SlideShare ist ein Scribd-Unternehmen logo
1 von 102
Downloaden Sie, um offline zu lesen
Sec on 5.3
    Evalua ng Definite Integrals
           V63.0121.011: Calculus I
         Professor Ma hew Leingang
                New York University


               April 27, 2011


.
Announcements
   Today: 5.3
   Thursday/Friday: Quiz on
   4.1–4.4
   Monday 5/2: 5.4
   Wednesday 5/4: 5.5
   Monday 5/9: Review and
   Movie Day!
   Thursday 5/12: Final
   Exam, 2:00–3:50pm
Objectives
   Use the Evalua on
   Theorem to evaluate
   definite integrals.
   Write an deriva ves as
   indefinite integrals.
   Interpret definite
   integrals as “net change”
   of a func on over an
   interval.
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
The definite integral as a limit
 Defini on
 If f is a func on defined on [a, b], the definite integral of f from a to
 b is the number
                      ∫ b                ∑n
                          f(x) dx = lim     f(ci ) ∆x
                        a            n→∞
                                           i=1

                 b−a
 where ∆x =          , and for each i, xi = a + i∆x, and ci is a point in
                  n
 [xi−1 , xi ].
The definite integral as a limit

 Theorem
 If f is con nuous on [a, b] or if f has only finitely many jump
 discon nui es, then f is integrable on [a, b]; that is, the definite
            ∫ b
 integral       f(x) dx exists and is the same for any choice of ci .
           a
Notation/Terminology
                            ∫    b
                                     f(x) dx
                             a
   ∫
       — integral sign (swoopy S)
   f(x) — integrand
   a and b — limits of integra on (a is the lower limit and b the
   upper limit)
   dx — ??? (a parenthesis? an infinitesimal? a variable?)
   The process of compu ng an integral is called integra on
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
                    1      1      3
We have x0 = 0, x1 = , x2 = , x3 = , x4 = 1.
                    4      2      4
       1       3      5      7
So c1 = , c2 = , c3 = , c4 = .
       8       8      8      8
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
          (                                                       )
      1            4            4            4            4
 M4 =                  2
                         +          2
                                      +          2
                                                   +
      4       1 + (1/8)    1 + (3/8)    1 + (5/8)    1 + (7/8)2
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
        (                                           )
      1      4          4          4          4
 M4 =             +          +          +
      4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
        (                            )
      1   4       4       4      4
    =          +     +       +
      4 65/64 73/64 89/64 113/64
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
        (                                           )
      1      4          4          4          4
 M4 =             +          +          +
      4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
        (                            )
      1    4      4       4      4
    =          +      +       +
      4 65/64 73/64 89/64 113/64
      64 64 64      64
    =    +   +    +    ≈ 3.1468
      65 73 89 113
Properties of the integral
 Theorem (Addi ve Proper es of the Integral)
 Let f and g be integrable func ons on [a, b] and c a constant. Then
       ∫ b
   1.       c dx = c(b − a)
        a
       ∫ b                      ∫ b           ∫ b
   2.       [f(x) + g(x)] dx =      f(x) dx +     g(x) dx.
        a                         a            a
       ∫ b               ∫ b
   3.       cf(x) dx = c     f(x) dx.
       ∫a b               a
                                ∫ b           ∫ b
   4.       [f(x) − g(x)] dx =      f(x) dx −     g(x) dx.
       a                      a            a
More Properties of the Integral
 Conven ons:            ∫                                  ∫
                                a                               b
                                    f(x) dx = −                     f(x) dx
                            b                               a
                                     ∫     a
                                               f(x) dx = 0
                                       a
 This allows us to have
 Theorem
     ∫ c           ∫    b                      ∫     c
  5.     f(x) dx =          f(x) dx +                    f(x) dx for all a, b, and c.
       a            a                            b
Illustrating Property 5
 Theorem
     ∫ c           ∫     b               ∫   c
  5.     f(x) dx =           f(x) dx +           f(x) dx for all a, b, and c.
       a             a                   b


             y




                 .
                         a                                        c   x
                                                 b
Illustrating Property 5
 Theorem
     ∫ c           ∫     b                  ∫     c
  5.     f(x) dx =           f(x) dx +                f(x) dx for all a, b, and c.
       a             a                        b


             y
                              ∫     b
                                        f(x) dx
                                a

                 .
                         a                                             c   x
                                                      b
Illustrating Property 5
 Theorem
     ∫ c           ∫     b                  ∫     c
  5.     f(x) dx =           f(x) dx +                f(x) dx for all a, b, and c.
       a             a                        b


             y
                              ∫     b                     ∫    c
                                        f(x) dx                    f(x) dx
                                a                          b

                 .
                         a                                                   c   x
                                                      b
Illustrating Property 5
 Theorem
     ∫ c           ∫     b                  ∫     c
  5.     f(x) dx =           f(x) dx +                f(x) dx for all a, b, and c.
       a             a                        b


             y
                              ∫     b       ∫ c     ∫ c
                                        f(x) dx f(x) dx f(x) dx
                                a            a             b

