SlideShare ist ein Scribd-Unternehmen logo
1 von 203
Enhancing STEM activities 
through contests and 
European projects 
Mihai Agape 
Palatul Copiilor Drobeta Turnu Severin – Filiala Orsova 
Engaging Tools for Science Education Conference 
Teamwork, Training and Technology Network (TTTNet) 
Sofia, Inter Expo Center, 31.10.2014 – 02.11.2014 
Parallel Session 3, Rodopi hall, 01.11.2014, 14:00 – 14:30
The Purpose of the 
Presentation 
International Contests 
ROBOTOR 
SCRIPT 
European Projects 
RECAP (LdV) 
KAREL (Comenius)
 This work has been funded with support from the 
European Commission. 
 This communication reflects the views only of the 
author, and the Commission cannot be held 
responsible for any use which may be made of the 
information contained therein.
INTERNATIONAL ROBOTICS 
TROPHY ROBOTOR
National Contest of Electronics, 
Pitesti, June 2007
Dance, Music, Drama…
How to bring technical activities on stage? 
Robotics Trophy ROBOTOR 
 Robotics contests are spectacular 
 Robotics = STEM integrator 
 ROBOTOR = ROBOT + ORsova
ROBOTOR editions 
 First edition: 
 Regional Trophy - 2008 
 National editions: 2009, 2010, 2012, 2013, 
2014 
 International editions: 2011 
 Poland, France, Turkey, and Romania 
 All editions have been included in the 
Educational Activities Schedule of MEN 
 ROBOTOR 2015 will be international
Regional Trophy 
ROBOTOR 2008
International Trophy 
ROBOTOR 2011
ROBOTOR 2011
ROBOTOR 2011
ROBOTOR 2008 
Line Follower Contest
ROBOTOR 2011 
Line Follower Contest
ROBOTOR 2013 
Botosani, October 2013
National Electronics Contest 
Constanta, June 2014
National & International Robotics Competitions 
 2008 – Orsova: “Robotor” 
 2010 – Targoviste: “Cupa Chindiei” 
 2011 – Bucuresti: “Infomatrix” 
 2013 – Galati: “Robogal” 
 Technical Universities 
 Bucharest 
 Timisoara 
 2014 – National Ministry of Education (LEGO)
International Robotics Trophy ROBOTOR 2015, 
Robotics Contests & Robotics Symposium 
Orsova, 28-30 May 2015 
 Dragsters (Junior & Middle) 
 Line Follower (Junior, Middle & Senior) 
 Mini & Micro Sumo (Junior, Middle & Senior) 
 Line & Wall Maze (Junior, Middle & Senior) 
 Solar Robots (Junior & Middle) 
 Freestyle (Junior & Middle) 
 Possible subsections 
 Beginners 
 Advanced 
 mihai_agape@yahoo.com
National  International? 
 eTwinning portal (http://www.etwinning.net/) 
 Enable teachers and students in European 
countries to collaborate online
REmote Controlled Arm Project 
RECAP
General Information 
 Programme: Lifelong Learning Programme 
 Action: Leonardo da Vinci Partnerships 
 Reference No: LLP-LdV/PAR/2010/RO/023 
 Project title: Remote Controlled Arm Project 
 Acronym: RECAP 
 Implementation: 01.08.2010 – 31.07.2012
RECAP Partners 
 Śląskie Techniczne Zakłady Naukowe – 
Katowice, Poland (coordinator). 
 Beypazari Teknik Ve Endüstri Meslek Lisesi – 
Beypazari, Turkey. 
 Lycée Henri Vincenot – Louhans, France. 
 Wyższa Szkoła Technologii Informatycznych 
w Katowicach – Katowice, Poland. 
 Palatul Copiilor şi Elevilor Drobeta Turnu 
Severin – Filiala Orşova, Romania.
Partnership Aim 
Romanian team contributions 
 Design and manufacture a robotic arm 
 Romanian team contributions 
 Electronics 
 Controller for Robotic Hand 
 System for Capturing Arm Motion - SCAM 
 Programming 
 Mechanics 
 Arm Design
RECAP Result – EST 
http://www.europeansharedtreasure.eu/detail.php?id_project_ 
base=2010-1-PL1-LEO04-11315
Underactuated Robotic Arm Design 
(design of the finger, robotic hand) 
MECHANICAL PART
Katowice, 11/30/2011 
Claudia
Sketch of the arm proposed at the 
first project meeting in Katowice
Finger flexion with tendon
Finger’s extension with springs
CF (Cheap Finger) – 2 versions 
Giulia
CF1 - Orșova 
CF2 - Louhans
Finger 3D Design 
Mihai
Mihai Finger’s Design
Mihai Finger’s Design
Break 
April 2011
Restart 
January 2012
Objectives for finger and hand 
good prehension ability 
simplicity 
light weight 
low cost 
possibility to be manually made
Solution proposed for the finger 
(Pro ENGINEER Schools Edition)
The analyze of finger’s position in 
the static case 
 The relative position of the finger’s 
phalanges is determined by the tension 
in the tendon, diameters of the pulleys 
and characteristics of torsion springs 
(elastic constants and initial pretension). 
 To simplify the calculus we suppose 
that there are not 
 Gravity 
 Friction
Position of the finger in the static 
case (GeoGebra)
Calculus of joints rotation angles 
 Active moment (Ma) 
 Active force 
 Tendon tension 
 Angle between string tensions 
 Lever arm 
 Resistant moment (Mr) 
 Rotation angle of the joint 
 Elastic constant and preloading of the spring 
 Ma = Mr => Rotation angle of the joint as a function 
of force applied to the tendon 
 Relation between rotation angles of joints and 
rotation angle of servo
Relations 
(metacarpophalangeal joint)
Simulation of finger’s flexion 
 Parameters 
 Phalanges lengths: l1 = 45mm, l2 = 25mm, 
l3 = 25 mm 
 Radius of pulleys: r1, r1 și r3 
 Springs constants: k1, k2 și k3 
 Preloading of the springs: α1i, α2i și α3i 
 Calculated data (as a function of F) 
 Articulations angles: α1, α2 și α3 
 Servo’s angle: α0
Simulation 
120.00 
100.00 
80.00 
60.00 
40.00 
20.00 
0.00 
-20.00 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 
-20.00 
α1 α2 α3 F/Fmax
Case I: r1=r2=r3=6mm 
k1=k2=k3, α1i=α2i=α3i=0
Case II: r1=r2=r3=6mm 
k1=4k0, k2=2k0, k3=k0, α1i=α2i=α3i=900
Case III: r1=8mm, r2=4mm, r3=4mm 
k1=4k0, k2=2k0, k3=k0 , α1i=α2i=α3i=900
Design of a sheetmetal finger 
(SF1)
Finger’s prototype (SF1) 
 Phalanges: aluminum sheet 0.8 mm thick 
 Joints: M2 bolts + plastic tubes 
 Pulleys: 4mm thick Plexiglas 
 Springs: music wire with diameter of 0,4 mm 
 Tendon: nylon string with a diameter of 0,5 mm
Hand Design (Palm)
Hand Design (+SF2 Fingers)
Hand Design (+Servos integrated 
in the palm)
Hand Design (+Thumb & 2 
Servos)
Hand Design (+Palm Cover)
Hand Design (+Wrist Servos)
Hand Design
Flat drawing for metacarpus of the 
thumb
Aluminum Sheetmetal
Hand Manufacturing
Hand Manufacturing (Palm)
Hand Manufacturing (Palm)
Hand Manufacturing 
Ema, Ovidiu, Emi, Giulia, Robi, Bogdan
Hand (assembled)
Robotic Hands 
- Left: designed by Polish team & manufactured by French team 
- Right: designed and manufactured by Romanian team
Test Romanian hand prototype with French controller 
(Katowice, May 2012 – Mihai Agape, Fabien Autreau)
Testing Romanian hand 
Katowice, May 2012
+ Lower arm
+ Upper Arm
Assembly last 2 servomechanisms 
(28.08.2012)
Romanian Robotic Arm
2012 Extreme Redesign Contest 
www.DimensionPrinting.com/extremeredesign
SCRatch International Programming Trial 
SCRIPT
What is Scratch? 
 Scratch is a free programming language and 
online community where you can create your 
own interactive stories, games, simulations, 
and animations. 
 Scratch is a project of the Lifelong 
Kindergarten Group at the MIT Media Lab. It 
is provided free of charge. 
 http://scratch.mit.edu/
Example - Tornado Simulation 
 http://scratch.mit.edu/projects/23046337/ 
