SlideShare ist ein Scribd-Unternehmen logo
1 von 39
Downloaden Sie, um offline zu lesen
1
Assessment of Risks on transportation Networks resulting from
slope Instability and Climate change in the Alps
Main objectives
A. Document current DF/shallow landslide
activity in the Alps
B. Consequences on transportation network
C. Definition of RCM future climate scenarios
D. DF response considering future climate
conditions and lande use planning
E. Help to practical users users
2
3 key regions
3
1- French Alps
(Haute-Durance, Savoie)
2- Eastern Italian Alps
(Tagliamento and Adige rivers)
3- Swiss Alps (Zermatt valley)
Grenoble
Briançon
Geneve
Italy
3- Swiss Alps (Zermatt valley)
Method: point A (Current DF/landslides activity)
 Current DF databases (historical archives –tree ring)
 Current climate conditions
4
- Observed climate data
- Reanalyses climate data
- 27 RCMs downscaled scenarios
France Italy Switzerland
650 DF from 1970 50 DF from 1990s
250 DF+ from 1850
Methods: point A (DF/landslides activity related to
current climate conditions)
 In the 3 regions
– Probabilistic and Deterministic models of
occurrence at local scale (Shallow landslide
model) considering climatic components
– Probabilistic model of occurrence at meso scale
(logit simple or hierarchic model) considering
climatic and geomorphologic components
5
6
Main results: landslides local scale
Landslide suseptibily considering different precipitation scenarios
defined from meteo stations
Main results : Landslides local scale
7
 Ubaye Valley - Southern French Alps
 7 shallow forested landslides sampled in the Riou Bourdoux catchment
 759 pine trees - 3096 cores sampled
 1298 growth disturbances dated
Main results: landslides local scale
 Landslide reactivation related to temperature anomalies
during spring
 Evolution suggests a shift from snowmelt-induced landslides
(controlled by winter precipitation) to reactivations controlled
by spring temperatures
8
N = 61
 Local scale with current meteorological
conditions (I/D of precipitation analysis)
9
Precipitation during each event
Main results point A: occurrence of
Debris flows-current meteo
Not a good option
UNIPAD Contribution 10
Main results point A: occurrence of
Debris flows-current climate
 Meso scale climate variables only
- Pseudo homogeneization of RTM data
to reduce mistakes in the database
- Analyze from 1970
No data or year without
debris flows ?
Main results point A: occurrence of
Debris flows-current climate
 Meso scale climate variables only
11
Df occurrence
Precipitation (Number
of rainy days)
Temperature
(maximum summer
temperature)
UNIPAD Contribution 12
Main results point A: occurrence of
Debris flows- current climate
Debris flow probability=
1 / (1 + EXP((30,23+1*Tx+0,67*Nrd)))
Meteo factors Value Wald Chi-Square Pr > Chi² % correct 0 % correct 1 % correct
Tx 1,064 5,089 0,024
72,47% 72,31% 72%%Nrd 0,671 3,066 0,008
Main results point A: DF and
landslides activity
 Local scale
 DF and shallow landslides triggered by
extreme precipitations
 Meso scale
 DF and shallow landslides triggered by
Temperature + precipitation
13
Main results point A:
Meso scale : climate + geomorphic parameters
14
Regional component
(climate variables at annual scale)
Individual component
(catchments characteristics)
Binary probability
for a catchment i for a year t
Statistical modeling: bayesian hierarchical
probabilistic model based on logistic
regression
logit (pit) = a0 + αi + βt
Main results point A meso scale
15
Individual component
• Elevation
• Area
• Slope
• Lithology
• Land cover
• Permafrost
Regional component
• Number of rainy
days
• Daily max
temperature
• P>10mm/d
• P>20mm/d
• …..
16
Geomorphological
component (R² 0.78)
Climatic component
(R² 0.72)
Total explained variance: 0.84
% of total variance 0.29
1- Permafrost 80%
2- Surface area 13%
3- Forest (land cover) 7%
% of total variance 0.55
1- max T in summer 67%
2- Nb of rainy days 33%
Main results point A (meso scale):
Role of climatic and geomorphic variables
in DF triggerring
Point D: Consequences on
transportation network
17
A. Consequences on
transportation network
The 4th of june 2012 a DF event destroyed the road close to Lautaret pass
Method: point D
(Impacts of DF/landslides activity on road network)
 DF impact databases in the three regions
 A comparative analysis in normal and
disturbed situation of the network
(Accessibility : distance and time)
 Susceptibility of the network considering
future DF probabilities
 Crisis management analysis (In France only)
18
Impacts on transportation: Swiss
Alps
19