                 .
                         a                                             c   x
                                                      b
Illustrating Property 5
 Theorem
     ∫ c           ∫      b               ∫   c
  5.     f(x) dx =            f(x) dx +           f(x) dx for all a, b, and c.
       a              a                   b


             y




                  .
                 a                  c                                  x
                                                                   b
Illustrating Property 5
 Theorem
     ∫ c           ∫      b                 ∫     c
  5.     f(x) dx =            f(x) dx +               f(x) dx for all a, b, and c.
       a              a                       b


             y
                                   ∫    b
                                            f(x) dx
                                    a

                  .
                 a                  c                                      x
                                                                       b
Illustrating Property 5
 Theorem
     ∫ c           ∫      b               ∫   c
  5.     f(x) dx =            f(x) dx +           f(x) dx for all a, b, and c.
       a              a                   b


             y
                                                  ∫   c
                                                     f(x) dx =
                                                   b∫
                                                      b
                                                  −     f(x) dx
                  .                                       c
                 a                  c                                  x
                                                                   b
Illustrating Property 5
 Theorem
     ∫ c           ∫          b               ∫   c
  5.     f(x) dx =                f(x) dx +           f(x) dx for all a, b, and c.
       a                  a                   b


             y
                      ∫                               ∫   c
                          c
                              f(x) dx                    f(x) dx =
                                                       b∫
                      a                                   b
                                                      −     f(x) dx
                  .                                           c
                 a                      c                                  x
                                                                       b
Definite Integrals We Know So Far
  If the integral computes an area
  and we know the area, we can
  use that. For instance,
          ∫ 1√                       y
                            π
                1 − x2 dx =
           0                4
  By brute force we computed             .
   ∫ 1             ∫ 1                       x
        2      1               1
       x dx =          x3 dx =
     0         3     0         4
Comparison Properties of the Integral
 Theorem
 Let f and g be integrable func ons on [a, b].
Comparison Properties of the Integral
 Theorem
 Let f and g be integrable func ons on [a, b].
                                            ∫ b
   6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                           a
Comparison Properties of the Integral
 Theorem
 Let f and g be integrable func ons on [a, b].
                                            ∫ b
   6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                             a
                                               ∫ b           ∫   b
   7. If f(x) ≥ g(x) for all x in [a, b], then     f(x) dx ≥         g(x) dx
                                              a              a
Comparison Properties of the Integral
 Theorem
 Let f and g be integrable func ons on [a, b].
                                            ∫ b
   6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                             a
                                               ∫ b           ∫   b
   7. If f(x) ≥ g(x) for all x in [a, b], then     f(x) dx ≥         g(x) dx
                                              a              a

  8. If m ≤ f(x) ≤ M for all x in [a, b], then
                                 ∫ b
                  m(b − a) ≤          f(x) dx ≤ M(b − a)
                                     a
Integral of a nonnegative function is nonnegative
  Proof.
  If f(x) ≥ 0 for all x in [a, b], then for
  any number of divisions n and choice
  of sample points {ci }:

          ∑
          n                   ∑
                              n
   Sn =         f(ci ) ∆x ≥         0 · ∆x = 0
          i=1   ≥0            i=1
                                                     .             x
  Since Sn ≥ 0 for all n, the limit of {Sn } is nonnega ve, too:
                        ∫ b
                            f(x) dx = lim Sn ≥ 0
                          a                n→∞
                                                 ≥0
The integral is “increasing”
  Proof.
  Let h(x) = f(x) − g(x). If f(x) ≥ g(x)
  for all x in [a, b], then h(x) ≥ 0 for all                                        f(x)
  x in [a, b]. So by the previous                                        h(x)       g(x)
  property
                ∫ b
                    h(x) dx ≥ 0                               .                       x
                a
  This means that
   ∫ b           ∫      b               ∫   b                        ∫   b
       f(x) dx −            g(x) dx =           (f(x) − g(x)) dx =           h(x) dx ≥ 0
     a              a                   a                            a
Bounding the integral
  Proof.
 If m ≤ f(x) ≤ M on for all x in [a, b], then by
                                                   y
 the previous property
      ∫ b        ∫ b             ∫ b               M
          m dx ≤     f(x) dx ≤        M dx
       a            a             a                                f(x)
 By Property 8, the integral of a constant
 func on is the product of the constant and        m
 the width of the interval. So:
                  ∫ b                                  .             x
     m(b − a) ≤       f(x) dx ≤ M(b − a)                   a   b
                    a
Example
          ∫   2
                  1
Es mate             dx using the comparison proper es.
          1       x
Example
          ∫    2
                   1
Es mate              dx using the comparison proper es.
           1       x

Solu on
Since
                                 1 1 1
                                   ≤ ≤
                                 2  x  1
for all x in [1, 2], we have
                                   ∫    2
                           1                1
                             ·1≤              dx ≤ 1 · 1
                           2        1       x
Ques on
        ∫   2
          1
Es mate     dx with L2 and R2 . Are your es mates overes mates?
        1 x
Underes mates? Impossible to tell?
Ques on
        ∫   2
          1
Es mate     dx with L2 and R2 . Are your es mates overes mates?
        1 x
Underes mates? Impossible to tell?