 Poster related to augmented reality (Good 
Practice from ITAO workshop – Zuhal Yilmaz 
Dogan and Didem Sunbul)
Local Winter Greetings Contest – 2011 
http://scratch.mit.edu/studios/148271/
Regional Contest SCRIPT 2012 
http://scratch.mit.edu/studios/171206/
National Contest SCRIPT 2013 
http://scratch.mit.edu/studios/211401/
SCRIPT 2013 
Game created by Bulgarian team
International Contest 
SCRIPT 2014 
 Cooperation with Galina Momcheva, Assoc. 
Prof. at Varna Free University 
 Participants from Bulgaria, Italy, Macedonia, 
Poland, Slovenia, Turkey, USA and Romania
SCRIPT 2014 Gallery 
http://scratch.mit.edu/studios/377099/
SCRIPT 2015 
Contest & Symposium 
 Contest 
 Primary and lower secondary pupils (aged 
from 6-7 to 14 – 15 years old). 
 Version Scratch 2.0 
 Symposium 
 Creators of Scratch learning resources 
(teachers & students) 
 Online videoconference
SCRIPT 2015 – Contest 
 Aim: promote the programming among 
primary and lower secondary students, using 
Scratch programming language. 
 Contest objectives: 
 Stimulating pupils to code. 
 Developing English language skills of pupils 
and teachers. 
 Promoting of the best teams. 
 Dissemination of the best projects.
SCRIPT 2015 – Contest 
 Sections: 
 Greetings 
 Games 
 Music and Dance 
 Stories 
 Simulations 
 Age categories 
 one for each grade from 1 to 8 
 mihai_agape@yahoo.com
General Information 
Karel Project in Numbers 
Partners 
Objectives 
Results & Outcomes 
Robot Requirements 
Tasts Distribution 
Work Breakdown Structure 
KAREL PROJECT OVERVIEW
General Information 
 Programme: LIFELONG LEARNING 
PROGRAMME 
 Sub-programme: COMENIUS 
 Action type: PARTNERSHIPS 
 Action: COMENIUS Multilateral school 
partnerships 
 LLP Link No: 2013-1-RO1-COM06-29664 1 
 Project title: Karel - Autonomous Robot for 
Enhancing Learning 
 Project acronym: KAREL 
 Implementation: 01.08.2013 – 31.07.2015
Karel project in numbers 
Countries: 4 
Partners: 4 
Teachers: 21 
Students: 50 
Mobilities: 96 
Robots: 20 
Lessons: 21
WHO? 
Partners, pupils, teachers 
1. Platon Schools (Εκπαιδευτηρια Πλατων) 
(Katerini, Greece) 
2. Beypazari Teknik Ve Endüstri Meslek Lisesi 
(Beypazari, Turkey) 
3. Technikum nr 1 im. Stanisława Staszica w 
Zespole Szkoł Technicznych w Rybniku 
(Rybnik, Poland) 
4. Palatul Copiilor 
(Drobeta Turnu Severin, Romania) 
Pupils (aged from 14 to 19 years old) & Teachers
WHY? 
Objectives 
 Improve teaching and learning of science and 
technology using robotics as integrator 
 O1. Apply practical math and scientific 
concepts while learning to design, build, test 
and document KAREL. 
 O2. Create an interdisciplinary curriculum to 
use with KAREL robotic platform. 
 O3. Improve confidence and fluency in English 
and learn scientific and technical vocabulary in 
partners’ languages.
WHAT? 
Results & Outcomes 
 Robotics Dictionary in English and each 
partner’s language. 
 Robotics Platforms designed and 
manufactured (20). 
 Curriculum with at least 21 lesson plans, in 
English and each partner’s language . At 
least 2 lesson plans for each of following 
fields: physics, biology, programming, 
mechanics, electronics, and robotics.
HOW? 
Tasks Distribution 
 Robotic platform design, manufacture, test 
and document: 
 a) Mechanical system 
 Turkey 
 b) Electronic system 
 Poland (input / output devices) 
 Romania (controller, motor drivers, power supply, 
communication) 
 d) Software 
 Greece (codes for lessons) 
 Romania (codes for input / output devices)
HOW? 
Tasks Distribution 
 Pupils: 
 Create robotics dictionary 
 Research, design, build, test, and program 
robotic platform 
 Test curriculum 
 Teachers: 
 Design curriculum 
 Guide pupils
Specifications 
Karelino - first controller prototype of Karel robot 
Solving math problems 
The second design of Karel platform 
KAREL 
SOME OF THE WORK DONE
Agreed at the first project meeting in Beypazari 
Available at http://sdrv.ms/170NTak 
KAREL SPECIFICATIONS
Kick-off Project Meeting 
Beypazari, 10-16.11.2013
Karel 
Mechanical Specifications
Karel 
Electrical Specifications
Karel 
Input Devices
Karel 
Output Devices
Karel Curriculum
Karel Challenges
Karel 
Other Specifications
Schematic 
3D Views 
PCB manufacturing 
Board Testing 
Mechanics, Electronics, and Software Integration (Rybnik meeting) 
First Karel prototype 
KARELINO - FIRST PROTOTYPE 
OF THE ROBOTIC PLATFORM
Why Karelino? 
Karel problems 
2 s LiPo battery management 
Motor voltage regulator 
Solution 
Small complexity prototype 
Cristina – Karel team student 
Karel & Arduino -> Karelino
Schema electrică
First prototype - Karelino 
3D Top View
First prototype - Karelino 
3D Bottom View
PCB manufacturing 
method & materials 
Method = Transfer Toner System 
Materials = Pulsar kit (PCB Fab-In-A-Box) 
http://www.pcbfx.com/
Print the copper layer on paper 
using a laser printer (600 dpi)
Prepare the single sided board 
using a sandpaper
Clean the surface with a 
cloth
Use laminator to transfer the 
toner from paper to board
Remove the paper using water
The copper layer is 
transferred to the board
Use green foil (from 
Pulsar) to seal the toner
Easily remove the green foil
Toner before and after sealing
Etching the board using 
ammonium persulfate
The uncovered copper 
was removed (etched)
Remove the toner from the 
board using thinner
Drill the holes
Test the traces for continuity 
and short circuits
Use a soldering iron station to 
solder the components 
 Hot Air Gun 
 Soldering (Hot) Iron
First solder the jumper 
wires
Add the components and solder 
them (SMD first & THD last)
Karelino (TOP)
Karelino (BOTTOM)
3D Views vs Real Board
Karelino Testing 
Design & Manufacturing Mistakes
Second Project Meeting, 
Rybnik, 06–13.04.2014
Integration & Testing 
(Rybnik meeting)
First Karel Prototype 
(Rybnik meeting)
Proposed Improvements 
(Rybnik meeting) 
 Integrate new blocks (e.g. Motor voltage 
regulator, UART connector, Battery 
management system) 
 Make changes to the initial design (e.g. 
replace USB micro B connector with an USB 
mini B connector) 
 Redesign the PCB (components places and 
traces) according to the chassis shape 
 Add LEDs to show the state of Bluetooth 
module
Useful Links 
 Drawings for manufacturing the Karelino 
controller http://1drv.ms/1jet3ci 
 Bill of materials for all designs 
http://1drv.ms/1oAF8hr
Climbing an inclined plan 
Karel Base Designs 
Animation created in Geogebra 
Problems Solved 
MATH PROBLEMS
Climbing a 30 % inclined plan 
 A requirement which seems to be related just 
to the power of the motors.
Karel Base Designs
Animation created in 
Geogebra
Rybnik meeting 
Math Challenges
Theoretical problems related to 
geometrical constraints study 
 Ground clearance 
 Front overhang 
 Rear overhang 
We will use the work for some Math lesson plan
Karel Base Dimensions 
l_w = wheel base 
l_r = rear overhang 
l_f = front overhang 
d_w = wheel diameter 
d_c = caster diameter 
h = ground clearance
Calculus of 
Rear Overhang
Calculus of 
Rear Overhang 

