • 19. Question : using the convolution theorem, prove that ( ) 2 1 3 2 1 cos 1 21 t L t s s −    = + −  +   uptu 2005 Question: Using Laplace transformation solve the differential equation uptu 2002 2 2 9 2 , (0) 1, 1 2 d x x t if x x dt π  + = = = −    Ans. [ ] 1 4 12 sin3 1 cos2 cos3 cos2 4cos3 4sin3 5 5 5 3 5 t x t t t t t= + + = + + Question : solve, using Laplace transform method ' " ' (0) 2, (0) 8, 4 4 6 t y y y y y e− = − = + + = uptu 2007 Ans. 2 2 6 8 2t t t y e e te− − − = − − Question : solve 2 ' 2 2 5 sin (0) 1, (0) 1xd x dy y e x where y y dt dx − + + = = = uptu 2004 Ans. ( ) 1 sin sin 2 3 x y e x x− = + Question : apply Laplace transform to solve the equation 2 2 cos2 , 0, 0 0 d x dx y t t t where y for t dt dt + = > = = = Uptu 2005 Ans 5 4 sin sin 2 cos2 9 9 3 t y t t t= − + − Question: solve, by the method of laplace transform, the differential equation ( ) ( )2 2 sin , 0 0D n x a nt x Dx at tα+ = + = = = uptu 2002, 2010 Ans ( )2 sin cos cos sin 2 a x nt nt nt n α α = −  Question : using the laplace transform, solve the differential equation " 2 ' (0) 0 '(0) 1y ty y t when y and y+ − = = = Ans , ( )y t C y t c must bevanish= + = uptu 2003 Question : A particle moves in a line so that its displacement x from the fixed point O at any time t, is given by " 4 ' 5 80sin5x x x t+ + = using Laplace transform, find its displacement at any time t if initially particle is at rest at 0x = . Uptu 2009 Ans. ( ) ( )2 2 cos 7sin 2 cos5 sin5t x e t t t t− = + − +
  • 20. Question : Voltage at Ee is applied at 0t = to a circuit of inductance L and R. show that the current (i) at time t is ( )/at Rt LE e e R aL − − − − . uptu 2007 Question : Solve the simultaneous differential equations by using the laplace transform 3 2 , 0 dx dx dy y t y dt dt dt − = + − = with the condition (0) (0) 0x y= = uptu 2008 Ans 2 22 3 3 3 3 3 3 , 2 2 4 4 2 2 t t t t x e y t e= + − + = + − Question : Solve the simultaneous equation , sin , (0) 1, (0) 0tdx dy y e x t x y dt dt − = + = = = uptu 2006 Ans. 1 1 cos 2sin cos , sin cos sin 2 2 t t x e t t t t y t t e t t   = + + − = − + −    Question : The co-ordinates (x,y) of the particle moving along a plane curve at any time I are given by 2 cos2 , 2 sin 2 ,( 0) dx dy y t x t t dt dt − = + = > it is given that at 0, 1 0.t x and y= = = show by using transforms that the particle moves along the curve 2 2 4 4 5 4x xy y+ + = uptu 2003 Ans: ( )2 2 2 2 2 2 4 4 5 4sin 2 4cos 2 4 sin 2 cos 2 4x xy y t t t t+ + = + = + = Question : Solve the simultaneous differential equations by Laplace transform 4 0, 2 tdx dy dx y y e dt dt dt + − = + = With the condition (0) (0) 0x y= = uptu 2008 Ans. 3 3 /4 4 1 5 8 1 , 3 7 21 7 t t t t x e e y e e−  = − + = −    Question : solve the simultaneous equations ( ) ( )2 2 3 4 0, 1 0D x y x D y− − = + + = for 0,t > given that 0 2 0 dy dx x y and at t dt dt = = = = = uptu 2004 Ans ( )2 cosh , 1 sinhx t t y t t= = − Question : The co-ordinates (x,y) of the particle moving along a plane curve at any time I are given by 2 sin 2 , 2 cos2 ,( 0) dx dy y t y t t dt dt + = − = > it is given that at 0, 1 0.t x and y= = = show by using transforms that the particle moves along the curve 2 2 4 4 5 4x xy y+ + = uptu 2003 Ans: ( )2 2 2 2 2 2 4 4 5 4sin 2 4cos 2 4 sin 2 cos 2 4x xy y t t t t+ + = + = + =