Answer
Since the integrand is decreasing,
                               ∫ 2
                                   1
                         Rn <        dx < Ln
                                1 x
                   ∫ 2
               7       1      5
for all n. So    <       dx < .
              12    1 x       6
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
Socratic proof
  The definite integral of velocity
  measures displacement (net
  distance)
  The deriva ve of displacement
  is velocity
  So we can compute
  displacement with the definite
  integral or the an deriva ve of
  velocity
  But any func on can be a
  velocity func on, so . . .
Theorem of the Day
 Theorem (The Second Fundamental Theorem of Calculus)
 Suppose f is integrable on [a, b] and f = F′ for another func on F,
 then                  ∫    b
                                f(x) dx = F(b) − F(a).
                        a
Theorem of the Day
 Theorem (The Second Fundamental Theorem of Calculus)
 Suppose f is integrable on [a, b] and f = F′ for another func on F,
 then                  ∫    b
                                f(x) dx = F(b) − F(a).
                        a


 Note
 In Sec on 5.3, this theorem is called “The Evalua on Theorem”.
 Nobody else in the world calls it that.
Proving the Second FTC
 Proof.
                                                          b−a
     Divide up [a, b] into n pieces of equal width ∆x =       as
                                                           n
     usual.
Proving the Second FTC
 Proof.
                                                               b−a
     Divide up [a, b] into n pieces of equal width ∆x =            as
                                                                n
     usual.
     For each i, F is con nuous on [xi−1 , xi ] and differen able on
     (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with

                      F(xi ) − F(xi−1 )
                                        = F′ (ci ) = f(ci )
                         xi − xi−1
Proving the Second FTC
 Proof.
                                                               b−a
     Divide up [a, b] into n pieces of equal width ∆x =            as
                                                                n
     usual.
     For each i, F is con nuous on [xi−1 , xi ] and differen able on
     (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with

                      F(xi ) − F(xi−1 )
                                        = F′ (ci ) = f(ci )
                         xi − xi−1
                        =⇒ f(ci )∆x = F(xi ) − F(xi−1 )
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
          = F(xn ) − F(x0 ) = F(b) − F(a)
Proving the Second FTC
 Proof.

     We have shown for each n,

                          Sn = F(b) − F(a)

     Which does not depend on n.
Proving the Second FTC
 Proof.

     We have shown for each n,

                           Sn = F(b) − F(a)

     Which does not depend on n.
     So in the limit
         ∫ b
             f(x) dx = lim Sn = lim (F(b) − F(a)) = F(b) − F(a)
          a          n→∞         n→∞
Computing area with the 2nd FTC
 Example
 Find the area between y = x3 and the x-axis, between x = 0 and
 x = 1.




                                               .
Computing area with the 2nd FTC
 Example
 Find the area between y = x3 and the x-axis, between x = 0 and
 x = 1.

 Solu on

        ∫    1               1
                 3      x4           1
   A=            x dx =          =
         0              4    0       4         .
Computing area with the 2nd FTC
 Example
 Find the area between y = x3 and the x-axis, between x = 0 and
 x = 1.

 Solu on

        ∫    1               1
                 3      x4           1
   A=            x dx =          =
         0              4    0       4         .

 Here we use the nota on F(x)|b or [F(x)]b to mean F(b) − F(a).
                              a          a
Computing area with the 2nd FTC
 Example
 Find the area enclosed by the parabola y = x2 and the line y = 1.
Computing area with the 2nd FTC
 Example
 Find the area enclosed by the parabola y = x2 and the line y = 1.




                                                      1

                                                          .
                                              −1                     1
Computing area with the 2nd FTC
 Example
 Find the area enclosed by the parabola y = x2 and the line y = 1.

 Solu on
            ∫   1     [ 3 ]1
                       x
   A=2−    x dx = 2 −
                    2
                                                      1
                       3 −1
        [−1 ( )]
         1      1      4
    =2−    − −       =                                    .
         3      3      3
                                              −1                     1
Computing an integral we
estimated before
 Example
                         ∫   1
                                   4
 Evaluate the integral                  dx.
                         0       1 + x2
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
        (                                           )
      1      4          4          4          4
 M4 =             +          +          +
      4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
        (                            )
      1    4      4       4      4
    =          +      +       +
      4 65/64 73/64 89/64 113/64
      64 64 64      64
    =    +   +    +    ≈ 3.1468
      65 73 89 113
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                       1
                      dx = 4                  dx
       0       1 + x2          0       1 + x2
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                       1
                      dx = 4                  dx = 4 arctan(x)|1
                                                               0
       0       1 + x2          0       1 + x2
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                       1
                      dx = 4                  dx = 4 arctan(x)|1
                                                               0
       0       1 + x2          0       1 + x2
                        = 4 (arctan 1 − arctan 0)
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                1
                      dx = 4            dx = 4 arctan(x)|1
                                                         0
               1 + x2        0 1+x
                                      2
       0                                               (π    )
                        = 4 (arctan 1 − arctan 0) = 4      −0
                                                         4
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                1
                      dx = 4            dx = 4 arctan(x)|1
                                                         0
               1 + x2        0 1+x
                                      2
       0                                               (π    )
                        = 4 (arctan 1 − arctan 0) = 4      −0 =π
                                                         4
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x
Example
          ∫    2
                   1
Es mate              dx using the comparison proper es.
           1       x

Solu on
Since
                                 1 1 1
                                   ≤ ≤
                                 2  x  1
for all x in [1, 2], we have
                                   ∫    2
                           1                1
                             ·1≤              dx ≤ 1 · 1
                           2        1       x
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x