 Loss of accessibility
in Zermatt valley
125 DF events since the19th century
20
(>7events/year) = 1/(1+exp (-(-
21,91+0,14*Nrd+0,9Tx)))
Impacts on transportation French
Alps
 Identification of
impacted roads
21
(>7events/year) = 1/(1+exp (-(-
21,91+0,14*Nrd+0,9Tx)))
Main results point D
 Loss of accessibility with national and
international impacts
The 4th of June 2012 a DF event
destroyed the road close to Lautaret
pass
22
>
35
m
m
>35 mm during 1h
Rainy event responsible for DF event
23
35 mm <10 y return period
IT1 : Normal situation
IT2 : Via Gap
IT3 : Via St Jean de
Maurienne
Grenoble-Briançon options.
24
Normal way
Road destroyed by the DF event
2 solutions
+ 1h30; 36€
+ 1h10; 66€
NCAR/ASP Thompson Lecture Series
Institutionnal vulnerability : crisis management.
Reconstitution of decision-making and organizational process :
26
Impacts on transportation: Italy
 Identification of impacted
roads with local
stakeholders (Tyrol region)
 Probability of dysfonction in
the future
Point C: Definition of RCMs future
scenarios
 All simulations are based on the A1B
emission scenario
 24 RCMs until 2050 and 17 RCMs until
2100 from the EU-FP6 project ENSEMBLES.
 Error correction.
27
Main results point C: error
corrections
28
Raw (orange) and corrected (blue) precipitation distributions
at station St. Valent (Tirol). Left: Light and moderate
precipitation; Right: Heavy precipitation.
29
after Météo-France, 2011
Near future (2020-2050)) Far future (2070-2100)
Annual precipitation sum changes
Annual maximum temperature changes
+2°C +4°C
slightly more slightly less
Main results point C
 Future climate change
Main results point C: Triggering
climate parameters in the future
30
Climate change signal of precipitation types . The number of stations with increasing (arrow up),
decreasing (arrow down), and no change (horizontal arrow (-1 % to +1 %)) for precipitation
frequency of different thresholds is shown. Different colors represent the numbers of stations.
Main objectives
A. Document current DF/shallow landslide activity in the Alps
B. Consequences on transportation network
C. Definition of RCM future climate scenarios
D. DF response considering future climate
conditions and lande use planning
E. Help to practical users
31
Point D local scale: Results
32
Current period
Future period
Model of DF triggering
based on Rcms data
24 RCMs until 2050
17 RCMs until 2100
A1B scenarioModel of DF triggering
forced by future climate
scenarios
2100
2050
Point D meso scale: Results
Model of DF triggering
calibrated on Safran data
33
Current period
Future period
Interchanging Safran with
RCMs downscaled data
Model of DF triggering
based on Rcms data
24 RCMs until 2050
17 RCMs until 2100
A1B scenario
Model of DF triggering
forced by future climate
scenarios
Step 1
Step 2
Step 3
Point E: Help to practical users
34
1. Volume and run out estimates from MassMov2D
(physical model) for case studies
2. Crisis amanagment analysis
3. Fonctional disturbance analysis regional and
international scale
 In France
 In Italy
 In Switzerland
1. Volume and run out estimates from MassMov2D (physical
model) for case studies
2. Probability of future dysfonction based on climate scenarios
for cases studies
1. Fonctional disturbance analysis regional and international scale
2. Technical investigations
From a case study example: The rif Blanc df
event on 4th of June 2012
Volume and run out estimates from a deterministic model
35
36
Volume estimated from peak flow calculation :
(from the video of the 2nd DF at 10am)
1. Number of pictures per second on
the video (30p/sec).
2. Section of the flow
(L x h x WP).
3. Choose a representative block
(B). transported distance/ time
between :
Position 1 at the time T
Position 2 at the time T+1
4. Qp = WS (m²) x velocity (m/s)
5. Rickenmann volume estimation :
Qp = 0.1V0.83
V = 10 760
Debris flow volume (2nd)
= 11 000m3
Help to local stakeholders
37
Sensitivity tests of local protections to DF on the
Highway France-Italy
<15 year return period <30 year return period
 Sensitivity to climate change of the debris flows
which are able to reach the road system along the
considered road
38
Help to local stakeholders in italy
Summer
Fall
Conclusions
 Current relationships between
DF/landslides and climate depends on the
considered region
 Slope processes strongly impact
transportation network
 Perception of DF Risk depends on the
region
 Mitigation is not perfect ! (No by pass,
underestimation of protected
constructions)
 Good relationhsip with public stakeholders
more difficult with private component
39