  • 21. UNIT- V APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS Question: Explain the method of separation of variables. Uptu 2007 Question: Solve the following equation 2 2 2 0 z z z x x y ∂ ∂ ∂ − + = ∂ ∂ ∂ by the separation of variables method. Ans. ( ) ( ) { }1 1 1 1 1 2 3 K x K x Ky z C e C e C e + + − + − = + uptu 2006 Question : Using the method of separation of variables, solve 3 2 ( ,0) 6 xu u u whereu x e x t −∂ ∂ = + = ∂ ∂ Ans. 3 2 6 x t u e− − = uptu 2006 Question : solve the following equation by the method of separation of variables 2 costu e x x t −∂ = ∂ ∂ Given that 0u = when 0t = and 0 0 u when x t ∂ = = ∂ Ans. ( )1 1 sinu e x− = − uptu 2008 Question : Drive the one Dimensional wave equation 2 2 2 2 2 y y a t x ∂ ∂ = ∂ ∂ . uptu 2007 Question : Solve completely the equation 2 2 2 2 2 y y a t x ∂ ∂ = ∂ ∂ ,representing the vibrations of a string of length l, fixed at both the ends, given that (0, ) 0, ( , ) 0, ( ,0) ( )y t y l t y x f x= = = and ( ,0) 0,0 .y x x l t ∂ = < < ∂ Ans. sin cosn n x n ct y b l l π π = uptu 2005 Question : A string is stretched and fastened to two points ݈ apart. Motion is started by displacing the string in the form sin x y a l π  =     from which it is released at a time 0t = show tat the displacement of any point at a distance x from one end at time t is given by ( , ) sin cosn x ct y x t b l l π π    =         uptu 2004, 09
  • 22. Question: If a string of the length ݈ is initially at rest in equilibrium position and each of its points is given the velocity 3 0 sin t y x b t l π = ∂  =  ∂  , find the displacement ( , )y x t . Ans: 3 3 ( , ) 9sin sin sin sin 12 bl x cl x ct y x t c l l l l π π π π π   = −   uptu 2001,06 Question : find the temperature in a bar of length 2 whose ends kept at zero and lateral surface insulated if the initial temperature is 5 sin 3sin 2 2 x xπ π + Ans 2 2 2 2 25 4 4 5 sin 3sin 2 2 t t c c x x u e e π π π π− − = + uptu 2007,09 Question : An insulated of of length ݈ has its ends A and B maintained at 0 0 C and 0 100 C respected until steady conditions prevail. If B is suddenly reduced to 0 0 C and maintained at 0 0 C, find the temperature at a distance x from A at time t. Ans : ( ) 2 2 2 21 200 1 . sin t n c n l n x u e n l π π π − + = − uptu 2004,05 Question: Solve 2 2 2 2 0 u u x y ∂ ∂ + = ∂ ∂ which satisfies the conditions (0, ) (0, ) ( ,0) 0u y u y u x= = = and ( , ) sin n x u x a l π  =     Ans. sinh sin sinh n y n x l u n al l π π π        =          uptu 2004 Question : Solve 2 2 2 2 0,0 ,0 u u x y x y π π ∂ ∂ + = < < < < ∂ ∂ , which satisfies the conditions 2 (0, ) ( , ) ( , ) 0 ( ,0) sinu y u y u x and u x xπ π= = = = Ans. 2 1,3,5,.. 8 sin sinh ( ) ( 4)sinhn nx n y u n n n π π π ∞ = − − = − ∑ (from AKTU Question Bank