 Solu on
                      ∫     2
                                1
                                  dx
                       1        x
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x

 Solu on
                      ∫     2
                                1
                                  dx = ln x|2
                                            1
                       1        x
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x

 Solu on
                      ∫     2
                                1
                                  dx = ln x|2 = ln 2 − ln 1
                                            1
                       1        x
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x

 Solu on
                      ∫     2
                                1
                                  dx = ln x|2 = ln 2 − ln 1 = ln 2
                                            1
                       1        x
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
The Integral as Net Change

 Another way to state this theorem is:
                     ∫ b
                         F′ (x) dx = F(b) − F(a),
                       a

 or the integral of a deriva ve along an interval is the net change
 over that interval. This has many interpreta ons.
The Integral as Net Change
The Integral as Net Change


 Corollary
 If v(t) represents the velocity of a par cle moving rec linearly, then
                       ∫ t1
                            v(t) dt = s(t1 ) − s(t0 ).
                        t0
The Integral as Net Change


 Corollary
 If MC(x) represents the marginal cost of making x units of a product,
 then                              ∫ x
                     C(x) = C(0) +     MC(q) dq.
                                     0
The Integral as Net Change


 Corollary
 If ρ(x) represents the density of a thin rod at a distance of x from its
 end, then the mass of the rod up to x is
                                    ∫ x
                          m(x) =        ρ(s) ds.
                                     0
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
A new notation for antiderivatives
 To emphasize the rela onship between an differen a on and
 integra on, we use the indefinite integral nota on
                             ∫
                                f(x) dx

 for any func on whose deriva ve is f(x).
A new notation for antiderivatives
 To emphasize the rela onship between an differen a on and
 integra on, we use the indefinite integral nota on
                             ∫
                                f(x) dx

 for any func on whose deriva ve is f(x). Thus
                        ∫
                           x2 dx = 1 x3 + C.
                                   3
My first table of integrals
 .
  ∫                        ∫           ∫
      [f(x) + g(x)] dx = f(x) dx + g(x) dx
      ∫                                    ∫                 ∫
                    xn+1
         xn dx =         + C (n ̸= −1)         cf(x) dx = c f(x) dx
              ∫ n+1                           ∫
                                                  1
                 ex dx = ex + C                     dx = ln |x| + C
          ∫                                   ∫ x
                                                            ax
             sin x dx = − cos x + C               ax dx =       +C
                                           ∫               ln a
           ∫
               cos x dx = sin x + C           csc2 x dx = − cot x + C
          ∫                              ∫
              sec2 x dx = tan x + C         csc x cot x dx = − csc x + C
        ∫                                ∫
                                                1
           sec x tan x dx = sec x + C       √          dx = arcsin x + C
        ∫                                     1 − x2
               1
                    dx = arctan x + C
            1 + x2
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
Computing Area with integrals
 Example
 Find the area of the region bounded by the lines x = 1, x = 4, the
 x-axis, and the curve y = ex .
Computing Area with integrals
 Example
 Find the area of the region bounded by the lines x = 1, x = 4, the
 x-axis, and the curve y = ex .

 Solu on
 The answer is        ∫    4
                               ex dx = ex |4 = e4 − e.
                                           1
                       1
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.

 Solu on
                                                     y
                     ∫   1
     The answer is           arcsin x dx, but     π/2
                     0
     we do not know an an deriva ve
     for arcsin.
                                                         .
                                                                  x
                                                              1
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.

 Solu on
                                                     y
     Instead compute the area as                  π/2
         ∫ π/2
     π
       −       sin y dy
     2 0
                                                         .
                                                                  x
                                                              1
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.

 Solu on
                                                     y
     Instead compute the area as                  π/2
         ∫ π/2
     π                   π          π/2
       −       sin y dy = −[− cos x]0
     2 0                 2
                                                         .
                                                                  x
                                                              1
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.

 Solu on
                                                     y
     Instead compute the area as                  π/2
         ∫ π/2
     π                   π          π/2 π
       −       sin y dy = −[− cos x]0 = −1
     2 0                 2              2
                                                         .
                                                                  x
                                                              1
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.

Solu on
 No ce the func on
 y = (x − 1)(x − 2) is posi ve on [0, 1)      y
 and (2, 3], and nega ve on (1, 2).


                                               .                 x
                                                   1    2    3
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.

Solu on
      ∫ 1
  A=      (x2 − 3x + 2) dx                    y
       0
          ∫ 2
       −      (x2 − 3x + 2) dx
           1
                ∫ 3                            .                 x
             +      (x2 − 3x + 2) dx               1    2    3
                 2
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.

Solu on
      ∫ 1
  A=      (x − 1)(x − 2) dx                   y
       0
          ∫ 2
       −      (x − 1)(x − 2) dx
           1
               ∫ 3                             .                 x
             +     (x − 1)(x − 2) dx               1    2    3
                2
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.

