SlideShare ist ein Scribd-Unternehmen logo
1 von 54
Dielectrics

By:Mayank Pandey
VIT University, Vellore
introDuction

Dielectrics are the materials having electric dipole moment permantly
Dipole: A dipole is an entity in which equal positive and negative
charges are separated by a small distance..
DIPOLE moment (µele ):
The product of magnitude of either of the charges and separation
distance b/w them is called Dipole moment.
µe = q . x  coul – m
+q
-q
X

All dielectrics are electrical insulators and they are mainly
used to store electrical energy. It stores with minimum dissipation
power). Since, the e- are bound to their parent molecules & hence,
there is no free charge
Ex: Mica, glass, plastic, water & polar molecules…
dipole
_

+

Electric field

+
+
+

_
_

_

_
+

+
+

_
_

+

_

+

_

Dielectric atom
Important terms in dielectrics
1) Electric intensity or electric field strength
Def:- The force per unit charge “dq” is known as electric field strength
(E).
Where “dq” is point charge , E is electric field, F is force applied on point
charge “dq”.
E= F/dq = Q / 4πεr2
where “ε” is permittivity.

What is permittivity?
It is a measure of resistance that is encountered when forming an electric
field in a medium.
“ In simple words permittivity is a measure of how an electric field effects
and is effected by a dielectric medium”.
a) ε (permittivity of medium):- How much electric field generated per
unit charge in that medium.
b) ε0 (permittivity of space) :- The electric field generated in vacuum.
It is constant value ε0=8.85 x 10-12 F/m.
Imp points:1) More electric flux exist in a medium with a high permittivity(because of
polarization).
2) Permittivity is directly related to “ Susceptibility” which is a measure of how
easily a dielectric polarize in a response of an electric field.
“ permittivity relates to a materials ability to transmit an electric field”

ε = εr . ε0 = (1+χ ) ε0
Relative permittivity

Susceptibility
2) Electric Flux density or Electric displacement Vector:The electric flux density or electric displacement vector “D” is
the number of flux line’s crossing a surface normal to the lines, divided by
the surface area.
D = Q/ 4π r2
where , 4π r2 is the surface area of the sphere of radius “r”.

3) Dielectric Parameters :a) Dielectric constant(εr ):- It is defined as the ratio of permittivity of
medium(ε) to the permittivity of free space(ε0).

εr = ε / ε0
b) Electric dipole moment (μ):- The product of magnitude of charges &
distance of separation is known as electric dipole moment (μ ).

μ = Q.r
c) Electric Polarization :- The process of producing electric dipoles by an
electric field is called polarization in dielectrics.
“ In simple words polarization P is defined as the dipole moment per unit
volume averaged over the volume of a cell”
P = μ / volume
d) Polarizability :- When a dielectric material is placed in an electric field, the
displacement of electric charge gives rise to the creation of dipole in the
material . The polarization P of an elementary particle is directly
proportional to the electric field strength E.

P∝E
P = αE
α → polarizability constant
The unit of “α” is Fm2
Electric susceptibility:•

The polarization vector P is proportional to the total electric flux
density and direction of electric field.
Therefore the polarization vector can be written

P = ε 0 χe E
P
χe =
ε0E

ε 0 (ε r − 1) E
=
ε0E
χe = ε r −1
Various polarization processes:
1. Electronic polarization
2. Ionic polarization
3. Orientation polarization
4. Space charge polarization
1) Electronic Polarization:- When an EF is applied to an atom,
+vely charged nucleus displaces in the direction of field and ẽ could in
opposite direction. This kind of displacement will produce an electric
dipole with in the atom i.e, dipole moment is proportional to the
magnitude of field strength. This displacement between electron and
nucleus produces induced dipole moment & hence polarization. This is
called electronic polarization.







It increases with increase of volume of the atom.
This kind of polarization is mostly exhibited in Monatomic gases .
It occurs only at optical frequencies (1015Hz).
It is independent of temperature.

He
α e = ____ × 10-40 F − m 2

Ne

Ar

0.18 0.35 1.46

Kr

Xe

2.18 3.54
Expression for Electronic Polarization :Consider a atom in an EF of intensity ‘E’ since the nucleus
(+ze) and electron cloud (-ze) of the atom have opposite charges and
acted upon by Lorentz force (FL).
Subsequently nucleus moves in the direction of field and
electron cloud in opposite direction.
When electron cloud and nucleus get shifted from their
normal positions, an attractive force b/w them is created and the
separation continuous until columbic force F C is balanced with
Lorentz force FL, Finally a new equilibriums state is established.
E
x

+Ze
R

R

No field

fig(1)

In the presence of field fig (2)

fig(2) represents displacement of nucleus and electron
cloud and we assume that the –ve charge in the cloud
uniformly distributed over a sphere of radius R and the
spherical shape does not change for convenience.
Let “σ” be the charge density of the sphere

− Ze
σ=
4 3
πR
3
- Ze represents the total
charge in the sphere.

Thus the charge inside the sphere is
4
q e ⇒ σ . π .x 3
3
− ze 4
⇒ 4
.π .x 3
.πR 3 3
3

(

=

− ze 3
x
3
R

)

- - - - - (1)

1 qe .q p
1  − ze.x 3 
− z 2e 2 x

( ze ) =
Now Fc =
. 2 =
- - - - - (2)
2 
3
3

4πε 0 x
4πε 0 x  R 
4πε 0 R
“Where Fc is a coulomb force acting between nucleus and
electron”
Force experienced by displaced nucleus in EF of Strength E
is FL = Eq = ZeE -----(3)
Fc = Fl
− z 2e 2 x
4πε 0 R 3

= ZeE

- - - - - (4)

− zex
=E
4πε 0 R 3
− zex
− zex
=
4πε 0 R 3
αe

α e = 4πε 0 R 3

∴αe = 4πε0 R

3

Hence electronic Polarisability is directly proportional to cube of the
radius of the atom.
2) Ionic polarization


The ionic polarization occurs, when atoms form molecules and
it is mainly due to a relative displacement of the atomic
components of the molecule in the presence of an electric field.



When a EF is applied to the molecule, the positive ions
displaced by X1 to the negative side electric field and negative
ions displaced by X2 to the positive side of field.