  • 23. SERIES SOLUTION OF SECOND ORDER DIFFERENTIAL EQUATIONS Question : solve the series the legendre’s equation of order one ( )2 1 " 2 ' 2 0 ................ (1)x y xy y− − + = Solution : here x=0 is an ordinary point. Let a trial solution of (1) in the form ogf series in x be 2 3 0 1 2 3 .............. .... (2)n ny c c x c x c x c x= + + + + + + − − − − − − Different equation (2) we get 2 1 2 3 2 2 3 4 ' 2 3 .............. " 2 6 12 .......... y c c x c x y c c x c x = + + + = + + + On putting the values of y,y’ and y” in equation (1) we get ( )( ) ( ) ( )2 2 2 2 3 2 3 4 1 2 3 0 1 2 31 2 6 12 ..... 2 2 3 ..... 2 ..... 0x c c x c x x c c x c x c c x c x c x− + + + − + + + + + + + + = ( ) ( ) ( ) ( )2 3 2 0 3 1 1 4 2 2 2 5 3 3 32 2 6 2 2 12 2 4 2 20 6 6 2 .... 0c c c c c x c c c c x c c c c x+ + − + + − − + + − − + + = on equating the powers of x to zero we get 2 0 3 4 2 0 5 7 9 6 0 1 1 1 , 0, , 0 3 3 5 c c c c c c c c c and c c= − = = = − = = = = − On substitute these above values in equation (2) we get 2 4 6 0 1 0 0 0 2 4 6 0 1 1 1 ...... 3 5 1 1 1 .... 3 5 y c c x c x c x c x y c x x x c x = + − − − −   = − − − − +    Question : Using the Frobenius method, obtain a series solution in powers of x for differential equation ( ) ( ) 2 2 2 1 1 3 0 d y dy x x x y dx dx − + − + = UPTU 2010 Solution : we have ( ) ( ) 2 2 2 1 1 3 0 (1) d y dy x x x y dx dx − + − + = − − − − − − − Here 2 1 2( ) ( )xP x and x P x are analytic at x=0. So x=0 is a regular singular point, as assume the solution in the form
  • 24. ( ) ( )( ) 0 1 0 2 2 2 0 1 m k k k m k k k m k k k y a x dy a m k x dx d y a m k m k x dx ∞ + = ∞ + − = ∞ + − = = = + = + + − ∑ ∑ ∑ On putting the values of 2 2 , , dy d y y dx dx in equation (1) we get ( ) ( )( ) ( ) ( )2 1 0 0 0 2 1 1 1 3 0m k m k m k k k k k k k x x a m k m k x x a m k x a x ∞ ∞ ∞ + − + − + = = = − + + − + − + + =∑ ∑ ∑ ( )( ) ( )( ) ( ) ( )1 1 0 0 0 0 0 2 1 2 1 3 0 m k km k m k m k k k k k k k k m k k k a m k x a m k m k x a m k m k x a m k x a x +∞ ∞ ∞ ∞ + − + + − = = = = ∞ + = + + + − − + + − + + − + = ∑ ∑ ∑ ∑ ∑ We can rewrite as 2 2 0 2 2 1 0 2 2 2 2 2 2 3 2 2 2 2 2 2 0 m k k k m k k k a m mk m mk k k m k x a m mk m mk k k m k x ∞ + = ∞ + − =  − − + − − + − − +   + + − + + − + + =  ∑ ∑ ( )2 2 2 2 1 0 0 2 4 2 3 2 4 1 2 0m k m k k k k k a m mk m k k x a m k m k k x ∞ ∞ + + − = =    − − + − + + + + − + − =   ∑ ∑ ( )[ ] ( )[ ] 1 0 0 1 2 2 3 2 2 1 0 (2)m k m k k k k k a m k m k x a m k m k x ∞ ∞ + + − = = + − − − + + + + − = − − −∑ ∑ The coefficient of the lowest degree term 1m x − in equation (2) is obtain by substituting k=0 in second summation of (2) only equating it by zero we get ( )0 02 1 0 0, 1/ 2, 0a m m m a− = ⇒ = = ≠ The coefficient of the next lowest degree term m x in (2) is obtained by substituting k=0 in first summation and k=1 in the second summation, we get ( )( ) ( )( )0 11 2 3 1 2 1 0a m m a m m+ − + + + + =