Solu on

       [1               ]1                    y
  A=    3 x − 3 x2 + 2x 0
            3
                2
            [1 3 3 2           ]2
          − 3x − 2x +        2x 1
            [                  ]3
          + 1 x3 − 3 x2 +
              3     2        2x 2              .                 x
                                      11           1    2    3
                                    =
                                       6
Interpretation of “negative area”
in motion

 There is an analog in rectlinear mo on:
     ∫ t1
           v(t) dt is net distance traveled.
       t0
     ∫ t1
           |v(t)| dt is total distance traveled.
       t0
What about the constant?
   It seems we forgot about the +C when we say for instance
                   ∫ 1            1
                               x4    1       1
                        3
                       x dx =       = −0=
                    0          4 0 4         4
   But no ce
        [ 4   ]1 (      )
         x         1                1          1
            +C =     + C − (0 + C) = + C − C =
          4    0   4                4          4
   no ma er what C is.
   So in an differen a on for definite integrals, the constant is
   immaterial.
Summary
  The second Fundamental Theorem of Calculus:
                   ∫ b
                       f(x) dx = F(b) − F(a)
                      a

  where F′ = f.
  Definite integrals represent net change of a func on over an
  interval.                                      ∫
  We write an deriva ves as indefinite integrals f(x) dx

Weitere ähnliche Inhalte

Was ist angesagt?

Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
Concept map function
Concept map functionConcept map function
Concept map function
zabidah awang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Matthew Leingang
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functions
Umair Pearl
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
Moe Han
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
Delta Pi Systems
 

Was ist angesagt? (17)

Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
 
C3 January 2012 QP
C3 January 2012 QPC3 January 2012 QP
C3 January 2012 QP
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)
 
Concept map function
Concept map functionConcept map function
Concept map function
 
Functions
FunctionsFunctions
Functions
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functions
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 

Andere mochten auch

Andere mochten auch (20)

Mandarin gospel of john
Mandarin gospel of johnMandarin gospel of john
Mandarin gospel of john
 
QutIM english
QutIM englishQutIM english
QutIM english
 
Práctica 2 actividad con los padres
Práctica 2 actividad con los padresPráctica 2 actividad con los padres
Práctica 2 actividad con los padres
 
Competencias tic
Competencias ticCompetencias tic
Competencias tic
 
Maye.17..redes sociales[1] 3kolores
Maye.17..redes sociales[1] 3koloresMaye.17..redes sociales[1] 3kolores
Maye.17..redes sociales[1] 3kolores
 
Planificar la escritura
Planificar la escrituraPlanificar la escritura
Planificar la escritura
 
infeccion
infeccioninfeccion
infeccion
 
Mandarin chinese bible new testament gospel of matthew
Mandarin chinese bible new testament gospel of matthewMandarin chinese bible new testament gospel of matthew
Mandarin chinese bible new testament gospel of matthew
 
Que es el ning
Que es el ningQue es el ning
Que es el ning
 
Ev Junio 2007 Cv
Ev Junio 2007 CvEv Junio 2007 Cv
Ev Junio 2007 Cv
 
Tutorial wiziq
Tutorial wiziqTutorial wiziq
Tutorial wiziq
 
Ppt cee consejo escolar
Ppt cee consejo escolarPpt cee consejo escolar
Ppt cee consejo escolar
 
Fundación El Gran Norte
Fundación El Gran NorteFundación El Gran Norte
Fundación El Gran Norte
 
Senda-natural-del-cultivo-1-de-4-masanobu-fukuoka
 Senda-natural-del-cultivo-1-de-4-masanobu-fukuoka Senda-natural-del-cultivo-1-de-4-masanobu-fukuoka
Senda-natural-del-cultivo-1-de-4-masanobu-fukuoka
 
TICS Redes Informaticas
TICS Redes InformaticasTICS Redes Informaticas
TICS Redes Informaticas
 
Percapita 2008[1]
Percapita 2008[1]Percapita 2008[1]
Percapita 2008[1]
 
Teorias del aprendizaje
Teorias del aprendizajeTeorias del aprendizaje
Teorias del aprendizaje
 
Catalogo lancaster julio16 2014
Catalogo lancaster julio16 2014Catalogo lancaster julio16 2014
Catalogo lancaster julio16 2014
 
Informe final Nuevos medios
Informe final Nuevos mediosInforme final Nuevos medios
Informe final Nuevos medios
 
Sameday Worldwide Overview 2012
Sameday Worldwide Overview 2012Sameday Worldwide Overview 2012
Sameday Worldwide Overview 2012
 

Ähnlich wie Lesson 25: Evaluating Definite Integrals (slides

Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Matthew Leingang
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
goldenratio618
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
JohnReyManzano2
 
Approximate Integration
Approximate IntegrationApproximate Integration
Approximate Integration
Silvius
 
Logarithms
LogarithmsLogarithms
Logarithms
supoteta
 

Ähnlich wie Lesson 25: Evaluating Definite Integrals (slides (20)

Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 
gfg
gfggfg
gfg
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Evaluating definite integrals
Evaluating definite integralsEvaluating definite integrals
Evaluating definite integrals
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Algebra 2 Unit 5 Lesson 7
Algebra 2 Unit 5 Lesson 7Algebra 2 Unit 5 Lesson 7
Algebra 2 Unit 5 Lesson 7
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
125 7.7
125 7.7125 7.7
125 7.7
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Business math
Business mathBusiness math
Business math
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
Math refresher
Math refresherMath refresher
Math refresher
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
 