The resultant dipole moment µ = q ( X1 + X2)..
+
+
+

Electric field

_
anion

cat ion

_
_

+
+

_

x1 x2

+

_
_

+

_

+

_
Restoring force constant depend upon the mass of
the ion and natural frequency and is given by
Where, x1 & x2 are displacement of +ve and –ve ions.
“M” is the mass of -ve ion and “m” is the mass of
+ve ions.
ω0 is the angular frequency of respective ions
2
F = eE = m.w0 x

or
eE
x=
2
m.w0
∴ x1 + x2 =

eE 1 1
[ + M]
2 m
w0
Therefore, the induced dipole moment is given by:2

∴ µionic

e E 1 1
= e( x1 + x2 ) = 2 [ m + M ]
w0

or α ionic

µionic
e 1 1
=
⇒ 2 [m + M]
E
w0
2

Hence, αionic is the ionic polarisation
a)This polarization occurs at frequency 1013 Hz (IR).
b)It is a slower process compared to electronic
polarization.
c)It is independent of temperature.
3) Orientation Polarization
It is also called dipolar or molecular polarization. The molecules such
as H2,N2,O2,Cl2,CH4,CCl4 etc, does not carry any dipole because centre of
positive charge and centre of negative charge coincides. On the other hand
molecules like CH3Cl, H2O,HCl, ethyl acetate (polar molecules) carries dipoles
even in the absence of electric field.
How ever the net dipole moment is negligibly small since all the
molecular dipoles are oriented randomly when there is no EF. In the presence
of the electric field these all dipoles orient them selves in the direction of field
as a result the net dipole moment becomes enormous.
a) It occurs at a frequency 106 Hz to 1010Hz.
b) It is slow process compare to ionic polarization.
c) It greatly depends on temperature.
Expression for orientation polarization
2

N .µ orie .E
Po = N .µ orie ⇒
= N .α o .E
3kT
2
µ orie
αo =
3kT

∴α = α elec + α ionic + α ori = 4πε o R 3 +

This is called Langevin
dielectrics.

e2
2
w0

[

1
M

+

1
m

]

2
µ ori
+
3kT

– Debye equation for total Polaris ability in
Frequency Dependence of Dielectric Properties
Polarisation : When an ac field is applied to a dielectric material is a
function of time, it follows the equation

Where,
a) P is the maximum polarisation attained due to prolong application of
the electric field, and
b) τr the relaxation time for the particular polarisation process, is the
average time between molecular collision (in case of liquid), during the
application of the electric field.
The relaxation time is a measure of the polarisation process and is
the time taken for a polarisation process to reach 67% of the maximum
value.
Dielectric loss
When an ac field is applied to a dielectric material, some amount of electrical
energy is absorbed by the dielectric material and is wasted in the form of heat.
This loss is known as dielectric loss.
The dielectric loss is the major engineering problem.
a) In an ideal dielectric, the current leads the voltage by an angle of 90
degree.
b) But in the case of a commercial dielectric, the current does not exactly
leads the voltage by 90 degree. It leads by some other angle q less than 90
degree.
The angle f = 90 – q, is known as the dielectric loss angle.
Relation between current and voltage in dielectrics
ω ε0 ε r ’ E0
I

I

ϕ

ϕ

J

ϕ
θ

90

0

ω ε0 εr’’ E0
V

V

E0

For a dielectric having capacitance C and voltage V applied to it at a
frequency f Hz, the dielectric power loss is given by,
P = VI cos θ
Since, I = V/ Xc where Xc is the capacitive reactance and is equal to 1/jωC.
Therefore,
Since θ is very small, sin ɸ = tan ɸ and P= j V2 ɷ Ctan ɸ, where tan ɸ is
said to be the power factor of the dielectric.
The power loss depends only on the power factor of the dielectric as long
as the applied voltage, frequency and capacitance are kept constant.
The dielectric loss is increased by the following factors :
1) High frequency of the applied voltage.
2) High value of the applied voltage.
3) High temperature.
4) Humidity
A) The dielectric losses in the radio frequency region are usually due to dipole
rotation.
B) The dielectric losses at lower frequencies are mainly due to dc resistivity.
C) The dielectric losses in the optical region are associated with electron and
they are known as optical obsorption.
Conductance: Electrical conductance measures how easily electricity
flows along a certain path through an electrical element. The SI derived unit of
conductance is the siemen. Because it is the reciprocal of electrical resistance
(measured in ohms), historically, this unit was referred to as the mho.

Resistance: The electrical resistance of an electrical conductor is the
opposition to the passage of an electric current through that conductor; the
inverse quantity is electrical conductance, the ease at which an electric
current passes. The SI unit of electrical resistance is the ohm (Ω).

Impedance : Electrical impedance, or simply impedance, describes a
measure of opposition to alternating current (AC). Electrical impedance
extends the concept of resistance to AC circuits, describing not only the
relative amplitudes of the voltage and current, but also the relative phases.
When the circuit is driven with direct current (DC) there is no distinction
between impedance and resistance; the latter can be thought of as impedance
with zero phase angle.
Susceptance (B) : It is the imaginary part of admittance. The inverse of
admittance is impedance and the real part of admittance is conductance.
In SI units, susceptance is measured in siemens.
The general equation defining admittance is given by
Y= G + jB
where,
Y is the admittance, measured in siemens (a.k.a. mho, the inverse of
ohm).G is the conductance, measured in siemens. j is the imaginary unit, and B is
the susceptance, measured in siemens. The admittance (Y) is the inverse of the
impedance (Z).

or
Where,
Z = R + jX
Z is the impedance, measured in ohms
R is the resistance, measured in ohms
X is the reactance, measured in ohms.
Note: The susceptance is the imaginary part of the admittance.
The magnitude of admittance is given by:
Dielectric permittivity
If a varying field V(t) is applied to a material, then the polarization and
induced charge Q are related as
where ϵ* is the complex dielectric constant. The frequency dependent complex
dielectric permittivity is given by

Where ϵ s and ϵ α are the low and high frequency dielectric constants
respectively.
ɷ =2πf is the angular frequency, τ is the time constant. The ε* is given by
where ϵ ’ is the relative permittivity or dielectric constant, ϵ" is the dielectric
loss
The dielectric permittivity ϵ * is related to complex impedance Z* by