  • 25. ( )( ) ( )( ) ( ) ( ) 1 1 1 2 3 1 2 1 2 3 2 1 m m a m m m a m + − + = − + + − = − + On equating the coefficient of 2 x On putting 1k k→ + in second summation of (2) we get the coefficient of m x and equating to zero we get ( )( ) ( )( ) ( ) ( ) ( ) 1 1 1 1 2 2 3 1 2 2 1 0 2 2 3 2 2 1 2 2 3 2 2 1 k k k k k k a m k m k a m k m k m k a a m k m k a a m k + + + + + − + + + + + + + = − + + = − + + − − = + + ( ) ( ) 1 0 2 1 2 2 3 0 2 2 1 2 2 3 1 2 2 1 m k if k a a m k m k if k a a m k − − = = + + − − = = + + ( ) ( ) ( ) 3 2 4 3 5 4 2 2 3 2 2 2 1 2 2 3 3 2 2 1 2 2 3 4 2 2 1 m k if k a a m k m k if k a a m k m k if k a a m k − − = = + + − − = = + + − − = = + + m=0 M=1/2 ( ) 1 0 2 1 0 0 3 2 0 4 3 0 0 5 4 0 0 2 3 4 5 1 0 2 3 4 5 1 0 3 1 1 3 3 3 1 1 5 5 3 3 1 3 7 7 5 35 5 5 3 1 9 9 35 21 1 3 1 1 3 .... 5 35 21 3 3 3 3 1 3 .... 1.3 3.5 5.7 7.9 a a a a a a a a a a a a a a a a a y a x x x x x x y a x x x x = − = − = − − = = =   = = =      = = =      = − + + + + +      = − + + + + +    ( ) 1 0 0 2 1 3 4 5 1 3 2 2 2 0 0 2 0 1 2 3 2 1 2 1 2 1 2 1 2 0 1 2 3 2 ...... 0 1 a a a a a a a a y a x a x y a x x   −   = = −   +      −   = =   +    = = = = = − = −
  • 26. General solution ( ) 2 3 4 5 0 3 3 3 3 1 3 .... 1 1.3 3.5 5.7 7.9 x y A x x x x Ba x x   = − + + + + + + −    Ans Question: using extended power series method find one solution of the differential equation 2 " ' 0xy y x y+ + = . Indicate the form of a second solution which is linearly independent of the first obtained above . (UPTU 2007 Solution: we have 2 ( ) ( )xP x and x Q x are analytic therefore x=0 is a regular singular point of the equation 2 2 2 0 d y dy x x y dx dx + + = Suppose ( ) 1 2 2 2 ( ) ( ) 1 m k k m k k m k k y a x dy a m k x dx d y a m k m k x dx + + − + − = = + = + + − ∑ ∑ ∑ On putting all these above values of y , y’ and y” in (1) we get ( ) ( ) ( ) ( ){ } { } 2 1 2 1 1 2 1 2 1 2 1 ( ) 1 ( ) 0 ( ) 1 ( ) 0 ( ) 1 ( ) 0 ( ) 1 1 0 ( ) 1 1 m k m k m k k k k m k m k m k k k k m k m k k k m k m k k k m k k k x a m k m k x a m k x x a x a m k m k x a m k x a x a m k m k m k x a x a m k m k x a x a m k m k x a x + − + − + + − + − + + + − + + + − + + + − + + − + + + = + + − + + + =  + + − + + + =   + + − + + =   + + − + +  ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ( ) 2 1 2 2 1 2 0 ( ) 0 ( ) 0 (2) m k m k m k k k m k m k k k a m k m k x a x a m k x a x + + + − + + + − + + =  + + + =   + + = − − − − − − − −  ∑ ∑ ∑ ∑ ∑ The coefficient of the lowest degree term 1m x − in (2) is obtained by the putting k=0 in the first summation of (2) only and equating it to zero. Then the indicial equation is 2 2 0 0 0 0,0a m m m= ⇒ = ⇒ =
  • 27. Coefficient of next lowest degree term m x in (2) is obtained putting k=1 in the first summation only and equating it to zero ( ) 2 1 11 0 0a m a+ = ⇒ Equating the cifficient of 1m x + for k =2 we get ( ) 2 2 22 0 0a m a+ = ⇒ Now on equating the coefficient of 2m k x + + to zero we have ( ) ( ) 2 3 3 2 3 0 3 k k k k a m k a a a m k + + + + + = = − + + I ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 02 4 1 7 102 5 2 8 112 6 3 02 2 2 9 6 02 2 2 2 3 6 9 0 2 2 2 2 2 2 1 0 3 1 1 0, 0 4 1 2 0, 0 5 1 1 3 6 3 6 1 1 9 3 6 9 1 ............. (3) 3 3 6 3 6 9 m if k a a m if k a a a a m if k a a a a m if k a a a m m m a a a m m m m x x x y x a m m m m m m = = − + = = − = = = + = = − = = = + = = − = + + + = − = + + + +   = − + − + − − − − − −  + + + + + +   For m=0 To find the first solution , put m=0 in (3) we get ( ) ( ) ( ) ( ) ( ) ( ) 3 6 9 1 0 2 2 2 2 2 2 1 ............. (4) 3 3 6 3 6 9 x x x y a   = − + − + − − − − −     To find the second independent solution, differentiate (3) w.r.t m then