Approximate Integration
Approximate IntegrationApproximate Integration
Approximate Integration
 
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
 
Functions
FunctionsFunctions
Functions
 
Logarithms
LogarithmsLogarithms
Logarithms
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 

Mehr von Mel Anthony Pepito

Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
Mel Anthony Pepito
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
Mel Anthony Pepito
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
Mel Anthony Pepito
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Mel Anthony Pepito
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
Mel Anthony Pepito
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Mel Anthony Pepito
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slides
Mel Anthony Pepito
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value Theorem
Mel Anthony Pepito
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite Integral
Mel Anthony Pepito
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slides
Mel Anthony Pepito
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals
Mel Anthony Pepito
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus
Mel Anthony Pepito
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by Subsitution
Mel Anthony Pepito
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)
Mel Anthony Pepito
 

Mehr von Mel Anthony Pepito (20)

Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 21: Curve Sketching
Lesson 21: Curve SketchingLesson 21: Curve Sketching
Lesson 21: Curve Sketching
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slides
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value Theorem
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite Integral
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slides
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and Distances
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by Subsitution
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)
 

Kürzlich hochgeladen

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Kürzlich hochgeladen (20)

Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 

Lesson 25: Evaluating Definite Integrals (slides

  • 1. Sec on 5.3 Evalua ng Definite Integrals V63.0121.011: Calculus I Professor Ma hew Leingang New York University April 27, 2011 .
  • 2. Announcements Today: 5.3 Thursday/Friday: Quiz on 4.1–4.4 Monday 5/2: 5.4 Wednesday 5/4: 5.5 Monday 5/9: Review and Movie Day! Thursday 5/12: Final Exam, 2:00–3:50pm
  • 3. Objectives Use the Evalua on Theorem to evaluate definite integrals. Write an deriva ves as indefinite integrals. Interpret definite integrals as “net change” of a func on over an interval.
  • 4. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 5. The definite integral as a limit Defini on If f is a func on defined on [a, b], the definite integral of f from a to b is the number ∫ b ∑n f(x) dx = lim f(ci ) ∆x a n→∞ i=1 b−a where ∆x = , and for each i, xi = a + i∆x, and ci is a point in n [xi−1 , xi ].
  • 6. The definite integral as a limit Theorem If f is con nuous on [a, b] or if f has only finitely many jump discon nui es, then f is integrable on [a, b]; that is, the definite ∫ b integral f(x) dx exists and is the same for any choice of ci . a
  • 7. Notation/Terminology ∫ b f(x) dx a ∫ — integral sign (swoopy S) f(x) — integrand a and b — limits of integra on (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?) The process of compu ng an integral is called integra on
  • 8. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2
  • 9. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on 1 1 3 We have x0 = 0, x1 = , x2 = , x3 = , x4 = 1. 4 2 4 1 3 5 7 So c1 = , c2 = , c3 = , c4 = . 8 8 8 8
  • 10. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on ( ) 1 4 4 4 4 M4 = 2 + 2 + 2 + 4 1 + (1/8) 1 + (3/8) 1 + (5/8) 1 + (7/8)2
  • 11. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64
  • 12. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 64 64 64 64 = + + + ≈ 3.1468 65 73 89 113
  • 13. Properties of the integral Theorem (Addi ve Proper es of the Integral) Let f and g be integrable func ons on [a, b] and c a constant. Then ∫ b 1. c dx = c(b − a) a ∫ b ∫ b ∫ b 2. [f(x) + g(x)] dx = f(x) dx + g(x) dx. a a a ∫ b ∫ b 3. cf(x) dx = c f(x) dx. ∫a b a ∫ b ∫ b 4. [f(x) − g(x)] dx = f(x) dx − g(x) dx. a a a
  • 14. More Properties of the Integral Conven ons: ∫ ∫ a b f(x) dx = − f(x) dx b a ∫ a f(x) dx = 0 a This allows us to have Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b
  • 15. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y . a c x b
  • 16. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b f(x) dx a . a c x b
  • 17. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b ∫ c f(x) dx f(x) dx a b . a c x b
  • 18. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b ∫ c ∫ c f(x) dx f(x) dx f(x) dx a a b . a c x b
  • 19. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y . a c x b
  • 20. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b f(x) dx a . a c x b
  • 21. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ c f(x) dx = b∫ b − f(x) dx . c a c x b
  • 22. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ ∫ c c f(x) dx f(x) dx = b∫ a b − f(x) dx . c a c x b