Calculus of 
Departure Angle 

Ramp Angle 
Ground Clearance 

Calculate Ground Clearance (h) with 
Wolfram|Alpha knowledge motor
Calculate Ground Clearance 
(h) with Geogebra
SOFTWARE FOR 
KAREL PLATFORM
Programming Languages 
 C 
 Atmel Studio IDE 
 We created some modules (functions) for 
 Motors control 
 Serial communication (USART, Bluetooth) 
 Optical line sensors 
 Arduino 
 Arduino Leonardo compatibility 
 Microcontroller - ATmega32U4 
 Use Karel with Arduino?
Karel Visual Software 
 A former student of mine, Claudia Tudosie, 
who is now student in the last year at 
Timisoara University, Computers Enginnering 
Faculty, chose for his final project a theme 
related to KAREL. She proposed to create a 
visual programming language (similar to 
Scratch) for Karel platform.
LESSON PLANS
Physics Lesson Plan 
Friction & Speed 
 How the Karel robot will be integrated in the 
lesson? 
 Robots will travel along surfaces of different 
materials (in order to show that the speed 
depends on the different surfaces) 
 What do we need to do? 
 Drive the robot along pathways (straight or 
curved) on different surfaces. 
 Measure time, distance.
Materials 
 Materials with different coefficient of friction 
 Karel robot 
 Stopwatches 
 Distance measuring tools 
 Data sheets 
 Microsoft Excel
Lesson Objectives 
 Students will: 
 O1. Observe the influence of the road surface 
to the speed of the robot. 
 O2. Use relation d = v * t in order to calculate 
v when d, and t are given. 
 O3. Propose solutions for improvement of 
friction between road and the tires of the robot.
Engagement 
 Students will predict how the surface of the 
road affects the speed of the robot. 
 Example of questions for students: 
 What is the effect of the road type on the 
vehicle speed? (bumpy / smooth, straight / 
curvy) 
 How can you determine the speed of a 
vehicle? (distance / time) 
 More friction means more or less speed?
Exploration 
 Students will measure the speed of the robot 
on different surfaces. They will record the 
data in the next table. 
Surface type (road) Distance Time 
 The students will understand how the road 
materials affect the time needed for the robot 
to travel a given distance.
Explanation 
 Introduce the concept 
Distance = Speed * Time
Elaboration 
 Students experiment with different surface 
materials and weather conditions. Students 
record the data in next table 
Surface type (road) Distance Time Weather 
 Calculate the speed for each type of tested 
road
Evaluation 
 Students introduce the collected data in an 
Excel sheet and represent graphically the 
distance as a function of time for different 
road materials. 
 Students answer the next question: How the 
friction of the roads could be increased or 
decreased?
ROBOTICS DICTIONARY
Google Docs 
Spreadsheet 
 Datasheet
Google Docs 
Document
New Approach – Two Boards 
Schematics 
PCB’s Design 
PCB’s Manufacturing 
KAREL SECOND PROTOTYPE 
(WORK IN PROGRESS)
Karel second prototype 
approach 
 2 boards 
 Lower board 
 Battery management system 
 Motors 
 Upper board 
 Controller 
 Regulators 
 I/O devices 
 Motor regulators
Karel Battery Management System - Schematic
Board dimensions
PCB Design 
 Double Side PCB laminate 
 Components 
 SMD 
 THD 
 Software 
 Target3001! - version limited at 400 pins / 
pads
Lower board 
3D bottom view
Lower board 
3D top view
Lower board 
Design problem
Upper board 
3D bottom view
Upper board 
3D top view
Improve Boards 
Manufacturing Process 
 Older printer (Samsung) – 600 dpi resolution 
 New printer (HP) - 1200 dpi resolution 
 Very good results after some tests 
 Problems – printer driver for Windows 7
Printing problems 
 MS Word (doc) 
 Different results 
 Picture (png) 
 Scaling problems 
 Good results with 
pdf files
After we’ve learned how 
to do it (printing)
After we’ve learned how 
to do it (printing)
Alignment of TOP & 
BOTTOM Layers
Toner Transfer problems
Toner Transfer problems
After we’ve learned how 
to transfer the toner
After we’ve learned how 
to transfer the toner
Seal the toner
Seal the toner
Quite good alignment 
between top and bottom
Final upper board with 
min 0.6 mm tracks (top)
Final upper board with 
min 0.3 mm tracks (bottom)
Karel Second Prototype 
Problems & Future Work 
 Some circuits (e.g. for battery 
management) not tested yet 
 Some integrated circuits are not so easy 
to procure (e.g. the ones made by Seiko) 
 Possible new changes in design using 
new integrated circuits (e.g. boost 
regulator supplied from 1 Li-Po battery 
with high output current capabilities)
Third Karel Project Meeting 
Katerini, 12 – 19.10.2014
Katerini 
Robotic Platform Test
Already presented in this conference by dr. Gina Mihai 
http://www.scientix.eu/web/guest 
SCIENTIX PROJECT
Travelling to Scientix meeting 
Orsova – Bucharest train
What to do to increase the number of 
STEM fans?
Don’t forget about 
ROBOTOR & SCRIPT 
 International Robotics Trophy 
ROBOTOR 2015 
 SCRatch International Programming Trial 
SCRIPT 2015 
 Contact 
mihai_agape@yahoo.com
Bibliography 
 Agape, Maria-Genoveva; Agape, Mihai (mai 2011). 
„Trofeul Internaţional de Robotică ROBOTOR”. 
Universul copiilor 16 (I.S.S.N 1841 – 191): 34 – 37. 
 Agape, Mihai (februarie 2012). „Să învățăm 
programare jucându-ne în Scratch”. Preparandia 2 
(ISSN 2247 – 9414), section Gymnasium. 
http://bit.ly/1ftKR27 
 Agape, Mihai (octombrie 2013). Rules for National 
Robotics Trophy ROBOTOR 2014. 
http://sdrv.ms/17umqk7
Bibliography (cont.) 
 Agape, Mihai (octombrie 2013). Rules of Scratch 
International Programming Trial SCRIPT 2014. 
http://sdrv.ms/LgPxfX 
 Agape, Maria-Genoveva (octombrie 2013). Rules of 
Scratch International Symposium SCRIPT 2014. 
http://sdrv.ms/LgPxfX 
 Agape, Mihai. Agape, Maria-Genoveva. “KAREL 
Specifications”, agreed in Karel Project Meeting held 
at Beypazari on 10–16.11.2013. http://sdrv.ms/170NTak 
 Agape, Mihai. “Karelino—One Step in Karel Robotic 
Platform Developing”, presentation given at National 
Symposium IPO-TECH, Tirgu-Neamt, 29.03.2014
Bibliography (cont.) 
 Agape, Mihai. “Contributions for developing a 
robotic arm”, presentation delivered in RECAP 
Project Meeting (Katowice, 05.31.2012). 
 Agape, Mihai. “Scientix – Comunitatea 
tehnico-științifică europeană”, presentation 
delivered in National Symposium “Electronics 
Today” (Constanta, 23.06.2014). 
 Agape, Mihai. “KAREL 
Controller Design”, presentation delivered at 
Karel project meeting held at Rybnik, 06- 
13.04.2014.
Bibliography (cont.) 
 Agape, Cristina-Maria. “KAREL – Controller 
Manufacturing”, presentation delivered at Karel 
project meeting held at Rybnik, 06-13.04.2014. 
 Agape, Mihai. “KAREL – First Implementation 
Year”, presentation delivered at the Robotic 
Symposium – Code Week event, Katerini, 14th 
October 2014. 
 Agape, Maria-Genoveva. “Physics Lesson Plan 
– Friction & Speed”, presentation delivered at 
the Karel project meeting held at Katerini, 12 – 
19.10.2014.
Bibliography (cont.) 
 Agape, Mihai. “KAREL – 2nd Platform 
Design”, presentation delivered at the Karel 
project meeting, Katerini, 12 – 19.10.2014. 
 *** ATmega32U4, 7766G–AVR–02/2014. Atmel. 
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4- 
32U4_%20Datasheet.pdf 
 *** DRV8833, SLVSAR1C. Texas Instruments. 
http://www.ti.com/lit/gpn/drv8833. 
 *** LM2940, SNVS769I. Texas Instruments. 
http://www.ti.com/lit/gpn/lm2940-n.
Bibliography (cont.) 
 *** LM1117, SNOS412M. Texas Instruments. 
http://www.ti.com/lit/gpn/lm1117-n 
 *** Bluetooth Module BTM-112 and BTM-182. 
Rayson. 
 *** BQ241xx - Synchronous Switchmode, Li-Ion and 
Li-Polymer Charge Management IC with Integrated 
Power FETs (bqSWITCHER). Texas Instruments. 
 *** S8239 Series. Overcurrent Monitoring IC for Multi- 
Serial-Cell Pack. Seiko Instruments Inc. 
 *** S8209A Series. Usage Guidelines. Seiko 
Instruments Inc.
Bibliography (cont.) 
 Agape, Mihai. “Karelino – A robot for STEM 
education”, presentation delivered at the 
2nd Scientix Conference, Brussels, 24 – 26 
October 2014.
Questions?