  • 28. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 6 9 0 2 2 2 2 2 2 3 6 6 9 3 3 2 2 3 3 2 2 0 9 9 2 3 2 2 3 3 log 1 ............. 3 3 6 3 6 9 2 2 2 2 3 3 6 3 6 3 6 9 (5) 2 2 ............. 3 6 9 3 6 9 m m y x x x x x a m m m m m m m x x x x m m m m m m m m x a x x m m m m m m  ∂ = − + − +  ∂ + + + + + +     − − +  + + + + + + + +  + − − − − −   + +  + + + + + +  putting m=0 in equation (5) we get ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 6 9 2 0 2 2 2 2 2 2 3 6 6 9 3 3 2 2 3 3 2 2 0 9 9 2 3 2 2 3 3 log 1 ............. 3 3 6 3 6 9 2 2 2 2 3 3 6 3 6 3 6 9 (6) 2 2 ............. 3 6 9 3 6 9 x x x y x a x x x x a x x   = − + − +       − − +    + − − − − −   + +    hence, the general solution is given by (4) and (6) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 2 2 3 6 9 3 6 9 1 0 2 02 2 2 2 2 2 2 2 2 2 2 2 3 6 6 9 3 3 2 2 3 3 2 2 2 0 9 9 2 3 2 2 3 3 1 ............. log 1 .......... 3 3 6 3 6 9 3 3 6 3 6 9 2 2 2 2 3 3 6 3 6 3 6 9 2 2 ............. 3 6 9 3 6 9 y c y c y x x x x x x y c a c x a x x x x c a x x y c = +    = − + − + + − + − +          − − +    +    + +    = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 6 9 1 2 0 2 2 2 2 2 2 3 6 6 9 3 3 2 2 3 3 2 2 2 0 9 9 2 3 2 2 3 3 log 1 ............. 3 3 6 3 6 9 3 3 6 3 6 3 6 9 2. ............. 3 6 9 3 6 9 x x x c x a x x x x c a Ans x x   + − + − + +       − − +       + +   
  • 29. Question : solve the differential equation 2 2 0 d y dy x y dx dx + − = (UPTU C.O, 2003 Solution : on comparing with the equation 2 2 ( ) ( ) 0 1 1( ) ( ) d y dy P x Q x y wehave dx dx P x and Q x x x + + = −= = Because at x=0 both ( )P x and ( )Q x are not analytic 0x∴ = is a singular point Also ( ) 1xP x = and 2 ( )x Q x x=− Both ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point Now suppose that 1 2 3 0 1 2 3 ....... (1)m m m m y a x a x a x a x+ + + = + + + + − − − − − − − − Now ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) 1 1 2 0 1 2 3 2 1 1 0 1 2 3 ' 1 2 3 ....... " 1 1 2 1 3 2 ....... m m m m m m m m y ma x m a x m a x m a x y m m a x m m a x m m a x m m a x − + + − − + = + + + + + + + − − − − − − − − = − + + + + + + + + + On substituting the all these above values in given equation we will get ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) 2 1 1 0 1 2 3 1 1 2 0 1 2 3 1 2 3 0 1 2 3 1 1 2 1 3 2 ....... 1 2 3 ...... ....... 0 m m m m m m m m m m m m x m m a x m m a x m m a x m m a x ma x m a x m a x m a x a x a x a x a x − − + − + + + + +  − + + + + + + + + +  + + + + + + + + − + + + + = The coefficient of 1m x − =0 Then the indicial equation is ( ) 0 01 0 0,0m m a ma m− + = ⇒ = which are equal Coefficient of next lowest degree term 0m x = ( ) ( ) ( ) ( ) 2 1 1 0 1 0 0 1 2 1 1 0 1 1 m ma m a a m a a a a m + + + − = ⇒ + = = + Equating the coefficient of 1 0m x + = ( )( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 2 1 01 2 2 2 2 2 1 2 0 2 2 1 2 m m a m a a m a a aa a m m m + + + + − = ⇒ + = = = + + +