ɷ is the angular frequency and C0 = t/Aɷϵ 0 is the capacitance of the free space

The real and imaginary parts of the dielectric permittivity are calculated
using the above equations, pellet dimensions and the measured impedance
data.
Electric modulus
The complex electric modulus is defined by the reciprocal of the complex
Permittivity.

where M* is the complex modulus, ϵ* is the dielectric permittivity, M' is the real
and M" is the imaginary parts of modulus.
a) The complex electric modulus spectrum represents the measure of the
distribution of Ion energies or configuration in the structure and it also describes
the electrical relaxation and microscopic properties of Ionic glasses
b) The modulus formalism has been adopted as it suppresses the polarization
effects at the electrode/electrolyte interface Hence, the complex electric modulus
M (ω) spectra reflects the dynamic properties of the sample alone.
For parallel combination of RC element, the real and imaginary parts of
the modulus are given by
Applicability of electric modulus
1)

The applicability of the electric modulus formalism is investigated on a
Debye-type relaxation process, the interfacial polarization or MaxwellWagner-Sillars effect.
Debye-type relaxation:- Debye relaxation is the dielectric relaxation response of an
ideal, non interacting population of dipoles to an alternating external electric field. It is
usually expressed in the complex permittivity of a medium as a function of the
field's frequency:

Variants of the Debye equation
a) Cole–Cole equation
b) Cole–Davidson equation
c) Havriliak–Negami relaxation
d) Kohlrausch–Williams–Watts function (Fourier transform of stretched
exponential function)
Maxwell-Wagner-Sillars effect : In dielectric spectroscopy, large frequency
dependent contributions to the dielectric response, especially at low frequencies,
may come from build-ups of charge. This, so-called Maxwell–Wagner–Sillars
polarization (or often just Maxwell-Wagner polarization),
It occurs either at inner dielectric boundary layers on a mesoscopic scale, or at
the external electrode-sample interface on a macroscopic scale.
In both cases this leads to a separation of charges (such as through a depletion
layer).
The charges are often separated over a considerable distance (relative to the
atomic and molecular sizes), and the contribution to dielectric loss can therefore
be orders of magnitude larger than the dielectric response due to molecular
fluctuations.
2) Electric modulus, which has been proposed for the description
of systems with ionic conductivity and related relaxation
processes, presents advantages in comparison to the classical
approach of the real and imaginary part of dielectric permittivity.
3) In composite polymeric materials, relaxation phenomena in the
low-frequency region are attributed to the heterogeneity of the
systems.
4) For the investigation of these processes through electric
modulus formalism, hybrid composite systems consisting of epoxy
resin-metal powder-aramid fibers were prepared with various
filler contents and their dielectric spectra were recorded in the
frequency range 10 Hz-10 MHz in the temperature interval 30150 oC.
5) The Debye, Cole-Cole, Davidson-Cole and HavriliakNegami equations of dielectric relaxation are expressed in the
electric modulus form.
6) Correlation between experimental data and the various
expressions produced, shows that interfacial polarization in
the systems examined is, mostly, better described by the
Davidson-Cole approach and only in the system with the
higher heterogeneity must be used.
“Heterogeneity is a problem that can arise when attempting to undertake 
a meta-analysis. Ideally, the studies whose results are being combined in the 
meta-analysis should all be undertaken in the same way and to the same 
experimental protocols: study heterogeneity is a term used to indicate that this 
ideal is not fully met.”
Internal fields or local fields
Local field or internal field in a dielectric is the space and time average
of the electric field intensity acting on a particular molecule in the dielectric
material.
In other words, the field acting at the location of an atom is known as
local or internal field “E”.

The internal field Ei must be equal to the sum of applied field plus the
field produced at the location of the atom by the dipoles of all other atoms.
Ei = E + the field due to all other dipoles
Evaluation of internal field
Consider a dielectric be placed between the
plates of a parallel plate capacitor and let there
be an imaginary spherical cavity around the
atom A inside the dielectric.
The internal field at the atom site ‘A’ can be
made up of four components E1 ,E2, E3 & E4.
+ + + + + + + + + ++

_ _ _ _ _ _ _
+

+

+

+

+
+
_

+

A

_

_

Spherical
Cavity

+

_

+ + + +

_

_

_

_

+ + +

_ _ _ _ _ _ _ _ _
_
E

Dielectric
material
Field E1:
E1 is the field intensity at A due to the charge density
on the plates
E1 =

D

ε0
D = ε0 E + P
ε0 E + P
E1 =
ε0
E1 = E +

P

ε0

..........(1)
Field E2:
E2 is the field intensity at A due to the charge
density induced on the two sides of the dielectric.

−P
E2 =
...........(2)
ε0
Field E3:
E3 is the field intensity at A due to the atoms
contained in the cavity, we are assuming a cubic
structure, so E3 = 0.
+ +

+

+

+

+
+
+

_
_
E
dA

+
+
+
+

A
θ dθ

r

_
_

p

_

_

_

_
_

r

_
_

_
q

R
Field E4:
1) This is due to polarized charges on the surface of
the spherical cavity.

dA = 2π . pq.qR
dA = 2π .r sin θ .rdθ
dA = 2π .r sin θdθ
2

Where dA is Surface area between θ & θ+dθ…
2) The total charge present on the surface area dA is…
dq = ( normal component of polarization ) X ( surface
area )

dq = p cos θ × dA
dq = 2πr p cos θ . sin θ .dθ
2
3) The field due to this charge at A, denoted by dE4 is given by
1

dq
dE4 =
4πε0 r 2

The field in θ = 0 direction

1 dq cos θ
dE4 =
4πε 0
r2

1
dE4 =
(2πr 2 p cos θ . sin θ .dθ ) cos θ
2
4πε 0 r
P
dE4 =
cos 2 θ . sin θ .dθ
2ε 0
π

4) Thus the total field E4
due to the charges on the
surface of the entire
cavity is

E4 = ∫ dE4
0

π

P
=∫
cos 2 θ. sin θ.dθ
2ε0
0
P
=
2ε0

π

cos 2 θ. sin θ.dθ
∫
0

let..x = cos θ →dx = −sin θ θ
d
P
=
2ε0

−
1

x 2 .dx
∫
1

− P x 3 −1
− P −1 −1
=
( )1 ⇒
(
)
2ε0 3
2ε0
3
P
E4 =
3ε0
The internal field or Lorentz field can be written as

Ei = E1 + E2 + E3 + E4
p
p
p
Ei = ( E + ) − + 0 +
εo εo
3ε o
p
Ei = E +
3ε o
Classius – Mosotti relation :
Consider a dielectric material having cubic structure , and
assume ionic Polarizability & Orientational polarizability are
zero..