Weitere ähnliche Inhalte

Ähnlich wie Enhancing STEM activities through contests and European projects

191005_robotor_conexiuni_mag
191005_robotor_conexiuni_mag191005_robotor_conexiuni_mag
191005_robotor_conexiuni_magMihai Agape
 
181006_gp_rekapo_mag
181006_gp_rekapo_mag181006_gp_rekapo_mag
181006_gp_rekapo_magMihai Agape
 
Scientix Dissemination in Romania & Launchings
Scientix Dissemination in Romania & LaunchingsScientix Dissemination in Romania & Launchings
Scientix Dissemination in Romania & LaunchingsMihai Agape
 
191011_etwinning_gpe_mag
191011_etwinning_gpe_mag191011_etwinning_gpe_mag
191011_etwinning_gpe_magMihai Agape
 
Scientix 9th SPNE Brussels 6 November 2015: Karel - Autonomous Robot for Enha...
Scientix 9th SPNE Brussels 6 November 2015: Karel - Autonomous Robot for Enha...Scientix 9th SPNE Brussels 6 November 2015: Karel - Autonomous Robot for Enha...
Scientix 9th SPNE Brussels 6 November 2015: Karel - Autonomous Robot for Enha...Brussels, Belgium
 
Scientix 9th SPWatFCL Brussels 6-8 November 2015: Robotic Platform Karel
Scientix 9th SPWatFCL Brussels 6-8 November 2015: Robotic Platform KarelScientix 9th SPWatFCL Brussels 6-8 November 2015: Robotic Platform Karel
Scientix 9th SPWatFCL Brussels 6-8 November 2015: Robotic Platform KarelBrussels, Belgium
 
Monitoring and Operational Data Analytics from a User Perspective at First Eu...
Monitoring and Operational Data Analytics from a User Perspective at First Eu...Monitoring and Operational Data Analytics from a User Perspective at First Eu...
Monitoring and Operational Data Analytics from a User Perspective at First Eu...University of Maribor
 
Presentation @ Miniscuola WOA 2015
Presentation @ Miniscuola WOA 2015Presentation @ Miniscuola WOA 2015
Presentation @ Miniscuola WOA 2015Corrado Santoro
 
Karel and Robotics Contests - Workshop
Karel and Robotics Contests - WorkshopKarel and Robotics Contests - Workshop
Karel and Robotics Contests - WorkshopMihai Agape
 
Wonderland @ Cattid - Sun's Virtual Workplace
Wonderland @ Cattid - Sun's Virtual WorkplaceWonderland @ Cattid - Sun's Virtual Workplace
Wonderland @ Cattid - Sun's Virtual Workplacevincenzo de simone
 
CHOReOS presented @CeBIT 2013, Hannover, Germany
CHOReOS presented @CeBIT 2013, Hannover, GermanyCHOReOS presented @CeBIT 2013, Hannover, Germany
CHOReOS presented @CeBIT 2013, Hannover, Germanychoreos
 
Karelino – A robot for STEM education
Karelino – A robot for STEM educationKarelino – A robot for STEM education
Karelino – A robot for STEM educationMihai Agape
 
ICL 2011 ST.ART, AVATAR, EUROVERSITY
ICL 2011 ST.ART, AVATAR, EUROVERSITYICL 2011 ST.ART, AVATAR, EUROVERSITY
ICL 2011 ST.ART, AVATAR, EUROVERSITYCristina Stefanelli
 
“Laval Virtual” World biggest VR festival
“Laval Virtual” World biggest VR festival“Laval Virtual” World biggest VR festival
“Laval Virtual” World biggest VR festivalAkihiko Shirai
 
Gli standard per l’interoperabilità dei sistemi studenti in ambito Europeo
Gli standard per l’interoperabilità dei sistemi studenti in ambito EuropeoGli standard per l’interoperabilità dei sistemi studenti in ambito Europeo
Gli standard per l’interoperabilità dei sistemi studenti in ambito EuropeoSimone Ravaioli
 
Meizhi Chen_CV
Meizhi Chen_CVMeizhi Chen_CV
Meizhi Chen_CV?? ?
 

Ähnlich wie Enhancing STEM activities through contests and European projects (20)

191005_robotor_conexiuni_mag
191005_robotor_conexiuni_mag191005_robotor_conexiuni_mag
191005_robotor_conexiuni_mag
 
181006_gp_rekapo_mag
181006_gp_rekapo_mag181006_gp_rekapo_mag
181006_gp_rekapo_mag
 
Scientix Dissemination in Romania & Launchings
Scientix Dissemination in Romania & LaunchingsScientix Dissemination in Romania & Launchings
Scientix Dissemination in Romania & Launchings
 
191011_etwinning_gpe_mag
191011_etwinning_gpe_mag191011_etwinning_gpe_mag
191011_etwinning_gpe_mag
 
Scientix 9th SPNE Brussels 6 November 2015: Karel - Autonomous Robot for Enha...
Scientix 9th SPNE Brussels 6 November 2015: Karel - Autonomous Robot for Enha...Scientix 9th SPNE Brussels 6 November 2015: Karel - Autonomous Robot for Enha...
Scientix 9th SPNE Brussels 6 November 2015: Karel - Autonomous Robot for Enha...
 
Scientix 9th SPWatFCL Brussels 6-8 November 2015: Robotic Platform Karel
Scientix 9th SPWatFCL Brussels 6-8 November 2015: Robotic Platform KarelScientix 9th SPWatFCL Brussels 6-8 November 2015: Robotic Platform Karel
Scientix 9th SPWatFCL Brussels 6-8 November 2015: Robotic Platform Karel
 
Cogknow memory lane
Cogknow memory laneCogknow memory lane
Cogknow memory lane
 
Monitoring and Operational Data Analytics from a User Perspective at First Eu...
Monitoring and Operational Data Analytics from a User Perspective at First Eu...Monitoring and Operational Data Analytics from a User Perspective at First Eu...
Monitoring and Operational Data Analytics from a User Perspective at First Eu...
 
Support.services.v1
Support.services.v1Support.services.v1
Support.services.v1
 
Support.services.v2
Support.services.v2Support.services.v2
Support.services.v2
 
Presentation @ Miniscuola WOA 2015
Presentation @ Miniscuola WOA 2015Presentation @ Miniscuola WOA 2015
Presentation @ Miniscuola WOA 2015
 
Karel and Robotics Contests - Workshop
Karel and Robotics Contests - WorkshopKarel and Robotics Contests - Workshop
Karel and Robotics Contests - Workshop
 
Wonderland @ Cattid - Sun's Virtual Workplace
Wonderland @ Cattid - Sun's Virtual WorkplaceWonderland @ Cattid - Sun's Virtual Workplace
Wonderland @ Cattid - Sun's Virtual Workplace
 
CHOReOS presented @CeBIT 2013, Hannover, Germany
CHOReOS presented @CeBIT 2013, Hannover, GermanyCHOReOS presented @CeBIT 2013, Hannover, Germany
CHOReOS presented @CeBIT 2013, Hannover, Germany
 
CV_HenriAribert_en
CV_HenriAribert_enCV_HenriAribert_en
CV_HenriAribert_en
 
Karelino – A robot for STEM education
Karelino – A robot for STEM educationKarelino – A robot for STEM education
Karelino – A robot for STEM education
 
ICL 2011 ST.ART, AVATAR, EUROVERSITY
ICL 2011 ST.ART, AVATAR, EUROVERSITYICL 2011 ST.ART, AVATAR, EUROVERSITY
ICL 2011 ST.ART, AVATAR, EUROVERSITY
 
“Laval Virtual” World biggest VR festival
“Laval Virtual” World biggest VR festival“Laval Virtual” World biggest VR festival
“Laval Virtual” World biggest VR festival
 
Gli standard per l’interoperabilità dei sistemi studenti in ambito Europeo
Gli standard per l’interoperabilità dei sistemi studenti in ambito EuropeoGli standard per l’interoperabilità dei sistemi studenti in ambito Europeo
Gli standard per l’interoperabilità dei sistemi studenti in ambito Europeo
 