  • 23. Definite Integrals We Know So Far If the integral computes an area and we know the area, we can use that. For instance, ∫ 1√ y π 1 − x2 dx = 0 4 By brute force we computed . ∫ 1 ∫ 1 x 2 1 1 x dx = x3 dx = 0 3 0 4
  • 24. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b].
  • 25. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a
  • 26. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a ∫ b ∫ b 7. If f(x) ≥ g(x) for all x in [a, b], then f(x) dx ≥ g(x) dx a a
  • 27. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a ∫ b ∫ b 7. If f(x) ≥ g(x) for all x in [a, b], then f(x) dx ≥ g(x) dx a a 8. If m ≤ f(x) ≤ M for all x in [a, b], then ∫ b m(b − a) ≤ f(x) dx ≤ M(b − a) a
  • 28. Integral of a nonnegative function is nonnegative Proof. If f(x) ≥ 0 for all x in [a, b], then for any number of divisions n and choice of sample points {ci }: ∑ n ∑ n Sn = f(ci ) ∆x ≥ 0 · ∆x = 0 i=1 ≥0 i=1 . x Since Sn ≥ 0 for all n, the limit of {Sn } is nonnega ve, too: ∫ b f(x) dx = lim Sn ≥ 0 a n→∞ ≥0
  • 29. The integral is “increasing” Proof. Let h(x) = f(x) − g(x). If f(x) ≥ g(x) for all x in [a, b], then h(x) ≥ 0 for all f(x) x in [a, b]. So by the previous h(x) g(x) property ∫ b h(x) dx ≥ 0 . x a This means that ∫ b ∫ b ∫ b ∫ b f(x) dx − g(x) dx = (f(x) − g(x)) dx = h(x) dx ≥ 0 a a a a
  • 30. Bounding the integral Proof. If m ≤ f(x) ≤ M on for all x in [a, b], then by y the previous property ∫ b ∫ b ∫ b M m dx ≤ f(x) dx ≤ M dx a a a f(x) By Property 8, the integral of a constant func on is the product of the constant and m the width of the interval. So: ∫ b . x m(b − a) ≤ f(x) dx ≤ M(b − a) a b a
  • 31. Example ∫ 2 1 Es mate dx using the comparison proper es. 1 x
  • 32. Example ∫ 2 1 Es mate dx using the comparison proper es. 1 x Solu on Since 1 1 1 ≤ ≤ 2 x 1 for all x in [1, 2], we have ∫ 2 1 1 ·1≤ dx ≤ 1 · 1 2 1 x
  • 33. Ques on ∫ 2 1 Es mate dx with L2 and R2 . Are your es mates overes mates? 1 x Underes mates? Impossible to tell?
  • 34. Ques on ∫ 2 1 Es mate dx with L2 and R2 . Are your es mates overes mates? 1 x Underes mates? Impossible to tell? Answer Since the integrand is decreasing, ∫ 2 1 Rn < dx < Ln 1 x ∫ 2 7 1 5 for all n. So < dx < . 12 1 x 6
  • 35. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 36. Socratic proof The definite integral of velocity measures displacement (net distance) The deriva ve of displacement is velocity So we can compute displacement with the definite integral or the an deriva ve of velocity But any func on can be a velocity func on, so . . .
  • 37. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another func on F, then ∫ b f(x) dx = F(b) − F(a). a
  • 38. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another func on F, then ∫ b f(x) dx = F(b) − F(a). a Note In Sec on 5.3, this theorem is called “The Evalua on Theorem”. Nobody else in the world calls it that.
  • 39. Proving the Second FTC Proof. b−a Divide up [a, b] into n pieces of equal width ∆x = as n usual.
  • 40. Proving the Second FTC Proof. b−a Divide up [a, b] into n pieces of equal width ∆x = as n usual. For each i, F is con nuous on [xi−1 , xi ] and differen able on (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with F(xi ) − F(xi−1 ) = F′ (ci ) = f(ci ) xi − xi−1
  • 41. Proving the Second FTC Proof. b−a Divide up [a, b] into n pieces of equal width ∆x = as n usual. For each i, F is con nuous on [xi−1 , xi ] and differen able on (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with F(xi ) − F(xi−1 ) = F′ (ci ) = f(ci ) xi − xi−1 =⇒ f(ci )∆x = F(xi ) − F(xi−1 )
  • 42. Proving the Second FTC Proof. Form the Riemann Sum:
  • 43. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1
  • 44. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 45. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 46. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 47. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 48. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 49. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 50. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 51. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 52. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 53. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 54. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 55. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) = F(xn ) − F(x0 ) = F(b) − F(a)
  • 56. Proving the Second FTC Proof. We have shown for each n, Sn = F(b) − F(a) Which does not depend on n.
  • 57. Proving the Second FTC Proof. We have shown for each n, Sn = F(b) − F(a) Which does not depend on n. So in the limit ∫ b f(x) dx = lim Sn = lim (F(b) − F(a)) = F(b) − F(a) a n→∞ n→∞
  • 58. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. .
  • 59. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solu on ∫ 1 1 3 x4 1 A= x dx = = 0 4 0 4 .
  • 60. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solu on ∫ 1 1 3 x4 1 A= x dx = = 0 4 0 4 . Here we use the nota on F(x)|b or [F(x)]b to mean F(b) − F(a). a a
  • 61. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1.
  • 62. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. 1 . −1 1
  • 63. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. Solu on ∫ 1 [ 3 ]1 x A=2− x dx = 2 − 2 1 3 −1 [−1 ( )] 1 1 4 =2− − − = . 3 3 3 −1 1
