SlideShare ist ein Scribd-Unternehmen logo
1 von 3
MODELO DE RESONANCIA ADAPTATIVA (ART)

DILEMAS DE S. GROSSBERG

Plasticidad del aprendizaje: Cómo una red podría aprender nuevos patrones.
Estabilidad del aprendizaje: Cómo una red podría retener los patrones previamente aprendidos.
Esta teoría se aplica a sistemas competitivos

La teoría de la resonancia adaptativa se basa en la idea de hacer resonar la información de
entrada con los representantes o prototipos de las categorías que reconoce la red. Si entra en
resonancia con algunos, y es suficientemente similar, la red considera que pertenece a dicha
categoría y únicamente realiza una pequeña adaptación del prototipo almacenado incorporándole
algunas características del dato presentado en la entrada. Cuando no resuena con ninguno, esto
es, cuando no se parece a ningún representante de alguna categoría (recordados por la red hasta
ese momento), la red se encarga de crear una nueva categoría con el dato de entrada como
prototipo.

ARQUITECTURA DE LA RED ART




FUNCIONAMIENTO

1) Se presenta un vector de entrada.
2) Cada neurona de la capa de entrada recibe el valor del componente del vector de entrada y lo
envía a todas las neuronas de la capa de salida.
3) Cada neurona de la capa de salida compite con las demás de esta capa hasta que sólo una
permanece activa. Las conexiones laterales son las que permiten realizar esta competición, y
tienen un peso con un valor fijo - ε que debe ser menor que 1/M, donde M es el número de
neuronas de la capa de salida, para que la competición funcione correctamente:
Siendo f la función de transferencia de tipo escalón de las neuronas de salida.
Después de cierto número de iteraciones, se llega a un punto de estabilidad en la que una neurona
resulta vencedora, generando una salida de valor 1, mientras que en las demás neuronas la salida
es 0.
El valor de salida al final de la competición se pueden obtener más fácilmente mediante la
siguiente expresión:




4) La neurona vencedora envía su salida a través de las conexiones hacia atrás. Cada neurona
i-ésima de la capa de entrada recibe el valor:




Por tanto, al no influir el resto de las neuronas de salida por estar inactivas(0), en la capa de
entrada se reciben los valores de los pesos de las conexiones correspondientes.
5) Se compara la información de entrada con la categoría. Si la neurona de salida se ha activado.
Esta comparación se hace valorando la siguiente relación de semejanza:




Al trabajar con valores binarios, el producto aritmético equivale a la operación AND,
6) Se compara la relación de semejanza entre ambas informaciones con un parámetro de
vigilancia (ρ), el cual influirá en el número de clases que establecerá la red. Si no se cumple dicho
parámetro entonces la neurona vencedora se resetea, y se repite desde el paso número 2.
7) Si la semejanza es igual o mayor que el parámetro de vigilancia, entonces se asume que la
neurona que se ha activado a la salida es la que representa al vector de entrada, para después
proceder a ajustar los pesos de la red

APRENDIZAJE

El aprendizaje en el modelo ART es de tipo ON LINE, por lo que no se distingue entre etapa de
entrenamiento y de funcionamiento.
    La red ART utiliza un aprendizaje no supervisado de tipo competitivo.
    En este tipo de redes se pueden dar dos tipos de aprendizaje:
    * Aprendizaje lento: ocurre cuando una información de entrada es asociada a una de las
categorías existentes.
    * Aprendizaje rápido: se da cuando se establece una nueva categoría.
Inicialmente, cuando la red no ha aprendido nada se le asignan los siguientes pesos:




Después, cada vez que se presente un vector de entrada, se realiza el ajuste de los pesos de las
conexiones V de la neurona vencedora con cada una de las neuronas de entrada,en función de la
diferencia entre este vector y del representante, la variación de los pesos V se realiza según la
siguiente ecuación diferencial:
Si la neurona de salida no es la vencedora, el valor de su salida es cero, con lo que no debe
producir variación en el peso correspondiente. En caso contrario, si la neurona es la vencedora, su
salida es 1, con lo que la variación del peso de V sería de :




Los pesos de Wji se obtienen normalizando los anteriores.




Donde:

  γ   suele tener el valor de 0.5

Weitere ähnliche Inhalte

Was ist angesagt?

Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
ESCOM
 
Capa de enlace de datos
Capa de enlace de datosCapa de enlace de datos
Capa de enlace de datos
Jorge Arroyo
 
Conceptos de hardware sistemas operativos
Conceptos de hardware  sistemas operativosConceptos de hardware  sistemas operativos
Conceptos de hardware sistemas operativos
Cristhina Rivera
 
Maquina de pila abstracta
Maquina de pila abstractaMaquina de pila abstracta
Maquina de pila abstracta
wilfredo pena
 
Red NEURONAL MADALINE
Red NEURONAL MADALINERed NEURONAL MADALINE
Red NEURONAL MADALINE
ESCOM
 

Was ist angesagt? (20)

REDES NEURONALES ADALINE
REDES NEURONALES ADALINEREDES NEURONALES ADALINE
REDES NEURONALES ADALINE
 
Redes neuronales artificiales
Redes neuronales artificialesRedes neuronales artificiales
Redes neuronales artificiales
 
Normalizacion en base de datos
Normalizacion en base de datosNormalizacion en base de datos
Normalizacion en base de datos
 
Tipos de Modelos de Datos : Ventajas y Desventajas
Tipos de Modelos de Datos : Ventajas y DesventajasTipos de Modelos de Datos : Ventajas y Desventajas
Tipos de Modelos de Datos : Ventajas y Desventajas
 
Perceptrón simple y multicapa
Perceptrón simple y multicapaPerceptrón simple y multicapa
Perceptrón simple y multicapa
 
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje SupervisadoPerceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
Perceptrón Simple – Redes Neuronales con Aprendizaje Supervisado
 
5.5 mecanismos de acceso a los archivos
5.5 mecanismos de acceso a los archivos5.5 mecanismos de acceso a los archivos
5.5 mecanismos de acceso a los archivos
 
Unidad iii paradigmas de la ingeniería de software
Unidad iii  paradigmas de la ingeniería de softwareUnidad iii  paradigmas de la ingeniería de software
Unidad iii paradigmas de la ingeniería de software
 
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlabRedes neuronales-funciones-activacion-hardlim- hardlims-matlab
Redes neuronales-funciones-activacion-hardlim- hardlims-matlab
 
Red NEURONAL de Hamming
Red   NEURONAL    de HammingRed   NEURONAL    de Hamming
Red NEURONAL de Hamming
 
Capa de enlace de datos
Capa de enlace de datosCapa de enlace de datos
Capa de enlace de datos
 
Conceptos de hardware sistemas operativos
Conceptos de hardware  sistemas operativosConceptos de hardware  sistemas operativos
Conceptos de hardware sistemas operativos
 
Maquina de pila abstracta
Maquina de pila abstractaMaquina de pila abstracta
Maquina de pila abstracta
 
modelo entidad-relacion
modelo entidad-relacionmodelo entidad-relacion
modelo entidad-relacion
 
ENRUTAMIENTO (REDES)
ENRUTAMIENTO (REDES)ENRUTAMIENTO (REDES)
ENRUTAMIENTO (REDES)
 
Reglas de Codd
Reglas de CoddReglas de Codd
Reglas de Codd
 
Diseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y EntrenamientoDiseño de Redes Neuronales Multicapa y Entrenamiento
Diseño de Redes Neuronales Multicapa y Entrenamiento
 
Origen del Modelo OSI y su impacto en als estructuras de redes
Origen del Modelo OSI y su impacto en als estructuras de redesOrigen del Modelo OSI y su impacto en als estructuras de redes
Origen del Modelo OSI y su impacto en als estructuras de redes
 
Procesos e hilos- Parte 1
Procesos e hilos- Parte 1Procesos e hilos- Parte 1
Procesos e hilos- Parte 1
 
Red NEURONAL MADALINE
Red NEURONAL MADALINERed NEURONAL MADALINE
Red NEURONAL MADALINE
 

Ähnlich wie MODELO DE RESONANCIA ADAPTATIVA (ART)

redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3
ESCOM
 
redes neuronales Kohonen
redes neuronales Kohonenredes neuronales Kohonen
redes neuronales Kohonen
ESCOM
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
Liz3113
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
Liz3113
 
Utp 2015-2_sirn_s4_red perceptron
 Utp 2015-2_sirn_s4_red perceptron Utp 2015-2_sirn_s4_red perceptron
Utp 2015-2_sirn_s4_red perceptron
jcbp_peru
 
Utp 2015-2_ia_s4_red perceptron
 Utp 2015-2_ia_s4_red perceptron Utp 2015-2_ia_s4_red perceptron
Utp 2015-2_ia_s4_red perceptron
jcbp_peru
 
Utp ia_s4_red perceptron
 Utp ia_s4_red perceptron Utp ia_s4_red perceptron
Utp ia_s4_red perceptron
jcbp_peru
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizados
Jesus Rojas
 

Ähnlich wie MODELO DE RESONANCIA ADAPTATIVA (ART) (20)

redes neuronales tipo Art3
redes neuronales tipo Art3redes neuronales tipo Art3
redes neuronales tipo Art3
 
Introduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVAIntroduccion MODELO DE RESONANCIA ADAPTATIVA
Introduccion MODELO DE RESONANCIA ADAPTATIVA
 
redes competitivas
redes competitivasredes competitivas
redes competitivas
 
Red Neuronal Difusa
Red Neuronal DifusaRed Neuronal Difusa
Red Neuronal Difusa
 
REDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMINGREDES NEURONALES COMPETITIVAS HAMMING
REDES NEURONALES COMPETITIVAS HAMMING
 
redes neuronales Kohonen
redes neuronales Kohonenredes neuronales Kohonen
redes neuronales Kohonen
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Redes neuronales
Redes neuronalesRedes neuronales
Redes neuronales
 
Utp 2015-2_sirn_s4_red perceptron
 Utp 2015-2_sirn_s4_red perceptron Utp 2015-2_sirn_s4_red perceptron
Utp 2015-2_sirn_s4_red perceptron
 
Utp 2015-2_ia_s4_red perceptron
 Utp 2015-2_ia_s4_red perceptron Utp 2015-2_ia_s4_red perceptron
Utp 2015-2_ia_s4_red perceptron
 
Utp ia_s4_red perceptron
 Utp ia_s4_red perceptron Utp ia_s4_red perceptron
Utp ia_s4_red perceptron
 
Redes de propagación hacia delante y aprendizaje supervisado
Redes de propagación hacia delante   y aprendizaje supervisadoRedes de propagación hacia delante   y aprendizaje supervisado
Redes de propagación hacia delante y aprendizaje supervisado
 
Función de transferencia compet
Función de transferencia competFunción de transferencia compet
Función de transferencia compet
 
Características de las Redes Neuronales
Características de las Redes NeuronalesCaracterísticas de las Redes Neuronales
Características de las Redes Neuronales
 
Mapas autoorganizados
Mapas autoorganizadosMapas autoorganizados
Mapas autoorganizados
 

Mehr von ESCOM

redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
ESCOM
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
ESCOM
 
redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
ESCOM
 
red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
ESCOM
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
ESCOM
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
ESCOM
 
Art2
Art2Art2
Art2
ESCOM
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo Art
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
ESCOM
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
ESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
ESCOM
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
ESCOM
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
ESCOM
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAP
ESCOM
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
ESCOM
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3
ESCOM
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
ESCOM
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
ESCOM
 

Mehr von ESCOM (20)

redes neuronales tipo Som
redes neuronales tipo Somredes neuronales tipo Som
redes neuronales tipo Som
 
redes neuronales Som
redes neuronales Somredes neuronales Som
redes neuronales Som
 
redes neuronales Som Slides
redes neuronales Som Slidesredes neuronales Som Slides
redes neuronales Som Slides
 
red neuronal Som Net
red neuronal Som Netred neuronal Som Net
red neuronal Som Net
 
Self Organinising neural networks
Self Organinising  neural networksSelf Organinising  neural networks
Self Organinising neural networks
 
ejemplo red neuronal Art1
ejemplo red neuronal Art1ejemplo red neuronal Art1
ejemplo red neuronal Art1
 
Art2
Art2Art2
Art2
 
Redes neuronales tipo Art
Redes neuronales tipo ArtRedes neuronales tipo Art
Redes neuronales tipo Art
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Neocognitron
NeocognitronNeocognitron
Neocognitron
 
Fukushima Cognitron
Fukushima CognitronFukushima Cognitron
Fukushima Cognitron
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation NETWORK
Counterpropagation NETWORKCounterpropagation NETWORK
Counterpropagation NETWORK
 
Counterpropagation
CounterpropagationCounterpropagation
Counterpropagation
 
Teoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAPTeoría de Resonancia Adaptativa Art2 ARTMAP
Teoría de Resonancia Adaptativa Art2 ARTMAP
 
Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1Teoría de Resonancia Adaptativa ART1
Teoría de Resonancia Adaptativa ART1
 
learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3learning Vector Quantization LVQ2 LVQ3
learning Vector Quantization LVQ2 LVQ3
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
 
Learning Vector Quantization LVQ
Learning Vector Quantization LVQLearning Vector Quantization LVQ
Learning Vector Quantization LVQ
 

Kürzlich hochgeladen

🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
amelia poma
 

Kürzlich hochgeladen (20)

Actividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxActividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docx
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN  PARÍS. Por JAVIER SOL...
ACERTIJO LA RUTA DEL MARATÓN OLÍMPICO DEL NÚMERO PI EN PARÍS. Por JAVIER SOL...
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
LA JUNGLA DE COLORES.pptx Cuento de animales
LA JUNGLA DE COLORES.pptx  Cuento de animalesLA JUNGLA DE COLORES.pptx  Cuento de animales
LA JUNGLA DE COLORES.pptx Cuento de animales
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdf
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Educacion Basada en Evidencias SM5 Ccesa007.pdf
Educacion Basada en Evidencias  SM5  Ccesa007.pdfEducacion Basada en Evidencias  SM5  Ccesa007.pdf
Educacion Basada en Evidencias SM5 Ccesa007.pdf
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!
 