Meizhi Chen_CV
Meizhi Chen_CVMeizhi Chen_CV
Meizhi Chen_CV
 

Mehr von Mihai Agape

211019_eduplus_diseminare_mag
211019_eduplus_diseminare_mag211019_eduplus_diseminare_mag
211019_eduplus_diseminare_magMihai Agape
 
210620_snenovaci_eduplus_mag
210620_snenovaci_eduplus_mag210620_snenovaci_eduplus_mag
210620_snenovaci_eduplus_magMihai Agape
 
210619_snenovaci_activitationline_mag
210619_snenovaci_activitationline_mag210619_snenovaci_activitationline_mag
210619_snenovaci_activitationline_magMihai Agape
 
210521_edu_cp_activitationline_mag
210521_edu_cp_activitationline_mag210521_edu_cp_activitationline_mag
210521_edu_cp_activitationline_magMihai Agape
 
210426_impact_webinar_mag
210426_impact_webinar_mag210426_impact_webinar_mag
210426_impact_webinar_magMihai Agape
 
201203_cp_eduplus_mag
201203_cp_eduplus_mag201203_cp_eduplus_mag
201203_cp_eduplus_magMihai Agape
 
201123_impactfum_s01_mag
201123_impactfum_s01_mag201123_impactfum_s01_mag
201123_impactfum_s01_magMihai Agape
 
191013_etwinning_song
191013_etwinning_song191013_etwinning_song
191013_etwinning_songMihai Agape
 
191005_edu_robotor_mag
191005_edu_robotor_mag191005_edu_robotor_mag
191005_edu_robotor_magMihai Agape
 
190903_robotorb_mag
190903_robotorb_mag190903_robotorb_mag
190903_robotorb_magMihai Agape
 
190607_conti_bariera_mag
190607_conti_bariera_mag190607_conti_bariera_mag
190607_conti_bariera_magMihai Agape
 
190528_cp_strehaia_flowerpower_mag
190528_cp_strehaia_flowerpower_mag190528_cp_strehaia_flowerpower_mag
190528_cp_strehaia_flowerpower_magMihai Agape
 
181005_steam_mag
181005_steam_mag181005_steam_mag
181005_steam_magMihai Agape
 
180829_robotorb_mag
180829_robotorb_mag180829_robotorb_mag
180829_robotorb_magMihai Agape
 
180609_conti_s4a_mag
180609_conti_s4a_mag180609_conti_s4a_mag
180609_conti_s4a_magMihai Agape
 
180310_infogim_arduino_mag
180310_infogim_arduino_mag180310_infogim_arduino_mag
180310_infogim_arduino_magMihai Agape
 
171206_cp_pcdts_robotor_mag
171206_cp_pcdts_robotor_mag171206_cp_pcdts_robotor_mag
171206_cp_pcdts_robotor_magMihai Agape
 
171104_scientixro_arduino_mag
171104_scientixro_arduino_mag171104_scientixro_arduino_mag
171104_scientixro_arduino_magMihai Agape
 
171005_sj_pcdts_stim_mag
171005_sj_pcdts_stim_mag171005_sj_pcdts_stim_mag
171005_sj_pcdts_stim_magMihai Agape
 
170615_sj_script17_mag
170615_sj_script17_mag170615_sj_script17_mag
170615_sj_script17_magMihai Agape
 

Mehr von Mihai Agape (20)

211019_eduplus_diseminare_mag
211019_eduplus_diseminare_mag211019_eduplus_diseminare_mag
211019_eduplus_diseminare_mag
 
210620_snenovaci_eduplus_mag
210620_snenovaci_eduplus_mag210620_snenovaci_eduplus_mag
210620_snenovaci_eduplus_mag
 
210619_snenovaci_activitationline_mag
210619_snenovaci_activitationline_mag210619_snenovaci_activitationline_mag
210619_snenovaci_activitationline_mag
 
210521_edu_cp_activitationline_mag
210521_edu_cp_activitationline_mag210521_edu_cp_activitationline_mag
210521_edu_cp_activitationline_mag
 
210426_impact_webinar_mag
210426_impact_webinar_mag210426_impact_webinar_mag
210426_impact_webinar_mag
 
201203_cp_eduplus_mag
201203_cp_eduplus_mag201203_cp_eduplus_mag
201203_cp_eduplus_mag
 
201123_impactfum_s01_mag
201123_impactfum_s01_mag201123_impactfum_s01_mag
201123_impactfum_s01_mag
 
191013_etwinning_song
191013_etwinning_song191013_etwinning_song
191013_etwinning_song
 
191005_edu_robotor_mag
191005_edu_robotor_mag191005_edu_robotor_mag
191005_edu_robotor_mag
 
190903_robotorb_mag
190903_robotorb_mag190903_robotorb_mag
190903_robotorb_mag
 
190607_conti_bariera_mag
190607_conti_bariera_mag190607_conti_bariera_mag
190607_conti_bariera_mag
 
190528_cp_strehaia_flowerpower_mag
190528_cp_strehaia_flowerpower_mag190528_cp_strehaia_flowerpower_mag
190528_cp_strehaia_flowerpower_mag
 
181005_steam_mag
181005_steam_mag181005_steam_mag
181005_steam_mag
 
180829_robotorb_mag
180829_robotorb_mag180829_robotorb_mag
180829_robotorb_mag
 
180609_conti_s4a_mag
180609_conti_s4a_mag180609_conti_s4a_mag
180609_conti_s4a_mag
 
180310_infogim_arduino_mag
180310_infogim_arduino_mag180310_infogim_arduino_mag
180310_infogim_arduino_mag
 
171206_cp_pcdts_robotor_mag
171206_cp_pcdts_robotor_mag171206_cp_pcdts_robotor_mag
171206_cp_pcdts_robotor_mag
 
171104_scientixro_arduino_mag
171104_scientixro_arduino_mag171104_scientixro_arduino_mag
171104_scientixro_arduino_mag
 
171005_sj_pcdts_stim_mag
171005_sj_pcdts_stim_mag171005_sj_pcdts_stim_mag
171005_sj_pcdts_stim_mag
 
170615_sj_script17_mag
170615_sj_script17_mag170615_sj_script17_mag
170615_sj_script17_mag
 

Kürzlich hochgeladen

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Kürzlich hochgeladen (20)