Weitere ähnliche Inhalte

Mehr von Medi Ambient. Generalitat de Catalunya

Procés de participació ciutadana per redactar els estatuts de l'Agència de la...
Procés de participació ciutadana per redactar els estatuts de l'Agència de la...Procés de participació ciutadana per redactar els estatuts de l'Agència de la...
Procés de participació ciutadana per redactar els estatuts de l'Agència de la...
Medi Ambient. Generalitat de Catalunya
 

Mehr von Medi Ambient. Generalitat de Catalunya (20)

Resum executiu de l'estudi “Dona i medi ambient: el rol de la dona a l’ocupac...
Resum executiu de l'estudi “Dona i medi ambient: el rol de la dona a l’ocupac...Resum executiu de l'estudi “Dona i medi ambient: el rol de la dona a l’ocupac...
Resum executiu de l'estudi “Dona i medi ambient: el rol de la dona a l’ocupac...
 
Dona i medi ambient: el rol de la dona a l’ocupació verda a Catalunya
Dona i medi ambient: el rol de la dona a l’ocupació verda a CatalunyaDona i medi ambient: el rol de la dona a l’ocupació verda a Catalunya
Dona i medi ambient: el rol de la dona a l’ocupació verda a Catalunya
 
Crònica de la COP 27 a Sharm el-Sheikh: un món en ebullició
Crònica de la COP 27 a Sharm el-Sheikh: un món en ebullicióCrònica de la COP 27 a Sharm el-Sheikh: un món en ebullició
Crònica de la COP 27 a Sharm el-Sheikh: un món en ebullició
 
Circular Economy Hostpot Catalonia 2021
Circular Economy Hostpot Catalonia 2021Circular Economy Hostpot Catalonia 2021
Circular Economy Hostpot Catalonia 2021
 
Guia per organizar esdeveniments sostenibles .pdf
Guia per organizar esdeveniments sostenibles .pdfGuia per organizar esdeveniments sostenibles .pdf
Guia per organizar esdeveniments sostenibles .pdf
 
Estat de la natura a Catalunya
Estat de la natura a CatalunyaEstat de la natura a Catalunya
Estat de la natura a Catalunya
 
L’economia circular traça el camí cap a sistemes eficients en l´ús de matèrie...
L’economia circular traça el camí cap a sistemes eficients en l´ús de matèrie...L’economia circular traça el camí cap a sistemes eficients en l´ús de matèrie...
L’economia circular traça el camí cap a sistemes eficients en l´ús de matèrie...
 
Reptes i incerteses en l’assoliment del bon estat dels sistemes aquàtics.
Reptes i incerteses en l’assoliment del bon estat dels sistemes aquàtics. Reptes i incerteses en l’assoliment del bon estat dels sistemes aquàtics.
Reptes i incerteses en l’assoliment del bon estat dels sistemes aquàtics.
 