αi = α0 = 0
polarization..P = Nµ
P = Nα e Ei ......where., µ = α e Ei
P
where., Ei = E +
3ε 0
P = Nαe Ei
P
P = Nα e ( E +
)
3ε 0
P
P = Nα e E + Nα e
3ε 0
P
P − Nα e
= Nα e E
3ε 0
Nα e
P (1 −
) = Nα e E
3ε 0
Nα e E
P=
...................(1)
Nα e
(1 −
)
3ε 0
We known that the polarization vector
P = ε 0 E (ε r − 1)............(2)
from eq n s (1) & (2)
Nα e E
= ε 0 E (ε r − 1)
Nα e
(1 −
)
3ε 0
1−

Nα e
Nα e E
=
3ε 0
ε 0 E (ε r −1)

1=

Nα e
Nα e E
+
3ε 0 ε 0 E (ε r − 1)

1=

Nα e
Nα e
+
3ε 0 ε 0 (ε r − 1)

1=

Nα e
3
(1 +
)
3ε 0
ε r −1

Nα e
1
=
3
3ε 0
(1 +
)
ε r −1
Nα e ε r − 1
=
...... → Classius Mosotti relation
3ε 0
εr + 2

Where “N” is the number
of dipoles per unit volume
Ferro electric materials or Ferro electricity






Ferro electric crystals exhibit spontaneous
polarization i.e. electric polarization with out electric
field.
Ferro electric crystals possess high dielectric
constant.
Each unit cell of a Ferro electric crystal carries
a reversible electric dipole moment.
Examples: Barium Titanate (BaTiO3) , Sodium
nitrate (NaNO3) ,Rochelle salt etc..
Piezo- electricity
The process of creating electric polarization by
mechanical stress is called as piezo electric effect.
This process is used in conversion of mechanical energy
into electrical energy and also electrical energy into
mechanical energy.
According to inverse piezo electric effect, when an electric
stress is applied, the material becomes strained. This strain is
directly proportional to the applied field.
Examples: quartz crystal , Rochelle salt etc.,
“Piezo electric materials or peizo electric semiconductors such
as Gas, Zno and CdS are finding applications in ultrasonic
amplifiers.”
Dielectric Material and properties

Weitere ähnliche Inhalte

Was ist angesagt?

3515_Ch 6_Dielectric Properties of Materials_ M A Islam
3515_Ch 6_Dielectric Properties of Materials_ M A Islam3515_Ch 6_Dielectric Properties of Materials_ M A Islam
3515_Ch 6_Dielectric Properties of Materials_ M A Islam
Dr. Mohammad Aminul Islam
 

Was ist angesagt? (20)

Dielectrics
DielectricsDielectrics
Dielectrics
 
Electrical polarization mechanisms
Electrical polarization mechanismsElectrical polarization mechanisms
Electrical polarization mechanisms
 
domain theroy
domain theroydomain theroy
domain theroy
 
Course dielectric materials
Course dielectric materialsCourse dielectric materials
Course dielectric materials
 
BCS theory
BCS theoryBCS theory
BCS theory
 
Magnetic materials
Magnetic materialsMagnetic materials
Magnetic materials
 
SEMICONDUCTOR PHYSICS
SEMICONDUCTOR PHYSICSSEMICONDUCTOR PHYSICS
SEMICONDUCTOR PHYSICS
 
Polarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | DielectricsPolarization in Dielectrics | Applied Physics - II | Dielectrics
Polarization in Dielectrics | Applied Physics - II | Dielectrics
 
Introduction to High temperature superconductors
Introduction to High temperature superconductorsIntroduction to High temperature superconductors
Introduction to High temperature superconductors
 
Magnetic properties of materials
Magnetic properties of materialsMagnetic properties of materials
Magnetic properties of materials
 
3515_Ch 6_Dielectric Properties of Materials_ M A Islam
3515_Ch 6_Dielectric Properties of Materials_ M A Islam3515_Ch 6_Dielectric Properties of Materials_ M A Islam
3515_Ch 6_Dielectric Properties of Materials_ M A Islam
 
Magnetic materials
Magnetic materialsMagnetic materials
Magnetic materials
 
Dielectrics and its applications
Dielectrics and its applicationsDielectrics and its applications
Dielectrics and its applications
 
find the dielectric constant of a given material. made by sashikant tiwari.
 find the dielectric constant of a given material. made by sashikant tiwari. find the dielectric constant of a given material. made by sashikant tiwari.
find the dielectric constant of a given material. made by sashikant tiwari.
 
Superconductors
SuperconductorsSuperconductors
Superconductors
 
Free electron in_metal
Free electron in_metalFree electron in_metal
Free electron in_metal
 
type1,2 superconductors
type1,2 superconductors type1,2 superconductors
type1,2 superconductors
 
Ferroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsFerroelectric and piezoelectric materials
Ferroelectric and piezoelectric materials
 
Conductor semiconductor insulator
Conductor semiconductor insulatorConductor semiconductor insulator
Conductor semiconductor insulator
 
Band theory
Band theoryBand theory
Band theory
 

Ähnlich wie Dielectric Material and properties

DielectricsDielectricsDielectricsDielectricsDielectrics
DielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectrics
DielectricsDielectricsDielectricsDielectricsDielectrics
monishasarai25
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
FatimaAfzal56
 
B.tech sem i engineering physics u i chapter 2-dielectrics
B.tech sem i engineering physics u i chapter 2-dielectricsB.tech sem i engineering physics u i chapter 2-dielectrics
B.tech sem i engineering physics u i chapter 2-dielectrics
Rai University
 
Electrostatics for m.6
Electrostatics for m.6Electrostatics for m.6
Electrostatics for m.6
Piyanuch Plaon
 
Electrostatics for M.6
Electrostatics for M.6Electrostatics for M.6
Electrostatics for M.6
Piyanuch Plaon
 