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

Enhancing STEM activities through contests and European projects

  • 1. Enhancing STEM activities through contests and European projects Mihai Agape Palatul Copiilor Drobeta Turnu Severin – Filiala Orsova Engaging Tools for Science Education Conference Teamwork, Training and Technology Network (TTTNet) Sofia, Inter Expo Center, 31.10.2014 – 02.11.2014 Parallel Session 3, Rodopi hall, 01.11.2014, 14:00 – 14:30
  • 2. The Purpose of the Presentation International Contests ROBOTOR SCRIPT European Projects RECAP (LdV) KAREL (Comenius)
  • 3.  This work has been funded with support from the European Commission.  This communication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
  • 5. National Contest of Electronics, Pitesti, June 2007
  • 7. How to bring technical activities on stage? Robotics Trophy ROBOTOR  Robotics contests are spectacular  Robotics = STEM integrator  ROBOTOR = ROBOT + ORsova
  • 8. ROBOTOR editions  First edition:  Regional Trophy - 2008  National editions: 2009, 2010, 2012, 2013, 2014  International editions: 2011  Poland, France, Turkey, and Romania  All editions have been included in the Educational Activities Schedule of MEN  ROBOTOR 2015 will be international
  • 13. ROBOTOR 2008 Line Follower Contest
  • 14. ROBOTOR 2011 Line Follower Contest
  • 15. ROBOTOR 2013 Botosani, October 2013
  • 16. National Electronics Contest Constanta, June 2014
  • 17. National & International Robotics Competitions  2008 – Orsova: “Robotor”  2010 – Targoviste: “Cupa Chindiei”  2011 – Bucuresti: “Infomatrix”  2013 – Galati: “Robogal”  Technical Universities  Bucharest  Timisoara  2014 – National Ministry of Education (LEGO)
  • 18. International Robotics Trophy ROBOTOR 2015, Robotics Contests & Robotics Symposium Orsova, 28-30 May 2015  Dragsters (Junior & Middle)  Line Follower (Junior, Middle & Senior)  Mini & Micro Sumo (Junior, Middle & Senior)  Line & Wall Maze (Junior, Middle & Senior)  Solar Robots (Junior & Middle)  Freestyle (Junior & Middle)  Possible subsections  Beginners  Advanced  mihai_agape@yahoo.com
  • 19. National  International?  eTwinning portal (http://www.etwinning.net/)  Enable teachers and students in European countries to collaborate online
  • 20. REmote Controlled Arm Project RECAP
  • 21. General Information  Programme: Lifelong Learning Programme  Action: Leonardo da Vinci Partnerships  Reference No: LLP-LdV/PAR/2010/RO/023  Project title: Remote Controlled Arm Project  Acronym: RECAP  Implementation: 01.08.2010 – 31.07.2012
  • 22. RECAP Partners  Śląskie Techniczne Zakłady Naukowe – Katowice, Poland (coordinator).  Beypazari Teknik Ve Endüstri Meslek Lisesi – Beypazari, Turkey.  Lycée Henri Vincenot – Louhans, France.  Wyższa Szkoła Technologii Informatycznych w Katowicach – Katowice, Poland.  Palatul Copiilor şi Elevilor Drobeta Turnu Severin – Filiala Orşova, Romania.
  • 23. Partnership Aim Romanian team contributions  Design and manufacture a robotic arm  Romanian team contributions  Electronics  Controller for Robotic Hand  System for Capturing Arm Motion - SCAM  Programming  Mechanics  Arm Design
  • 24. RECAP Result – EST http://www.europeansharedtreasure.eu/detail.php?id_project_ base=2010-1-PL1-LEO04-11315
  • 25. Underactuated Robotic Arm Design (design of the finger, robotic hand) MECHANICAL PART
  • 27. Sketch of the arm proposed at the first project meeting in Katowice
  • 30. CF (Cheap Finger) – 2 versions Giulia
  • 31. CF1 - Orșova CF2 - Louhans
  • 37. Objectives for finger and hand good prehension ability simplicity light weight low cost possibility to be manually made
  • 38. Solution proposed for the finger (Pro ENGINEER Schools Edition)
  • 39. The analyze of finger’s position in the static case  The relative position of the finger’s phalanges is determined by the tension in the tendon, diameters of the pulleys and characteristics of torsion springs (elastic constants and initial pretension).  To simplify the calculus we suppose that there are not  Gravity  Friction
  • 40. Position of the finger in the static case (GeoGebra)
  • 41. Calculus of joints rotation angles  Active moment (Ma)  Active force  Tendon tension  Angle between string tensions  Lever arm  Resistant moment (Mr)  Rotation angle of the joint  Elastic constant and preloading of the spring  Ma = Mr => Rotation angle of the joint as a function of force applied to the tendon  Relation between rotation angles of joints and rotation angle of servo
  • 43. Simulation of finger’s flexion  Parameters  Phalanges lengths: l1 = 45mm, l2 = 25mm, l3 = 25 mm  Radius of pulleys: r1, r1 și r3  Springs constants: k1, k2 și k3  Preloading of the springs: α1i, α2i și α3i  Calculated data (as a function of F)  Articulations angles: α1, α2 și α3  Servo’s angle: α0
  • 44. Simulation 120.00 100.00 80.00 60.00 40.00 20.00 0.00 -20.00 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 -20.00 α1 α2 α3 F/Fmax
  • 45. Case I: r1=r2=r3=6mm k1=k2=k3, α1i=α2i=α3i=0
  • 46. Case II: r1=r2=r3=6mm k1=4k0, k2=2k0, k3=k0, α1i=α2i=α3i=900
  • 47. Case III: r1=8mm, r2=4mm, r3=4mm k1=4k0, k2=2k0, k3=k0 , α1i=α2i=α3i=900
  • 48. Design of a sheetmetal finger (SF1)
  • 49. Finger’s prototype (SF1)  Phalanges: aluminum sheet 0.8 mm thick  Joints: M2 bolts + plastic tubes  Pulleys: 4mm thick Plexiglas  Springs: music wire with diameter of 0,4 mm  Tendon: nylon string with a diameter of 0,5 mm
  • 51. Hand Design (+SF2 Fingers)
  • 52. Hand Design (+Servos integrated in the palm)
  • 53. Hand Design (+Thumb & 2 Servos)
  • 57. Flat drawing for metacarpus of the thumb
  • 62. Hand Manufacturing Ema, Ovidiu, Emi, Giulia, Robi, Bogdan
  • 64. Robotic Hands - Left: designed by Polish team & manufactured by French team - Right: designed and manufactured by Romanian team
  • 65. Test Romanian hand prototype with French controller (Katowice, May 2012 – Mihai Agape, Fabien Autreau)
  • 66. Testing Romanian hand Katowice, May 2012
  • 69. Assembly last 2 servomechanisms (28.08.2012)
  • 71. 2012 Extreme Redesign Contest www.DimensionPrinting.com/extremeredesign
  • 73.
  • 74. What is Scratch?  Scratch is a free programming language and online community where you can create your own interactive stories, games, simulations, and animations.  Scratch is a project of the Lifelong Kindergarten Group at the MIT Media Lab. It is provided free of charge.  http://scratch.mit.edu/
  • 75. Example - Tornado Simulation  http://scratch.mit.edu/projects/23046337/  Poster related to augmented reality (Good Practice from ITAO workshop – Zuhal Yilmaz Dogan and Didem Sunbul)
  • 76. Local Winter Greetings Contest – 2011 http://scratch.mit.edu/studios/148271/
  • 77. Regional Contest SCRIPT 2012 http://scratch.mit.edu/studios/171206/
  • 78. National Contest SCRIPT 2013 http://scratch.mit.edu/studios/211401/
  • 79. SCRIPT 2013 Game created by Bulgarian team
  • 80. International Contest SCRIPT 2014  Cooperation with Galina Momcheva, Assoc. Prof. at Varna Free University  Participants from Bulgaria, Italy, Macedonia, Poland, Slovenia, Turkey, USA and Romania
  • 81. SCRIPT 2014 Gallery http://scratch.mit.edu/studios/377099/
  • 82. SCRIPT 2015 Contest & Symposium  Contest  Primary and lower secondary pupils (aged from 6-7 to 14 – 15 years old).  Version Scratch 2.0  Symposium  Creators of Scratch learning resources (teachers & students)  Online videoconference
  • 83. SCRIPT 2015 – Contest  Aim: promote the programming among primary and lower secondary students, using Scratch programming language.  Contest objectives:  Stimulating pupils to code.  Developing English language skills of pupils and teachers.  Promoting of the best teams.  Dissemination of the best projects.
  • 84. SCRIPT 2015 – Contest  Sections:  Greetings  Games  Music and Dance  Stories  Simulations  Age categories  one for each grade from 1 to 8  mihai_agape@yahoo.com
  • 85. General Information Karel Project in Numbers Partners Objectives Results & Outcomes Robot Requirements Tasts Distribution Work Breakdown Structure KAREL PROJECT OVERVIEW
  • 86. General Information  Programme: LIFELONG LEARNING PROGRAMME  Sub-programme: COMENIUS  Action type: PARTNERSHIPS  Action: COMENIUS Multilateral school partnerships  LLP Link No: 2013-1-RO1-COM06-29664 1  Project title: Karel - Autonomous Robot for Enhancing Learning  Project acronym: KAREL  Implementation: 01.08.2013 – 31.07.2015
  • 87. Karel project in numbers Countries: 4 Partners: 4 Teachers: 21 Students: 50 Mobilities: 96 Robots: 20 Lessons: 21
  • 88. WHO? Partners, pupils, teachers 1. Platon Schools (Εκπαιδευτηρια Πλατων) (Katerini, Greece) 2. Beypazari Teknik Ve Endüstri Meslek Lisesi (Beypazari, Turkey) 3. Technikum nr 1 im. Stanisława Staszica w Zespole Szkoł Technicznych w Rybniku (Rybnik, Poland) 4. Palatul Copiilor (Drobeta Turnu Severin, Romania) Pupils (aged from 14 to 19 years old) & Teachers
  • 89. WHY? Objectives  Improve teaching and learning of science and technology using robotics as integrator  O1. Apply practical math and scientific concepts while learning to design, build, test and document KAREL.  O2. Create an interdisciplinary curriculum to use with KAREL robotic platform.  O3. Improve confidence and fluency in English and learn scientific and technical vocabulary in partners’ languages.
  • 90. WHAT? Results & Outcomes  Robotics Dictionary in English and each partner’s language.  Robotics Platforms designed and manufactured (20).  Curriculum with at least 21 lesson plans, in English and each partner’s language . At least 2 lesson plans for each of following fields: physics, biology, programming, mechanics, electronics, and robotics.
  • 91. HOW? Tasks Distribution  Robotic platform design, manufacture, test and document:  a) Mechanical system  Turkey  b) Electronic system  Poland (input / output devices)  Romania (controller, motor drivers, power supply, communication)  d) Software  Greece (codes for lessons)  Romania (codes for input / output devices)
  • 92. HOW? Tasks Distribution  Pupils:  Create robotics dictionary  Research, design, build, test, and program robotic platform  Test curriculum  Teachers:  Design curriculum  Guide pupils
  • 93.
  • 94. Specifications Karelino - first controller prototype of Karel robot Solving math problems The second design of Karel platform KAREL SOME OF THE WORK DONE
  • 95. Agreed at the first project meeting in Beypazari Available at http://sdrv.ms/170NTak KAREL SPECIFICATIONS
  • 96. Kick-off Project Meeting Beypazari, 10-16.11.2013
  • 104. Schematic 3D Views PCB manufacturing Board Testing Mechanics, Electronics, and Software Integration (Rybnik meeting) First Karel prototype KARELINO - FIRST PROTOTYPE OF THE ROBOTIC PLATFORM