  • 30. ( ) ( ) ( ) 0 3 2 2 2 1 2 3 a a m m m = + + + Using equation (1) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 0 2 2 2 2 2 2 1 .......... (2) 1 1 2 1 2 3 m x x x y a x m m m m m m   = + + + + − − − −  + + + + + +   ( ) ( ) 2 3 1 0 0 2 2 ( ) 1 .......... (3) 2! 3! m x x y y a x x=   = = + + + + − − − −     To find the second independent solution, partially differentiate (1) w.r.t m then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 9 0 2 2 2 2 2 2 2 3 2 2 0 3 2 2 2 log 1 ............. 1 1 2 1 2 3 2 2 1 1 1 21 1 2 2 1 1 1 ..... 1 2 31 2 3 m m y x x x a x x m m m m m m m x x m mm m m x a x m m mm m m  ∂ = + + + +  ∂ + + + + + +       − − +   + ++ + +     +       − + + −  + + ++ + +     Now the second solution ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 2 3 2 0 02 2 2 2 0 2 3 1 0 2 2 1 1 1 1 1 log 1 ............. 2 1 1 ...... 2 2 32! 3! 2! 3! 1 1 1 1 1 log 2 1 1 ...... 2 2 32! 3! m y x x y a x x a x x x m y x a x x x =    ∂      = = + + + + − + + + + + −        ∂                 = − + + + + + −           Hence the complete solution is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 2 2 2 3 2 3 1 2 0 2 02 2 2 2 2 3 2 2 2 2 2 1 1 1 1 1 log 1 .......... 2. 1 1 ...... 2 2 32! 3! 2! 3! 1 1 1 1 1 log 1 .......... 2. 1 1 2 2 32! 3! 2! 3! y c y c y x x y c c x a x c a x x x x x y A B x x B x x = +        = + + + + + − + + + + + −                       = + + + + + − + + + + +           3 ......x Ans   −     Question: Solve in the series the differential equation 2 2 2 2 5 0 d y x x x y dx + + = UPTU 2002
  • 31. Solution : we have 2 2 2 2 5 0 d y x x x y dx + + = on comparing above given differential equation with 2 2 ( ) ( ) 0 5( ) ( ) 1 d y dy P x Q x y wehave dx dx P x and Q x x + + = = = Because at x=0 both ( )P x and ( )Q x are not analytic 0x∴ = is a singular point Also ( ) 5xP x = and 2 2 ( )x Q x x= Both ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point Now suppose that 1 2 3 0 1 2 3 ....... (1)m m m m y a x a x a x a x+ + + = + + + + − − − − − − − − Now ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) 1 1 2 0 1 2 3 2 1 1 0 1 2 3 ' 1 2 3 ....... (2) " 1 1 2 1 3 2 ....... (3) m m m m m m m m y ma x m a x m a x m a x y m m a x m m a x m m a x m m a x − + + − − + = + + + + + + + − − − − − − − − = − + + + + + + + + + − − On substituting the all these above values in given equation we will get ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) 2 2 1 0 1 2 1 1 0 1 2 2 1 2 3 0 1 2 3 1 1 2 1 ....... 5 1 2 ...... ....... 0 (4) m m m m m m m m m m x m m a x m m a x m m a x x ma x m a x m a x x a x a x a x a x − − − + + + +  − + + + + + +  + + + + + + + + + + + = − − − − − − The coefficient of m x =0 Then the indicial equation is ( ) ( ) ( ) 0 0 2 0 0 1 5 0 4 0 4 0 0, 4 m m a ma m m a m m a m − + = + = + = = − which are distinct Coefficient of next lowest degree term 1 0m x + = ( ) ( ) ( )( )1 1 1 1 1 5 1 0 5 1 0 0 (5) [ 5, 1 m ma m a m m a a m + + + = ⇒ + + = = − − − − − − ≠− − Equating the coefficient of 2 0m x + =