1502957323lectrure_2_KUET.pptx
1502957323lectrure_2_KUET.pptx1502957323lectrure_2_KUET.pptx
1502957323lectrure_2_KUET.pptx
Tajmun1
 
1502957323lectrure_2_KUET [Autosaved].pptx
1502957323lectrure_2_KUET [Autosaved].pptx1502957323lectrure_2_KUET [Autosaved].pptx
1502957323lectrure_2_KUET [Autosaved].pptx
Tajmun1
 
B.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
B.Tech sem I Engineering Physics U-I Chapter 2-DielectricsB.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
B.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
Abhi Hirpara
 

Ähnlich wie Dielectric Material and properties (20)

Dielectrics
DielectricsDielectrics
Dielectrics
 
DielectricsDielectricsDielectricsDielectricsDielectrics
DielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectricsDielectrics
DielectricsDielectricsDielectricsDielectricsDielectrics
 
Dielectric
DielectricDielectric
Dielectric
 
EMWT_UNIT 1_DIELECTRICS.pptx
EMWT_UNIT 1_DIELECTRICS.pptxEMWT_UNIT 1_DIELECTRICS.pptx
EMWT_UNIT 1_DIELECTRICS.pptx
 
Electric field in material space 2nd 2
Electric field in material space 2nd 2Electric field in material space 2nd 2
Electric field in material space 2nd 2
 
Unit 4
Unit 4Unit 4
Unit 4
 
4661898.ppt
4661898.ppt4661898.ppt
4661898.ppt
 
Dielectrics_1
Dielectrics_1Dielectrics_1
Dielectrics_1
 
Energy bands and electrical properties of metals new
Energy bands and electrical properties of metals newEnergy bands and electrical properties of metals new
Energy bands and electrical properties of metals new
 
Dielectric properties[read only]
Dielectric properties[read only]Dielectric properties[read only]
Dielectric properties[read only]
 
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
09 UNIT-9(Electronics and down of Modern Physics) (1).pptx
 
B.tech sem i engineering physics u i chapter 2-dielectrics
B.tech sem i engineering physics u i chapter 2-dielectricsB.tech sem i engineering physics u i chapter 2-dielectrics
B.tech sem i engineering physics u i chapter 2-dielectrics
 
Electrostatics for m.6
Electrostatics for m.6Electrostatics for m.6
Electrostatics for m.6
 
Electrostatics for M.6
Electrostatics for M.6Electrostatics for M.6
Electrostatics for M.6
 
BSc Electrochemistry.pptx
BSc Electrochemistry.pptxBSc Electrochemistry.pptx
BSc Electrochemistry.pptx
 
Dielectrics_2
Dielectrics_2Dielectrics_2
Dielectrics_2
 
Dielectric constant and polarizibality
Dielectric constant and polarizibalityDielectric constant and polarizibality
Dielectric constant and polarizibality
 
1502957323lectrure_2_KUET.pptx
1502957323lectrure_2_KUET.pptx1502957323lectrure_2_KUET.pptx
1502957323lectrure_2_KUET.pptx
 
1502957323lectrure_2_KUET [Autosaved].pptx
1502957323lectrure_2_KUET [Autosaved].pptx1502957323lectrure_2_KUET [Autosaved].pptx
1502957323lectrure_2_KUET [Autosaved].pptx
 
B.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
B.Tech sem I Engineering Physics U-I Chapter 2-DielectricsB.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
B.Tech sem I Engineering Physics U-I Chapter 2-Dielectrics
 

Mehr von Mayank Pandey

Mehr von Mayank Pandey (7)

I semester Unit 4 combinational circuits.pptx
I semester Unit 4 combinational circuits.pptxI semester Unit 4 combinational circuits.pptx
I semester Unit 4 combinational circuits.pptx
 
Biosignal: ECG, EEG and EMG
Biosignal: ECG, EEG and EMGBiosignal: ECG, EEG and EMG
Biosignal: ECG, EEG and EMG
 
Alternating Current
Alternating CurrentAlternating Current
Alternating Current
 
Voltage Amplifier
Voltage AmplifierVoltage Amplifier
Voltage Amplifier
 
Register and counter
Register and counter Register and counter
Register and counter
 
Latest trends in optoelectronics device and communication
Latest trends in optoelectronics device and communicationLatest trends in optoelectronics device and communication
Latest trends in optoelectronics device and communication
 
Liquid crystals(lc’s)
Liquid crystals(lc’s)Liquid crystals(lc’s)
Liquid crystals(lc’s)
 

Kürzlich hochgeladen

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Kürzlich hochgeladen (20)

Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 

Dielectric Material and properties

  • 2. introDuction Dielectrics are the materials having electric dipole moment permantly Dipole: A dipole is an entity in which equal positive and negative charges are separated by a small distance.. DIPOLE moment (µele ): The product of magnitude of either of the charges and separation distance b/w them is called Dipole moment. µe = q . x  coul – m +q -q X All dielectrics are electrical insulators and they are mainly used to store electrical energy. It stores with minimum dissipation power). Since, the e- are bound to their parent molecules & hence, there is no free charge Ex: Mica, glass, plastic, water & polar molecules…
  • 4. Important terms in dielectrics 1) Electric intensity or electric field strength Def:- The force per unit charge “dq” is known as electric field strength (E). Where “dq” is point charge , E is electric field, F is force applied on point charge “dq”. E= F/dq = Q / 4πεr2 where “ε” is permittivity. What is permittivity? It is a measure of resistance that is encountered when forming an electric field in a medium. “ In simple words permittivity is a measure of how an electric field effects and is effected by a dielectric medium”.
  • 5. a) ε (permittivity of medium):- How much electric field generated per unit charge in that medium. b) ε0 (permittivity of space) :- The electric field generated in vacuum. It is constant value ε0=8.85 x 10-12 F/m. Imp points:1) More electric flux exist in a medium with a high permittivity(because of polarization). 2) Permittivity is directly related to “ Susceptibility” which is a measure of how easily a dielectric polarize in a response of an electric field. “ permittivity relates to a materials ability to transmit an electric field” ε = εr . ε0 = (1+χ ) ε0 Relative permittivity Susceptibility
  • 6. 2) Electric Flux density or Electric displacement Vector:The electric flux density or electric displacement vector “D” is the number of flux line’s crossing a surface normal to the lines, divided by the surface area. D = Q/ 4π r2 where , 4π r2 is the surface area of the sphere of radius “r”. 3) Dielectric Parameters :a) Dielectric constant(εr ):- It is defined as the ratio of permittivity of medium(ε) to the permittivity of free space(ε0). εr = ε / ε0 b) Electric dipole moment (μ):- The product of magnitude of charges & distance of separation is known as electric dipole moment (μ ). μ = Q.r
  • 7. c) Electric Polarization :- The process of producing electric dipoles by an electric field is called polarization in dielectrics. “ In simple words polarization P is defined as the dipole moment per unit volume averaged over the volume of a cell” P = μ / volume d) Polarizability :- When a dielectric material is placed in an electric field, the displacement of electric charge gives rise to the creation of dipole in the material . The polarization P of an elementary particle is directly proportional to the electric field strength E. P∝E P = αE α → polarizability constant The unit of “α” is Fm2
  • 8. Electric susceptibility:• The polarization vector P is proportional to the total electric flux density and direction of electric field. Therefore the polarization vector can be written P = ε 0 χe E P χe = ε0E ε 0 (ε r − 1) E = ε0E χe = ε r −1
  • 9. Various polarization processes: 1. Electronic polarization 2. Ionic polarization 3. Orientation polarization 4. Space charge polarization
  • 10. 1) Electronic Polarization:- When an EF is applied to an atom, +vely charged nucleus displaces in the direction of field and ẽ could in opposite direction. This kind of displacement will produce an electric dipole with in the atom i.e, dipole moment is proportional to the magnitude of field strength. This displacement between electron and nucleus produces induced dipole moment & hence polarization. This is called electronic polarization.     It increases with increase of volume of the atom. This kind of polarization is mostly exhibited in Monatomic gases . It occurs only at optical frequencies (1015Hz). It is independent of temperature. He α e = ____ × 10-40 F − m 2 Ne Ar 0.18 0.35 1.46 Kr Xe 2.18 3.54
  • 11. Expression for Electronic Polarization :Consider a atom in an EF of intensity ‘E’ since the nucleus (+ze) and electron cloud (-ze) of the atom have opposite charges and acted upon by Lorentz force (FL). Subsequently nucleus moves in the direction of field and electron cloud in opposite direction. When electron cloud and nucleus get shifted from their normal positions, an attractive force b/w them is created and the separation continuous until columbic force F C is balanced with Lorentz force FL, Finally a new equilibriums state is established.
  • 12. E x +Ze R R No field fig(1) In the presence of field fig (2) fig(2) represents displacement of nucleus and electron cloud and we assume that the –ve charge in the cloud uniformly distributed over a sphere of radius R and the spherical shape does not change for convenience.
  • 13. Let “σ” be the charge density of the sphere − Ze σ= 4 3 πR 3 - Ze represents the total charge in the sphere. Thus the charge inside the sphere is 4 q e ⇒ σ . π .x 3 3 − ze 4 ⇒ 4 .π .x 3 .πR 3 3 3 ( = − ze 3 x 3 R ) - - - - - (1) 1 qe .q p 1  − ze.x 3  − z 2e 2 x  ( ze ) = Now Fc = . 2 = - - - - - (2) 2  3 3  4πε 0 x 4πε 0 x  R  4πε 0 R “Where Fc is a coulomb force acting between nucleus and electron”
  • 14. Force experienced by displaced nucleus in EF of Strength E is FL = Eq = ZeE -----(3) Fc = Fl − z 2e 2 x 4πε 0 R 3 = ZeE - - - - - (4) − zex =E 4πε 0 R 3 − zex − zex = 4πε 0 R 3 αe α e = 4πε 0 R 3 ∴αe = 4πε0 R 3 Hence electronic Polarisability is directly proportional to cube of the radius of the atom.
  • 15. 2) Ionic polarization  The ionic polarization occurs, when atoms form molecules and it is mainly due to a relative displacement of the atomic components of the molecule in the presence of an electric field.  When a EF is applied to the molecule, the positive ions displaced by X1 to the negative side electric field and negative ions displaced by X2 to the positive side of field.  The resultant dipole moment µ = q ( X1 + X2)..
  • 17. Restoring force constant depend upon the mass of the ion and natural frequency and is given by Where, x1 & x2 are displacement of +ve and –ve ions. “M” is the mass of -ve ion and “m” is the mass of +ve ions. ω0 is the angular frequency of respective ions 2 F = eE = m.w0 x or eE x= 2 m.w0 ∴ x1 + x2 = eE 1 1 [ + M] 2 m w0
  • 18. Therefore, the induced dipole moment is given by:2 ∴ µionic e E 1 1 = e( x1 + x2 ) = 2 [ m + M ] w0 or α ionic µionic e 1 1 = ⇒ 2 [m + M] E w0 2 Hence, αionic is the ionic polarisation a)This polarization occurs at frequency 1013 Hz (IR). b)It is a slower process compared to electronic polarization. c)It is independent of temperature.