Eines per a la gestió de la qualitat de l'aire: la modelització atmosfèrica.
Eines per a la gestió de la qualitat de l'aire: la modelització atmosfèrica. Eines per a la gestió de la qualitat de l'aire: la modelització atmosfèrica.
Eines per a la gestió de la qualitat de l'aire: la modelització atmosfèrica.
 
Educació Ambiental: repensant el camí cap a la sostenibilitat
Educació Ambiental: repensant el camí cap a la sostenibilitat Educació Ambiental: repensant el camí cap a la sostenibilitat
Educació Ambiental: repensant el camí cap a la sostenibilitat
 
Canvi climàtic
Canvi climàticCanvi climàtic
Canvi climàtic
 
El sòl com proveïdor clau de serveis ecosistèmics i la seva integració en l’a...
El sòl com proveïdor clau de serveis ecosistèmics i la seva integració en l’a...El sòl com proveïdor clau de serveis ecosistèmics i la seva integració en l’a...
El sòl com proveïdor clau de serveis ecosistèmics i la seva integració en l’a...
 
Procés de participació ciutadana per redactar els estatuts de l'Agència de la...
Procés de participació ciutadana per redactar els estatuts de l'Agència de la...Procés de participació ciutadana per redactar els estatuts de l'Agència de la...
Procés de participació ciutadana per redactar els estatuts de l'Agència de la...
 
Convocatòria Subvencions Zones de Baixes Emissions
Convocatòria Subvencions Zones de Baixes EmissionsConvocatòria Subvencions Zones de Baixes Emissions
Convocatòria Subvencions Zones de Baixes Emissions
 
Eines de suport per a la implantació i gestió de les Zones de Baixes Emissions
Eines de suport per a la implantació i gestió de les Zones de Baixes EmissionsEines de suport per a la implantació i gestió de les Zones de Baixes Emissions
Eines de suport per a la implantació i gestió de les Zones de Baixes Emissions
 
Regulació jurídica de les Zones de Baixes Emissions
Regulació jurídica de les Zones de Baixes EmissionsRegulació jurídica de les Zones de Baixes Emissions
Regulació jurídica de les Zones de Baixes Emissions
 
Experiència de gestió ZBE Rondes i equipaments tecnològics
Experiència de gestió ZBE Rondes i equipaments tecnològicsExperiència de gestió ZBE Rondes i equipaments tecnològics
Experiència de gestió ZBE Rondes i equipaments tecnològics
 
Zona Baixes Emissions Rondes Barcelona
Zona Baixes Emissions Rondes BarcelonaZona Baixes Emissions Rondes Barcelona
Zona Baixes Emissions Rondes Barcelona
 
Contaminació per ozó troposfèric a Espanya
Contaminació per ozó troposfèric a EspanyaContaminació per ozó troposfèric a Espanya
Contaminació per ozó troposfèric a Espanya
 
Campanya de l’ozó troposfèric a Catalunya 2022
Campanya de l’ozó troposfèric a Catalunya 2022Campanya de l’ozó troposfèric a Catalunya 2022
Campanya de l’ozó troposfèric a Catalunya 2022
 

Kürzlich hochgeladen

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 

Kürzlich hochgeladen (20)

Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 

Assessment of Risks on transportation Networks resulting from slope Instability and Climate change in the Alps