MODELO DE RESONANCIA ADAPTATIVA (ART)

  • 1. MODELO DE RESONANCIA ADAPTATIVA (ART) DILEMAS DE S. GROSSBERG Plasticidad del aprendizaje: Cómo una red podría aprender nuevos patrones. Estabilidad del aprendizaje: Cómo una red podría retener los patrones previamente aprendidos. Esta teoría se aplica a sistemas competitivos La teoría de la resonancia adaptativa se basa en la idea de hacer resonar la información de entrada con los representantes o prototipos de las categorías que reconoce la red. Si entra en resonancia con algunos, y es suficientemente similar, la red considera que pertenece a dicha categoría y únicamente realiza una pequeña adaptación del prototipo almacenado incorporándole algunas características del dato presentado en la entrada. Cuando no resuena con ninguno, esto es, cuando no se parece a ningún representante de alguna categoría (recordados por la red hasta ese momento), la red se encarga de crear una nueva categoría con el dato de entrada como prototipo. ARQUITECTURA DE LA RED ART FUNCIONAMIENTO 1) Se presenta un vector de entrada. 2) Cada neurona de la capa de entrada recibe el valor del componente del vector de entrada y lo envía a todas las neuronas de la capa de salida. 3) Cada neurona de la capa de salida compite con las demás de esta capa hasta que sólo una permanece activa. Las conexiones laterales son las que permiten realizar esta competición, y tienen un peso con un valor fijo - ε que debe ser menor que 1/M, donde M es el número de neuronas de la capa de salida, para que la competición funcione correctamente:
  • 2. Siendo f la función de transferencia de tipo escalón de las neuronas de salida. Después de cierto número de iteraciones, se llega a un punto de estabilidad en la que una neurona resulta vencedora, generando una salida de valor 1, mientras que en las demás neuronas la salida es 0. El valor de salida al final de la competición se pueden obtener más fácilmente mediante la siguiente expresión: 4) La neurona vencedora envía su salida a través de las conexiones hacia atrás. Cada neurona i-ésima de la capa de entrada recibe el valor: Por tanto, al no influir el resto de las neuronas de salida por estar inactivas(0), en la capa de entrada se reciben los valores de los pesos de las conexiones correspondientes. 5) Se compara la información de entrada con la categoría. Si la neurona de salida se ha activado. Esta comparación se hace valorando la siguiente relación de semejanza: Al trabajar con valores binarios, el producto aritmético equivale a la operación AND, 6) Se compara la relación de semejanza entre ambas informaciones con un parámetro de vigilancia (ρ), el cual influirá en el número de clases que establecerá la red. Si no se cumple dicho parámetro entonces la neurona vencedora se resetea, y se repite desde el paso número 2. 7) Si la semejanza es igual o mayor que el parámetro de vigilancia, entonces se asume que la neurona que se ha activado a la salida es la que representa al vector de entrada, para después proceder a ajustar los pesos de la red APRENDIZAJE El aprendizaje en el modelo ART es de tipo ON LINE, por lo que no se distingue entre etapa de entrenamiento y de funcionamiento. La red ART utiliza un aprendizaje no supervisado de tipo competitivo. En este tipo de redes se pueden dar dos tipos de aprendizaje: * Aprendizaje lento: ocurre cuando una información de entrada es asociada a una de las categorías existentes. * Aprendizaje rápido: se da cuando se establece una nueva categoría. Inicialmente, cuando la red no ha aprendido nada se le asignan los siguientes pesos: Después, cada vez que se presente un vector de entrada, se realiza el ajuste de los pesos de las conexiones V de la neurona vencedora con cada una de las neuronas de entrada,en función de la diferencia entre este vector y del representante, la variación de los pesos V se realiza según la siguiente ecuación diferencial:
  • 3. Si la neurona de salida no es la vencedora, el valor de su salida es cero, con lo que no debe producir variación en el peso correspondiente. En caso contrario, si la neurona es la vencedora, su salida es 1, con lo que la variación del peso de V sería de : Los pesos de Wji se obtienen normalizando los anteriores. Donde: γ suele tener el valor de 0.5