  • 19. 3) Orientation Polarization It is also called dipolar or molecular polarization. The molecules such as H2,N2,O2,Cl2,CH4,CCl4 etc, does not carry any dipole because centre of positive charge and centre of negative charge coincides. On the other hand molecules like CH3Cl, H2O,HCl, ethyl acetate (polar molecules) carries dipoles even in the absence of electric field. How ever the net dipole moment is negligibly small since all the molecular dipoles are oriented randomly when there is no EF. In the presence of the electric field these all dipoles orient them selves in the direction of field as a result the net dipole moment becomes enormous. a) It occurs at a frequency 106 Hz to 1010Hz. b) It is slow process compare to ionic polarization. c) It greatly depends on temperature.
  • 20. Expression for orientation polarization 2  N .µ orie .E Po = N .µ orie ⇒ = N .α o .E 3kT 2 µ orie αo = 3kT ∴α = α elec + α ionic + α ori = 4πε o R 3 + This is called Langevin dielectrics. e2 2 w0 [ 1 M + 1 m ] 2 µ ori + 3kT – Debye equation for total Polaris ability in
  • 21. Frequency Dependence of Dielectric Properties Polarisation : When an ac field is applied to a dielectric material is a function of time, it follows the equation Where, a) P is the maximum polarisation attained due to prolong application of the electric field, and b) τr the relaxation time for the particular polarisation process, is the average time between molecular collision (in case of liquid), during the application of the electric field. The relaxation time is a measure of the polarisation process and is the time taken for a polarisation process to reach 67% of the maximum value.
  • 22.
  • 23.
  • 24. Dielectric loss When an ac field is applied to a dielectric material, some amount of electrical energy is absorbed by the dielectric material and is wasted in the form of heat. This loss is known as dielectric loss. The dielectric loss is the major engineering problem. a) In an ideal dielectric, the current leads the voltage by an angle of 90 degree. b) But in the case of a commercial dielectric, the current does not exactly leads the voltage by 90 degree. It leads by some other angle q less than 90 degree. The angle f = 90 – q, is known as the dielectric loss angle.
  • 25. Relation between current and voltage in dielectrics ω ε0 ε r ’ E0 I I ϕ ϕ J ϕ θ 90 0 ω ε0 εr’’ E0 V V E0 For a dielectric having capacitance C and voltage V applied to it at a frequency f Hz, the dielectric power loss is given by, P = VI cos θ Since, I = V/ Xc where Xc is the capacitive reactance and is equal to 1/jωC. Therefore,
  • 26. Since θ is very small, sin ɸ = tan ɸ and P= j V2 ɷ Ctan ɸ, where tan ɸ is said to be the power factor of the dielectric. The power loss depends only on the power factor of the dielectric as long as the applied voltage, frequency and capacitance are kept constant. The dielectric loss is increased by the following factors : 1) High frequency of the applied voltage. 2) High value of the applied voltage. 3) High temperature. 4) Humidity A) The dielectric losses in the radio frequency region are usually due to dipole rotation. B) The dielectric losses at lower frequencies are mainly due to dc resistivity. C) The dielectric losses in the optical region are associated with electron and they are known as optical obsorption.
  • 27. Conductance: Electrical conductance measures how easily electricity flows along a certain path through an electrical element. The SI derived unit of conductance is the siemen. Because it is the reciprocal of electrical resistance (measured in ohms), historically, this unit was referred to as the mho. Resistance: The electrical resistance of an electrical conductor is the opposition to the passage of an electric current through that conductor; the inverse quantity is electrical conductance, the ease at which an electric current passes. The SI unit of electrical resistance is the ohm (Ω). Impedance : Electrical impedance, or simply impedance, describes a measure of opposition to alternating current (AC). Electrical impedance extends the concept of resistance to AC circuits, describing not only the relative amplitudes of the voltage and current, but also the relative phases. When the circuit is driven with direct current (DC) there is no distinction between impedance and resistance; the latter can be thought of as impedance with zero phase angle.
  • 28. Susceptance (B) : It is the imaginary part of admittance. The inverse of admittance is impedance and the real part of admittance is conductance. In SI units, susceptance is measured in siemens. The general equation defining admittance is given by Y= G + jB where, Y is the admittance, measured in siemens (a.k.a. mho, the inverse of ohm).G is the conductance, measured in siemens. j is the imaginary unit, and B is the susceptance, measured in siemens. The admittance (Y) is the inverse of the impedance (Z). or
  • 29. Where, Z = R + jX Z is the impedance, measured in ohms R is the resistance, measured in ohms X is the reactance, measured in ohms. Note: The susceptance is the imaginary part of the admittance. The magnitude of admittance is given by:
  • 30. Dielectric permittivity If a varying field V(t) is applied to a material, then the polarization and induced charge Q are related as where ϵ* is the complex dielectric constant. The frequency dependent complex dielectric permittivity is given by Where ϵ s and ϵ α are the low and high frequency dielectric constants respectively. ɷ =2πf is the angular frequency, τ is the time constant. The ε* is given by where ϵ ’ is the relative permittivity or dielectric constant, ϵ" is the dielectric loss
  • 31. The dielectric permittivity ϵ * is related to complex impedance Z* by ɷ is the angular frequency and C0 = t/Aɷϵ 0 is the capacitance of the free space The real and imaginary parts of the dielectric permittivity are calculated using the above equations, pellet dimensions and the measured impedance data.
  • 32. Electric modulus The complex electric modulus is defined by the reciprocal of the complex Permittivity. where M* is the complex modulus, ϵ* is the dielectric permittivity, M' is the real and M" is the imaginary parts of modulus. a) The complex electric modulus spectrum represents the measure of the distribution of Ion energies or configuration in the structure and it also describes the electrical relaxation and microscopic properties of Ionic glasses b) The modulus formalism has been adopted as it suppresses the polarization effects at the electrode/electrolyte interface Hence, the complex electric modulus M (ω) spectra reflects the dynamic properties of the sample alone.
  • 33. For parallel combination of RC element, the real and imaginary parts of the modulus are given by