  • 1. 1 Assessment of Risks on transportation Networks resulting from slope Instability and Climate change in the Alps
  • 2. Main objectives A. Document current DF/shallow landslide activity in the Alps B. Consequences on transportation network C. Definition of RCM future climate scenarios D. DF response considering future climate conditions and lande use planning E. Help to practical users users 2
  • 3. 3 key regions 3 1- French Alps (Haute-Durance, Savoie) 2- Eastern Italian Alps (Tagliamento and Adige rivers) 3- Swiss Alps (Zermatt valley) Grenoble Briançon Geneve Italy 3- Swiss Alps (Zermatt valley)
  • 4. Method: point A (Current DF/landslides activity)  Current DF databases (historical archives –tree ring)  Current climate conditions 4 - Observed climate data - Reanalyses climate data - 27 RCMs downscaled scenarios France Italy Switzerland 650 DF from 1970 50 DF from 1990s 250 DF+ from 1850
  • 5. Methods: point A (DF/landslides activity related to current climate conditions)  In the 3 regions – Probabilistic and Deterministic models of occurrence at local scale (Shallow landslide model) considering climatic components – Probabilistic model of occurrence at meso scale (logit simple or hierarchic model) considering climatic and geomorphologic components 5
  • 6. 6 Main results: landslides local scale Landslide suseptibily considering different precipitation scenarios defined from meteo stations
  • 7. Main results : Landslides local scale 7  Ubaye Valley - Southern French Alps  7 shallow forested landslides sampled in the Riou Bourdoux catchment  759 pine trees - 3096 cores sampled  1298 growth disturbances dated
  • 8. Main results: landslides local scale  Landslide reactivation related to temperature anomalies during spring  Evolution suggests a shift from snowmelt-induced landslides (controlled by winter precipitation) to reactivations controlled by spring temperatures 8 N = 61
  • 9.  Local scale with current meteorological conditions (I/D of precipitation analysis) 9 Precipitation during each event Main results point A: occurrence of Debris flows-current meteo Not a good option
  • 10. UNIPAD Contribution 10 Main results point A: occurrence of Debris flows-current climate  Meso scale climate variables only - Pseudo homogeneization of RTM data to reduce mistakes in the database - Analyze from 1970 No data or year without debris flows ?
  • 11. Main results point A: occurrence of Debris flows-current climate  Meso scale climate variables only 11 Df occurrence Precipitation (Number of rainy days) Temperature (maximum summer temperature)
  • 12. UNIPAD Contribution 12 Main results point A: occurrence of Debris flows- current climate Debris flow probability= 1 / (1 + EXP((30,23+1*Tx+0,67*Nrd))) Meteo factors Value Wald Chi-Square Pr > Chi² % correct 0 % correct 1 % correct Tx 1,064 5,089 0,024 72,47% 72,31% 72%%Nrd 0,671 3,066 0,008
  • 13. Main results point A: DF and landslides activity  Local scale  DF and shallow landslides triggered by extreme precipitations  Meso scale  DF and shallow landslides triggered by Temperature + precipitation 13
  • 14. Main results point A: Meso scale : climate + geomorphic parameters 14 Regional component (climate variables at annual scale) Individual component (catchments characteristics) Binary probability for a catchment i for a year t Statistical modeling: bayesian hierarchical probabilistic model based on logistic regression logit (pit) = a0 + αi + βt
  • 15. Main results point A meso scale 15 Individual component • Elevation • Area • Slope • Lithology • Land cover • Permafrost Regional component • Number of rainy days • Daily max temperature • P>10mm/d • P>20mm/d • …..
  • 16. 16 Geomorphological component (R² 0.78) Climatic component (R² 0.72) Total explained variance: 0.84 % of total variance 0.29 1- Permafrost 80% 2- Surface area 13% 3- Forest (land cover) 7% % of total variance 0.55 1- max T in summer 67% 2- Nb of rainy days 33% Main results point A (meso scale): Role of climatic and geomorphic variables in DF triggerring
  • 17. Point D: Consequences on transportation network 17 A. Consequences on transportation network The 4th of june 2012 a DF event destroyed the road close to Lautaret pass
  • 18. Method: point D (Impacts of DF/landslides activity on road network)  DF impact databases in the three regions  A comparative analysis in normal and disturbed situation of the network (Accessibility : distance and time)  Susceptibility of the network considering future DF probabilities  Crisis management analysis (In France only) 18
  • 19. Impacts on transportation: Swiss Alps 19  Loss of accessibility in Zermatt valley 125 DF events since the19th century