  • 105. Why Karelino? Karel problems 2 s LiPo battery management Motor voltage regulator Solution Small complexity prototype Cristina – Karel team student Karel & Arduino -> Karelino
  • 107. First prototype - Karelino 3D Top View
  • 108. First prototype - Karelino 3D Bottom View
  • 109. PCB manufacturing method & materials Method = Transfer Toner System Materials = Pulsar kit (PCB Fab-In-A-Box) http://www.pcbfx.com/
  • 110. Print the copper layer on paper using a laser printer (600 dpi)
  • 111. Prepare the single sided board using a sandpaper
  • 112. Clean the surface with a cloth
  • 113. Use laminator to transfer the toner from paper to board
  • 114. Remove the paper using water
  • 115. The copper layer is transferred to the board
  • 116. Use green foil (from Pulsar) to seal the toner
  • 117. Easily remove the green foil
  • 118. Toner before and after sealing
  • 119. Etching the board using ammonium persulfate
  • 120. The uncovered copper was removed (etched)
  • 121. Remove the toner from the board using thinner
  • 123. Test the traces for continuity and short circuits
  • 124. Use a soldering iron station to solder the components  Hot Air Gun  Soldering (Hot) Iron
  • 125. First solder the jumper wires
  • 126. Add the components and solder them (SMD first & THD last)
  • 129. 3D Views vs Real Board
  • 130. Karelino Testing Design & Manufacturing Mistakes
  • 131. Second Project Meeting, Rybnik, 06–13.04.2014
  • 132. Integration & Testing (Rybnik meeting)
  • 133. First Karel Prototype (Rybnik meeting)
  • 134. Proposed Improvements (Rybnik meeting)  Integrate new blocks (e.g. Motor voltage regulator, UART connector, Battery management system)  Make changes to the initial design (e.g. replace USB micro B connector with an USB mini B connector)  Redesign the PCB (components places and traces) according to the chassis shape  Add LEDs to show the state of Bluetooth module
  • 135. Useful Links  Drawings for manufacturing the Karelino controller http://1drv.ms/1jet3ci  Bill of materials for all designs http://1drv.ms/1oAF8hr
  • 136. Climbing an inclined plan Karel Base Designs Animation created in Geogebra Problems Solved MATH PROBLEMS
  • 137. Climbing a 30 % inclined plan  A requirement which seems to be related just to the power of the motors.
  • 139. Animation created in Geogebra
  • 140. Rybnik meeting Math Challenges
  • 141. Theoretical problems related to geometrical constraints study  Ground clearance  Front overhang  Rear overhang We will use the work for some Math lesson plan
  • 142. Karel Base Dimensions l_w = wheel base l_r = rear overhang l_f = front overhang d_w = wheel diameter d_c = caster diameter h = ground clearance
  • 143. Calculus of Rear Overhang
  • 144. Calculus of Rear Overhang 
  • 145. Calculus of Departure Angle 
  • 146. Ramp Angle Ground Clearance 
  • 147. Calculate Ground Clearance (h) with Wolfram|Alpha knowledge motor
  • 148. Calculate Ground Clearance (h) with Geogebra
  • 149. SOFTWARE FOR KAREL PLATFORM
  • 150. Programming Languages  C  Atmel Studio IDE  We created some modules (functions) for  Motors control  Serial communication (USART, Bluetooth)  Optical line sensors  Arduino  Arduino Leonardo compatibility  Microcontroller - ATmega32U4  Use Karel with Arduino?
  • 151. Karel Visual Software  A former student of mine, Claudia Tudosie, who is now student in the last year at Timisoara University, Computers Enginnering Faculty, chose for his final project a theme related to KAREL. She proposed to create a visual programming language (similar to Scratch) for Karel platform.
  • 153. Physics Lesson Plan Friction & Speed  How the Karel robot will be integrated in the lesson?  Robots will travel along surfaces of different materials (in order to show that the speed depends on the different surfaces)  What do we need to do?  Drive the robot along pathways (straight or curved) on different surfaces.  Measure time, distance.
  • 154. Materials  Materials with different coefficient of friction  Karel robot  Stopwatches  Distance measuring tools  Data sheets  Microsoft Excel
  • 155. Lesson Objectives  Students will:  O1. Observe the influence of the road surface to the speed of the robot.  O2. Use relation d = v * t in order to calculate v when d, and t are given.  O3. Propose solutions for improvement of friction between road and the tires of the robot.
  • 156. Engagement  Students will predict how the surface of the road affects the speed of the robot.  Example of questions for students:  What is the effect of the road type on the vehicle speed? (bumpy / smooth, straight / curvy)  How can you determine the speed of a vehicle? (distance / time)  More friction means more or less speed?
  • 157. Exploration  Students will measure the speed of the robot on different surfaces. They will record the data in the next table. Surface type (road) Distance Time  The students will understand how the road materials affect the time needed for the robot to travel a given distance.
  • 158. Explanation  Introduce the concept Distance = Speed * Time
  • 159. Elaboration  Students experiment with different surface materials and weather conditions. Students record the data in next table Surface type (road) Distance Time Weather  Calculate the speed for each type of tested road
  • 160. Evaluation  Students introduce the collected data in an Excel sheet and represent graphically the distance as a function of time for different road materials.  Students answer the next question: How the friction of the roads could be increased or decreased?
  • 162. Google Docs Spreadsheet  Datasheet
  • 164. New Approach – Two Boards Schematics PCB’s Design PCB’s Manufacturing KAREL SECOND PROTOTYPE (WORK IN PROGRESS)
  • 165. Karel second prototype approach  2 boards  Lower board  Battery management system  Motors  Upper board  Controller  Regulators  I/O devices  Motor regulators
  • 166. Karel Battery Management System - Schematic
  • 167.
  • 169. PCB Design  Double Side PCB laminate  Components  SMD  THD  Software  Target3001! - version limited at 400 pins / pads
  • 170. Lower board 3D bottom view
  • 171. Lower board 3D top view
  • 172. Lower board Design problem
  • 173. Upper board 3D bottom view
  • 174. Upper board 3D top view
  • 175. Improve Boards Manufacturing Process  Older printer (Samsung) – 600 dpi resolution  New printer (HP) - 1200 dpi resolution  Very good results after some tests  Problems – printer driver for Windows 7
  • 176. Printing problems  MS Word (doc)  Different results  Picture (png)  Scaling problems  Good results with pdf files
  • 177. After we’ve learned how to do it (printing)
  • 178. After we’ve learned how to do it (printing)
  • 179. Alignment of TOP & BOTTOM Layers
  • 182. After we’ve learned how to transfer the toner
  • 183. After we’ve learned how to transfer the toner
  • 186. Quite good alignment between top and bottom
  • 187. Final upper board with min 0.6 mm tracks (top)
  • 188. Final upper board with min 0.3 mm tracks (bottom)
  • 189. Karel Second Prototype Problems & Future Work  Some circuits (e.g. for battery management) not tested yet  Some integrated circuits are not so easy to procure (e.g. the ones made by Seiko)  Possible new changes in design using new integrated circuits (e.g. boost regulator supplied from 1 Li-Po battery with high output current capabilities)
  • 190. Third Karel Project Meeting Katerini, 12 – 19.10.2014
  • 192. Already presented in this conference by dr. Gina Mihai http://www.scientix.eu/web/guest SCIENTIX PROJECT
  • 193. Travelling to Scientix meeting Orsova – Bucharest train
  • 194. What to do to increase the number of STEM fans?
  • 195. Don’t forget about ROBOTOR & SCRIPT  International Robotics Trophy ROBOTOR 2015  SCRatch International Programming Trial SCRIPT 2015  Contact mihai_agape@yahoo.com
  • 196. Bibliography  Agape, Maria-Genoveva; Agape, Mihai (mai 2011). „Trofeul Internaţional de Robotică ROBOTOR”. Universul copiilor 16 (I.S.S.N 1841 – 191): 34 – 37.  Agape, Mihai (februarie 2012). „Să învățăm programare jucându-ne în Scratch”. Preparandia 2 (ISSN 2247 – 9414), section Gymnasium. http://bit.ly/1ftKR27  Agape, Mihai (octombrie 2013). Rules for National Robotics Trophy ROBOTOR 2014. http://sdrv.ms/17umqk7
  • 197. Bibliography (cont.)  Agape, Mihai (octombrie 2013). Rules of Scratch International Programming Trial SCRIPT 2014. http://sdrv.ms/LgPxfX  Agape, Maria-Genoveva (octombrie 2013). Rules of Scratch International Symposium SCRIPT 2014. http://sdrv.ms/LgPxfX  Agape, Mihai. Agape, Maria-Genoveva. “KAREL Specifications”, agreed in Karel Project Meeting held at Beypazari on 10–16.11.2013. http://sdrv.ms/170NTak  Agape, Mihai. “Karelino—One Step in Karel Robotic Platform Developing”, presentation given at National Symposium IPO-TECH, Tirgu-Neamt, 29.03.2014
  • 198. Bibliography (cont.)  Agape, Mihai. “Contributions for developing a robotic arm”, presentation delivered in RECAP Project Meeting (Katowice, 05.31.2012).  Agape, Mihai. “Scientix – Comunitatea tehnico-științifică europeană”, presentation delivered in National Symposium “Electronics Today” (Constanta, 23.06.2014).  Agape, Mihai. “KAREL Controller Design”, presentation delivered at Karel project meeting held at Rybnik, 06- 13.04.2014.
  • 199. Bibliography (cont.)  Agape, Cristina-Maria. “KAREL – Controller Manufacturing”, presentation delivered at Karel project meeting held at Rybnik, 06-13.04.2014.  Agape, Mihai. “KAREL – First Implementation Year”, presentation delivered at the Robotic Symposium – Code Week event, Katerini, 14th October 2014.  Agape, Maria-Genoveva. “Physics Lesson Plan – Friction & Speed”, presentation delivered at the Karel project meeting held at Katerini, 12 – 19.10.2014.
  • 200. Bibliography (cont.)  Agape, Mihai. “KAREL – 2nd Platform Design”, presentation delivered at the Karel project meeting, Katerini, 12 – 19.10.2014.  *** ATmega32U4, 7766G–AVR–02/2014. Atmel. http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4- 32U4_%20Datasheet.pdf  *** DRV8833, SLVSAR1C. Texas Instruments. http://www.ti.com/lit/gpn/drv8833.  *** LM2940, SNVS769I. Texas Instruments. http://www.ti.com/lit/gpn/lm2940-n.
  • 201. Bibliography (cont.)  *** LM1117, SNOS412M. Texas Instruments. http://www.ti.com/lit/gpn/lm1117-n  *** Bluetooth Module BTM-112 and BTM-182. Rayson.  *** BQ241xx - Synchronous Switchmode, Li-Ion and Li-Polymer Charge Management IC with Integrated Power FETs (bqSWITCHER). Texas Instruments.  *** S8239 Series. Overcurrent Monitoring IC for Multi- Serial-Cell Pack. Seiko Instruments Inc.  *** S8209A Series. Usage Guidelines. Seiko Instruments Inc.
  • 202. Bibliography (cont.)  Agape, Mihai. “Karelino – A robot for STEM education”, presentation delivered at the 2nd Scientix Conference, Brussels, 24 – 26 October 2014.