  • 64. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2
  • 65. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 64 64 64 64 = + + + ≈ 3.1468 65 73 89 113
  • 66. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2
  • 67. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx = 4 arctan(x)|1 0 0 1 + x2 0 1 + x2
  • 68. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx = 4 arctan(x)|1 0 0 1 + x2 0 1 + x2 = 4 (arctan 1 − arctan 0)
  • 69. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx = 4 arctan(x)|1 0 1 + x2 0 1+x 2 0 (π ) = 4 (arctan 1 − arctan 0) = 4 −0 4
  • 70. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx = 4 arctan(x)|1 0 1 + x2 0 1+x 2 0 (π ) = 4 (arctan 1 − arctan 0) = 4 −0 =π 4
  • 71. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x
  • 72. Example ∫ 2 1 Es mate dx using the comparison proper es. 1 x Solu on Since 1 1 1 ≤ ≤ 2 x 1 for all x in [1, 2], we have ∫ 2 1 1 ·1≤ dx ≤ 1 · 1 2 1 x
  • 73. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solu on ∫ 2 1 dx 1 x
  • 74. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solu on ∫ 2 1 dx = ln x|2 1 1 x
  • 75. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solu on ∫ 2 1 dx = ln x|2 = ln 2 − ln 1 1 1 x
  • 76. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solu on ∫ 2 1 dx = ln x|2 = ln 2 − ln 1 = ln 2 1 1 x
  • 77. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 78. The Integral as Net Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a deriva ve along an interval is the net change over that interval. This has many interpreta ons.
  • 79. The Integral as Net Change
  • 80. The Integral as Net Change Corollary If v(t) represents the velocity of a par cle moving rec linearly, then ∫ t1 v(t) dt = s(t1 ) − s(t0 ). t0
  • 81. The Integral as Net Change Corollary If MC(x) represents the marginal cost of making x units of a product, then ∫ x C(x) = C(0) + MC(q) dq. 0
  • 82. The Integral as Net Change Corollary If ρ(x) represents the density of a thin rod at a distance of x from its end, then the mass of the rod up to x is ∫ x m(x) = ρ(s) ds. 0
  • 83. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 84. A new notation for antiderivatives To emphasize the rela onship between an differen a on and integra on, we use the indefinite integral nota on ∫ f(x) dx for any func on whose deriva ve is f(x).
  • 85. A new notation for antiderivatives To emphasize the rela onship between an differen a on and integra on, we use the indefinite integral nota on ∫ f(x) dx for any func on whose deriva ve is f(x). Thus ∫ x2 dx = 1 x3 + C. 3
  • 86. My first table of integrals . ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx ∫ ∫ ∫ xn+1 xn dx = + C (n ̸= −1) cf(x) dx = c f(x) dx ∫ n+1 ∫ 1 ex dx = ex + C dx = ln |x| + C ∫ ∫ x ax sin x dx = − cos x + C ax dx = +C ∫ ln a ∫ cos x dx = sin x + C csc2 x dx = − cot x + C ∫ ∫ sec2 x dx = tan x + C csc x cot x dx = − csc x + C ∫ ∫ 1 sec x tan x dx = sec x + C √ dx = arcsin x + C ∫ 1 − x2 1 dx = arctan x + C 1 + x2
  • 87. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 88. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex .
  • 89. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex . Solu on The answer is ∫ 4 ex dx = ex |4 = e4 − e. 1 1
  • 90. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1.
  • 91. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on y ∫ 1 The answer is arcsin x dx, but π/2 0 we do not know an an deriva ve for arcsin. . x 1
  • 92. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on y Instead compute the area as π/2 ∫ π/2 π − sin y dy 2 0 . x 1
  • 93. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on y Instead compute the area as π/2 ∫ π/2 π π π/2 − sin y dy = −[− cos x]0 2 0 2 . x 1
  • 94. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on y Instead compute the area as π/2 ∫ π/2 π π π/2 π − sin y dy = −[− cos x]0 = −1 2 0 2 2 . x 1
  • 95. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3.
  • 96. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on No ce the func on y = (x − 1)(x − 2) is posi ve on [0, 1) y and (2, 3], and nega ve on (1, 2). . x 1 2 3
  • 97. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on ∫ 1 A= (x2 − 3x + 2) dx y 0 ∫ 2 − (x2 − 3x + 2) dx 1 ∫ 3 . x + (x2 − 3x + 2) dx 1 2 3 2
  • 98. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on ∫ 1 A= (x − 1)(x − 2) dx y 0 ∫ 2 − (x − 1)(x − 2) dx 1 ∫ 3 . x + (x − 1)(x − 2) dx 1 2 3 2
  • 99. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on [1 ]1 y A= 3 x − 3 x2 + 2x 0 3 2 [1 3 3 2 ]2 − 3x − 2x + 2x 1 [ ]3 + 1 x3 − 3 x2 + 3 2 2x 2 . x 11 1 2 3 = 6
  • 100. Interpretation of “negative area” in motion There is an analog in rectlinear mo on: ∫ t1 v(t) dt is net distance traveled. t0 ∫ t1 |v(t)| dt is total distance traveled. t0
  • 101. What about the constant? It seems we forgot about the +C when we say for instance ∫ 1 1 x4 1 1 3 x dx = = −0= 0 4 0 4 4 But no ce [ 4 ]1 ( ) x 1 1 1 +C = + C − (0 + C) = + C − C = 4 0 4 4 4 no ma er what C is. So in an differen a on for definite integrals, the constant is immaterial.
  • 102. Summary The second Fundamental Theorem of Calculus: ∫ b f(x) dx = F(b) − F(a) a where F′ = f. Definite integrals represent net change of a func on over an interval. ∫ We write an deriva ves as indefinite integrals f(x) dx