  • 20. 20 (>7events/year) = 1/(1+exp (-(- 21,91+0,14*Nrd+0,9Tx))) Impacts on transportation French Alps  Identification of impacted roads
  • 21. 21 (>7events/year) = 1/(1+exp (-(- 21,91+0,14*Nrd+0,9Tx))) Main results point D  Loss of accessibility with national and international impacts The 4th of June 2012 a DF event destroyed the road close to Lautaret pass
  • 23. Rainy event responsible for DF event 23 35 mm <10 y return period
  • 24. IT1 : Normal situation IT2 : Via Gap IT3 : Via St Jean de Maurienne Grenoble-Briançon options. 24 Normal way Road destroyed by the DF event 2 solutions + 1h30; 36€ + 1h10; 66€
  • 25. NCAR/ASP Thompson Lecture Series Institutionnal vulnerability : crisis management. Reconstitution of decision-making and organizational process :
  • 26. 26 Impacts on transportation: Italy  Identification of impacted roads with local stakeholders (Tyrol region)  Probability of dysfonction in the future
  • 27. Point C: Definition of RCMs future scenarios  All simulations are based on the A1B emission scenario  24 RCMs until 2050 and 17 RCMs until 2100 from the EU-FP6 project ENSEMBLES.  Error correction. 27
  • 28. Main results point C: error corrections 28 Raw (orange) and corrected (blue) precipitation distributions at station St. Valent (Tirol). Left: Light and moderate precipitation; Right: Heavy precipitation.
  • 29. 29 after Météo-France, 2011 Near future (2020-2050)) Far future (2070-2100) Annual precipitation sum changes Annual maximum temperature changes +2°C +4°C slightly more slightly less Main results point C  Future climate change
  • 30. Main results point C: Triggering climate parameters in the future 30 Climate change signal of precipitation types . The number of stations with increasing (arrow up), decreasing (arrow down), and no change (horizontal arrow (-1 % to +1 %)) for precipitation frequency of different thresholds is shown. Different colors represent the numbers of stations.
  • 31. Main objectives A. Document current DF/shallow landslide activity in the Alps B. Consequences on transportation network C. Definition of RCM future climate scenarios D. DF response considering future climate conditions and lande use planning E. Help to practical users 31
  • 32. Point D local scale: Results 32 Current period Future period Model of DF triggering based on Rcms data 24 RCMs until 2050 17 RCMs until 2100 A1B scenarioModel of DF triggering forced by future climate scenarios 2100 2050
  • 33. Point D meso scale: Results Model of DF triggering calibrated on Safran data 33 Current period Future period Interchanging Safran with RCMs downscaled data Model of DF triggering based on Rcms data 24 RCMs until 2050 17 RCMs until 2100 A1B scenario Model of DF triggering forced by future climate scenarios Step 1 Step 2 Step 3
  • 34. Point E: Help to practical users 34 1. Volume and run out estimates from MassMov2D (physical model) for case studies 2. Crisis amanagment analysis 3. Fonctional disturbance analysis regional and international scale  In France  In Italy  In Switzerland 1. Volume and run out estimates from MassMov2D (physical model) for case studies 2. Probability of future dysfonction based on climate scenarios for cases studies 1. Fonctional disturbance analysis regional and international scale 2. Technical investigations
  • 35. From a case study example: The rif Blanc df event on 4th of June 2012 Volume and run out estimates from a deterministic model 35
  • 36. 36 Volume estimated from peak flow calculation : (from the video of the 2nd DF at 10am) 1. Number of pictures per second on the video (30p/sec). 2. Section of the flow (L x h x WP). 3. Choose a representative block (B). transported distance/ time between : Position 1 at the time T Position 2 at the time T+1 4. Qp = WS (m²) x velocity (m/s) 5. Rickenmann volume estimation : Qp = 0.1V0.83 V = 10 760 Debris flow volume (2nd) = 11 000m3
  • 37. Help to local stakeholders 37 Sensitivity tests of local protections to DF on the Highway France-Italy <15 year return period <30 year return period
  • 38.  Sensitivity to climate change of the debris flows which are able to reach the road system along the considered road 38 Help to local stakeholders in italy Summer Fall
  • 39. Conclusions  Current relationships between DF/landslides and climate depends on the considered region  Slope processes strongly impact transportation network  Perception of DF Risk depends on the region  Mitigation is not perfect ! (No by pass, underestimation of protected constructions)  Good relationhsip with public stakeholders more difficult with private component 39