Hinweis der Redaktion

  1. Here we are with our robots at National Robotics Trophy ROBOTOR 2013.
  2. We participate in local, regional and national contests.
  3. Who is working on this project, and who are they working with? The obvious: identifying team members. The ambigous: establishing clear connections among people who’ll be collaborating with each other, integrating their schedules and vacations, and noting how their role in the organization will affect their role on the project team. Outlining these kinds of details is worth the elbow grease, and can help you measure time frames in terms of actual labor hours rather than dubious calendar days.
  4. The general objective of the project is to improve teaching and learning of science and technology using robotics as integrator 1. Apply practical math and scientific concepts while learning to design, build, test and document KAREL (a low cost, utonomous robotic platform for enhancing learning of sciences and technology in secondary school). 2. Create an interdisciplinary curriculum to use with KAREL robotic platform. 3. Improve confidence and fluency in English and learn scientific and technical vocabulary in partners’ languages.
  5. Principal results and outcomes of the project.
  6. Task Distribution 1. Robotic platform design, manufacture, test and document: a) Mechanical system – Turkey b) Electronic system – Poland (input / output devices), Romania (controller, motor drivers, power supply, communication) d) Software – Greece (codes for lessons), Romania (codes for input / output devices) The responsible partners will manufacture one final prototype for each partner. During the project all partners will learn to manufacture their parts and will produce their own fleet of robots. 2. Curriculum for robotic platform design and document: a) Physics – Greece, Romania b) Biology – Greece c) Mechanics – Turkey, Poland d) Electronics - Poland, Romania e) Programming – Greece, Romania e) Robotics – Poland, Romania Each lesson will be peer reviewed by other partners. Each partner will translate the final curriculum in his language. 3. The robotic terms dictionary in English, Greek, Polish, Turkish and Romanian will be the result of our common effort.
  7. Strategy This project involves both pupils and teachers. The pupils will participate in all stages of the project. They will research, design, build, test, and program the robotic platform. Also they will contribute to test the curriculum. Teachers will guide pupils and will create the curriculum. We will create a robotic terms dictionary in partners languages.
  8. The Work Breakdown Structure presented here represents all the work required to complete KAREL project. You can see that it is a very complex project.
  9. We use Transfer Toner System to manufacture the PCB. We use the materials from the Pulsar kit “PCB Fab-In-A-Box”.
  10. We use a laser printer.
  11. We use a fine sandpaper to sand the copper. Clean the surface with a cloth. Do not touch the surface once the cleaning is done. If you are you are using a double sided copper board, then be sure to scrub the other side as well. This will speed up the etching process of the other side.
  12. We use a laminator to transfer the toner form paper to board.
  13. Când mă deplasam cu trenul către București, pentru a lua avionul către Bruxelles (unde am participat la prima sesiune a reuniunii de lansare a proiectului Scientix 2, în calitate de vice Ambasador al Scientix pentru România) am văzut pe peretele unei clădiri, scris cu majuscule, următorul text: „ȘTIINȚA TREBUIE SĂ RENASCĂ”. Am considerat un semn bun acest mesaj și l-am împărtășit și colegilor europeni prezenți la reuniune. Chiar dacă după o discuție cu dna Irina Vasilescu - Ambasador Scientix pentru România - am ajuns la concluzia că probabil mesajul era scris de un susținător al echipei Știința Craiova, el exprimă un deziderat care ar trebuie să ne anime pe toți cei implicați în educația STEM.
  14. Când mă deplasam cu trenul către București, pentru a lua avionul către Bruxelles (unde am participat la prima sesiune a reuniunii de lansare a proiectului Scientix 2, în calitate de vice Ambasador al Scientix pentru România) am văzut pe peretele unei clădiri, scris cu majuscule, următorul text: „ȘTIINȚA TREBUIE SĂ RENASCĂ”. Am considerat un semn bun acest mesaj și l-am împărtășit și colegilor europeni prezenți la reuniune. Chiar dacă după o discuție cu dna Irina Vasilescu - Ambasador Scientix pentru România - am ajuns la concluzia că probabil mesajul era scris de un susținător al echipei Știința Craiova, el exprimă un deziderat care ar trebuie să ne anime pe toți cei implicați în educația STEM.
  15. Thanks once again for listening my presentation.