  • 32. ( )( ) ( ) ( )( ) ( )( ) 2 2 0 2 0 0 2 2 1 5 2 0 2 6 0 (6) 1 6 m m a m a a m m a a a a m m + + + + + = + + + = − = − − − − − − + + Equating the coefficient of 2 0m x + = ( ) ( ) ( ) 3 3 1 3 1 1 3 2 2 2 3 5 7 9 ( 3)( 2) 5( 3) 0 ( 3)( 7) 0 1 2 3 0 0 (7) m m a m a a m m a a a a m m m a similarly a a a + + + + + = + + + = − = + + + = = = = − − − − − − Coefficient of 4 0m x + = 4 4 2 4 2 02 4 ( 4)( 3) 5( 3) 0 ( 4)( 8) . (8) ( 4)( 8) ( 2)( 4)( 6)( 8) m m a m a a m m a a aa a etc m m m m m m + + + + + = + + = − − = = − − − − − + + + + + + These give ( )( ) ( )( )( )( ) 2 3 0 1 .......... (9) 2 6 2 4 6 8 m x x y a x m m m m m m   = − + + − − − −  + + + + + +   On putting 0m = in eq (9) we get 2 4 1 0 0( ) 1 .......... (10) 2.6 2.4.6.8 m x x y y a=   = = − + + − − − −    On putting 4m = − in the series given by equation (9). The coefficients becomes infinite. To skip this problem we will put 0 0 ( 4)a b m= + so that ( ) ( ) ( )( ) ( )( )( ) 2 3 0 4 4 .......... (11) 2 6 2 6 8 m m x x y b x m m m m m m  + = + − + + − − − −  + + + + +   ( ) ( ) ( ) ( ) 22 2 4 0 2 2 2 3 2 3 32 768 20 log 1 ............. 8 12 16 76 96 m m my m m b x x x x m m m m m m  + +∂ + + = + − +  ∂ + + + + + 
  • 33. Now the second solution ( ) ( ) ( ) 2 4 4 2 0 4 4 6 2 4 4 4 2 0 0 4 4 6 4 2 0 4 log 1 ............. 4 4 log 0 0 ... 1 .... ( 2)(2)(4) 16 ( 2)(2)(4) 16 log ..... 16 16 m m m y x x y b x x m y x x x x y b x x b x m y x x y b x x m − =− − − =− − =−  ∂  = = + − +    ∂       ∂  = = − + − + + + − +      ∂ − −       ∂ −  = = − − +   ∂    2 4 4 0 1 ... (4) 4 x x b x−   + − +    Hence the Hence complete solution is ( ) ( ) 1 1 2 2 2 4 4 6 2 4 4 4 1 0 2 0 2 0 2 4 2 4 6 4 1 .......... log ..... 1 ... 2.6 2.4.6.8 16 16 (4) 4 1 1 .......... 1 ... log ..... 12 384 (4) 4 16 16 y c y c y x x x x x x y c a c b x x c b x x x x x x y A Bx B x An − − − = +       = − + + + − − − + + − +                 = − + + + + − + − + +           s Question : solve the given differential equation " 2 ' 0xy y xy+ + = UPTUU 2003 Solution : we have " 2 ' 0xy y xy+ + = on comparing above given differential equation with 2 2 ( ) ( ) 0 2( ) ( ) 1 d y dy P x Q x y wehave dx dx P x and Q x x + + = = = Because at x=0 ( )P x 0x∴ = is a singular point Also ( ) 2xP x = and 2 2 ( )x Q x x= Both at x=0 ( )P x and ( )Q x are analytic at x=0 0x∴ = is a singular point Now suppose that 1 2 3 0 1 2 3 ....... (1)m m m m y a x a x a x a x+ + + = + + + + − − − − − − − − Now ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) 1 1 2 0 1 2 3 2 1 1 0 1 2 3 ' 1 2 3 ....... (2) " 1 1 2 1 3 2 ....... (3) m m m m m m m m y ma x m a x m a x m a x y m m a x m m a x m m a x m m a x − + + − − + = + + + + + + + − − − − − − − − = − + + + + + + + + + − − On substituting the all these above values in given equation we will get