  • 34. Applicability of electric modulus 1) The applicability of the electric modulus formalism is investigated on a Debye-type relaxation process, the interfacial polarization or MaxwellWagner-Sillars effect. Debye-type relaxation:- Debye relaxation is the dielectric relaxation response of an ideal, non interacting population of dipoles to an alternating external electric field. It is usually expressed in the complex permittivity of a medium as a function of the field's frequency: Variants of the Debye equation a) Cole–Cole equation b) Cole–Davidson equation c) Havriliak–Negami relaxation d) Kohlrausch–Williams–Watts function (Fourier transform of stretched exponential function)
  • 35. Maxwell-Wagner-Sillars effect : In dielectric spectroscopy, large frequency dependent contributions to the dielectric response, especially at low frequencies, may come from build-ups of charge. This, so-called Maxwell–Wagner–Sillars polarization (or often just Maxwell-Wagner polarization), It occurs either at inner dielectric boundary layers on a mesoscopic scale, or at the external electrode-sample interface on a macroscopic scale. In both cases this leads to a separation of charges (such as through a depletion layer). The charges are often separated over a considerable distance (relative to the atomic and molecular sizes), and the contribution to dielectric loss can therefore be orders of magnitude larger than the dielectric response due to molecular fluctuations.
  • 36. 2) Electric modulus, which has been proposed for the description of systems with ionic conductivity and related relaxation processes, presents advantages in comparison to the classical approach of the real and imaginary part of dielectric permittivity. 3) In composite polymeric materials, relaxation phenomena in the low-frequency region are attributed to the heterogeneity of the systems. 4) For the investigation of these processes through electric modulus formalism, hybrid composite systems consisting of epoxy resin-metal powder-aramid fibers were prepared with various filler contents and their dielectric spectra were recorded in the frequency range 10 Hz-10 MHz in the temperature interval 30150 oC.
  • 37. 5) The Debye, Cole-Cole, Davidson-Cole and HavriliakNegami equations of dielectric relaxation are expressed in the electric modulus form. 6) Correlation between experimental data and the various expressions produced, shows that interfacial polarization in the systems examined is, mostly, better described by the Davidson-Cole approach and only in the system with the higher heterogeneity must be used. “Heterogeneity is a problem that can arise when attempting to undertake  a meta-analysis. Ideally, the studies whose results are being combined in the  meta-analysis should all be undertaken in the same way and to the same  experimental protocols: study heterogeneity is a term used to indicate that this  ideal is not fully met.”
  • 38. Internal fields or local fields Local field or internal field in a dielectric is the space and time average of the electric field intensity acting on a particular molecule in the dielectric material. In other words, the field acting at the location of an atom is known as local or internal field “E”. The internal field Ei must be equal to the sum of applied field plus the field produced at the location of the atom by the dipoles of all other atoms. Ei = E + the field due to all other dipoles
  • 39. Evaluation of internal field Consider a dielectric be placed between the plates of a parallel plate capacitor and let there be an imaginary spherical cavity around the atom A inside the dielectric. The internal field at the atom site ‘A’ can be made up of four components E1 ,E2, E3 & E4.
  • 40. + + + + + + + + + ++ _ _ _ _ _ _ _ + + + + + + _ + A _ _ Spherical Cavity + _ + + + + _ _ _ _ + + + _ _ _ _ _ _ _ _ _ _ E Dielectric material
  • 41. Field E1: E1 is the field intensity at A due to the charge density on the plates E1 = D ε0 D = ε0 E + P ε0 E + P E1 = ε0 E1 = E + P ε0 ..........(1)
  • 42. Field E2: E2 is the field intensity at A due to the charge density induced on the two sides of the dielectric. −P E2 = ...........(2) ε0 Field E3: E3 is the field intensity at A due to the atoms contained in the cavity, we are assuming a cubic structure, so E3 = 0.
  • 44. Field E4: 1) This is due to polarized charges on the surface of the spherical cavity. dA = 2π . pq.qR dA = 2π .r sin θ .rdθ dA = 2π .r sin θdθ 2 Where dA is Surface area between θ & θ+dθ…
  • 45. 2) The total charge present on the surface area dA is… dq = ( normal component of polarization ) X ( surface area ) dq = p cos θ × dA dq = 2πr p cos θ . sin θ .dθ 2
  • 46. 3) The field due to this charge at A, denoted by dE4 is given by 1 dq dE4 = 4πε0 r 2 The field in θ = 0 direction 1 dq cos θ dE4 = 4πε 0 r2 1 dE4 = (2πr 2 p cos θ . sin θ .dθ ) cos θ 2 4πε 0 r P dE4 = cos 2 θ . sin θ .dθ 2ε 0
  • 47. π 4) Thus the total field E4 due to the charges on the surface of the entire cavity is E4 = ∫ dE4 0 π P =∫ cos 2 θ. sin θ.dθ 2ε0 0 P = 2ε0 π cos 2 θ. sin θ.dθ ∫ 0 let..x = cos θ →dx = −sin θ θ d P = 2ε0 − 1 x 2 .dx ∫ 1 − P x 3 −1 − P −1 −1 = ( )1 ⇒ ( ) 2ε0 3 2ε0 3 P E4 = 3ε0
  • 48. The internal field or Lorentz field can be written as Ei = E1 + E2 + E3 + E4 p p p Ei = ( E + ) − + 0 + εo εo 3ε o p Ei = E + 3ε o
  • 49. Classius – Mosotti relation : Consider a dielectric material having cubic structure , and assume ionic Polarizability & Orientational polarizability are zero.. αi = α0 = 0 polarization..P = Nµ P = Nα e Ei ......where., µ = α e Ei P where., Ei = E + 3ε 0
  • 50. P = Nαe Ei P P = Nα e ( E + ) 3ε 0 P P = Nα e E + Nα e 3ε 0 P P − Nα e = Nα e E 3ε 0 Nα e P (1 − ) = Nα e E 3ε 0 Nα e E P= ...................(1) Nα e (1 − ) 3ε 0
  • 51. We known that the polarization vector P = ε 0 E (ε r − 1)............(2) from eq n s (1) & (2) Nα e E = ε 0 E (ε r − 1) Nα e (1 − ) 3ε 0 1− Nα e Nα e E = 3ε 0 ε 0 E (ε r −1) 1= Nα e Nα e E + 3ε 0 ε 0 E (ε r − 1) 1= Nα e Nα e + 3ε 0 ε 0 (ε r − 1) 1= Nα e 3 (1 + ) 3ε 0 ε r −1 Nα e 1 = 3 3ε 0 (1 + ) ε r −1 Nα e ε r − 1 = ...... → Classius Mosotti relation 3ε 0 εr + 2 Where “N” is the number of dipoles per unit volume
  • 52. Ferro electric materials or Ferro electricity    Ferro electric crystals exhibit spontaneous polarization i.e. electric polarization with out electric field. Ferro electric crystals possess high dielectric constant. Each unit cell of a Ferro electric crystal carries a reversible electric dipole moment. Examples: Barium Titanate (BaTiO3) , Sodium nitrate (NaNO3) ,Rochelle salt etc..
  • 53. Piezo- electricity The process of creating electric polarization by mechanical stress is called as piezo electric effect. This process is used in conversion of mechanical energy into electrical energy and also electrical energy into mechanical energy. According to inverse piezo electric effect, when an electric stress is applied, the material becomes strained. This strain is directly proportional to the applied field. Examples: quartz crystal , Rochelle salt etc., “Piezo electric materials or peizo electric semiconductors such as Gas, Zno and CdS are finding applications in ultrasonic amplifiers.”