  • 34. ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) 2 1 1 0 1 2 3 1 1 2 0 1 2 3 1 2 3 0 1 2 3 1 1 2 1 3 2 ....... 2 1 2 3 ...... ....... 0 m m m m m m m m m m m m x m m a x m m a x m m a x m m a x ma x m a x m a x m a x x a x a x a x a x − − + − + + + + +  − + + + + + + + + +  + + + + + + + + + + + + + = The coefficient of 1m x − =0 Then the indicial equation is ( ) ( ) 0 0 2 0 2 1 2 0 0 0 0, 1 m m a ma m m a m m m − + = + = + = = − which are distinct Coefficient of next lowest degree term 0m x = ( ) ( ) ( )( ) ( ) 1 1 1 1 1 2 1 0 1 2 0 1 0 m ma m a m m a m a + + + = + + = + = Since m+1 may be zero ,hence 1a is arbitrary ( 1a becomes in determinant) Hence the solution will contain 0a and 1a as arbitrary constants. The complete solution will be given by the putting 1m = − in y Equating the coefficient of 1 0m x + = ( )( ) ( ) ( )( ) ( )( ) 2 2 0 2 0 0 2 2 1 2 0 2 3 0 3 2 m m a m a a m m a a a a m m + + + + + = ⇒ + + + = − = + + Equating the coefficient of 2 0m x + = ( )( ) 3 3 1 3 1 1 3 ( 3)( 2) 2( 3) 0 ( 3)( 4) 0 3 4 m m a m a a m m a a a a m m + + + + + = + + + = − = + + Equating the coefficient of 3 0m x + =
  • 35. 4 4 2 4 2 2 4 0 4 ( 4)( 3) 2( 4) 0 ( 4)( 5) 0 ( 4)( 5) ( 2)( 3)( 4)( 5) m m a m a a m m a a a a m m a a m m m m + + + + + = + + + = − = + + = + + + + Equating the coefficient of 4 0m x + = 5 5 3 5 3 5 3 3 5 1 5 ( 5)( 4) 2( 5) 0 ( 5)( 6) 0 ( 5)( 6) ( 5)( 6) ( 3)( 4)( 5)( 6) m m a m a a m m a a m m a a a a m m a a so on m m m m + + + + + = + + + = + + = − − = + + = + + + + On putting all above values in equation (1) we get ( )( ) ( )( ) 2 3 40 01 0 1 51 3 2 3 4 ( 2)( 3)( 4)( 5) ( 3)( 4)( 5)( 6) m a aa a a x x x x m m m m m m m m y x a x m m m m   + − − + + + + + + + + +  =   +  + + + +  ( )( ) ( )( ) ( ) 2 4 0 3 5 1 2 4 3 5 1 0 11 1 ... 3 2 ( 2)( 3)( 4)( 5) .... 3 4 ( 3)( 4)( 5)( 6) 1 ... .... 1.2 1.2.3.4. 2.3 2.3.4.5 m m x x a m m m m m m y x x x a x m m m m m m Now x x x x y x a a x− =−     − + −   + + + + + +    =      − + −  + + + + + +         = − + − + − + −          Hence the solution is ( ) ( ) 1 0 1 1 cos sin m y y y a x a x x =− = = +
  • 36. ( ) ( ) ( ) 0 3 2 2 2 1 2 3 a a m m m = + + + Using equation (1) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 0 2 2 2 2 2 2 1 .......... (2) 1 1 2 1 2 3 m x x x y a x m m m m m m   = + + + + − − − −  + + + + + +   ( ) ( ) 2 3 1 0 0 2 2 ( ) 1 .......... (3) 2! 3! m x x y y a x x=   = = + + + + − − − −     To find the second independent solution, partially differentiate (1) w.r.t m then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 9 0 2 2 2 2 2 2 2 3 2 2 0 3 2 2 2 log 1 ............. 1 1 2 1 2 3 2 2 1 1 1 21 1 2 2 1 1 1 ..... 1 2 31 2 3 m m y x x x a x x m m m m m m m x x m mm m m x a x m m mm m m  ∂ = + + + +  ∂ + + + + + +       − − +   + ++ + +     +       − + + −  + + ++ + +     Now the second solution ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 3 2 3 2 0 02 2 2 2 0 2 3 1 0 2 2 1 1 1 1 1 log 1 ............. 2 1 1 ...... 2 2 32! 3! 2! 3! 1 1 1 1 1 log 2 1 1 ...... 2 2 32! 3! m y x x y a x x a x x x m y x a x x x =    ∂      = = + + + + − + + + + + −        ∂                 = − + + + + + −           Hence the complete solution is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 2 2 2 3 2 3 1 2 0 2 02 2 2 2 2 3 2 2 2 2 2 1 1 1 1 1 log 1 .......... 2. 1 1 ...... 2 2 32! 3! 2! 3! 1 1 1 1 1 log 1 .......... 2. 1 1 2 2 32! 3! 2! 3! y c y c y x x y c c x a x c a x x x x x y A B x x B x x = +        = + + + + + − + + + + + −                       = + + + + + − + + + + +           3 ......x Ans   −    