SlideShare ist ein Scribd-Unternehmen logo
1 von 18
EC 313: Numerical Methods                           Mayank Awasthi(2006033)
MATLAB Assignment – 2                               B.Tech 3rd Year(ECE)
                                                    Pdpm IIITDM, JABALPUR
Ques1:

Gauss Siedel Method for Solving the Linear Equations:
% Implementing Gauss Siedel method
% a is matrix whose diagonal elements are non-zero else rearrange it


function x = gauss_siedel(a,b,x)
 n=length(a);
 l=zeros(n,n);
 u=zeros(n,n);
 d=zeros(n,n);
 id=[1,0,0;0,1,0;0,0,1];
 for i=1:n
     for j=1:n
         a(i,j)= a(i,j)/a(i,i); %making the diagonal elements 1.

% Breaking the matrix as a sum of ( L+U+I )
         if i>j
             l(i,j)=a(i,j);
         end
         if i<j
             u(i,j)=a(i,j);
         end
         if i==j
             d(i,j)=a(i,j);
         end
     end
 end

%Implementing Norm of c where c = inverse(I+L)*U
 norm2(inv2(id+l)*u);
 if norm2(inv2(id+l)*u)>1
 fprintf('Norm of c is greater than 1, Solution will diverge');
 return;
 end
     for i=1:n
         b(i,1)=b(i,1)/a(i,i);
     end

% Calculating x using FORWARD DIFFERENCE CONCEPT
x=[0;0;0];
 for i=1:100
   x= forward_subs((l+d),(b-u*x));    m=a*x-b;
% Calculating(dis(A*x,b)<1e-6)to stop iteration at the given tolerance
   temp=0;
   for j=1:n
       temp=temp+power(m(j,1),2);
   end
   temp=sqrt(temp);
   if temp<0.0000001
      break;
       end
 end
  fprintf('nThe maximum no. of iteration required is %d',i);
end


MATLAB routine for Inverse of 3x3 matrix :
% Calculating Inverse of 3x3 matrix

function x = inv2(A)
I=[1,0,0;0,1,0;0,0,1];
n=length(A);
a21=A(2,1)/A(1,1);
for k = 1:n-1          % Elimination Phase
for i= k+1:n
if A(i,k) ~= 0
lambda = A(i,k)/A(k,k);
A(i,k:n) = A(i,k:n) - lambda*A(k,k:n);
I(i,k:n)= I(i,k:n) - lambda*I(k,k:n);
I(3,1)=I(2,1)*I(3,2)+I(3,1);
end
end
end
x1=back_subs(A,I(:,1)); % Backward Substitution
x2=back_subs(A,I(:,2));
x3=back_subs(A,I(:,3));
x=[x1,x2,x3];
end

MATLAB routine for Norm:
% Calculating Norm of matrix
function n0= norm2(c)
l=length(c);
n0=0;

    for m=1:l
        for n=1:l
            n0 = n0 + c(m,n)*c(m,n);
        end
    end
        n0=sqrt(n0);
  end
MATLAB routine for Forward Substitution:

% Implementing Forward Substitution

function x=forward_subs(A,b)
n=length(A);
for i = 1:3
   t=0;
    for j = 1:(i-1)
        t=t+A(i,j)*x(j);
    end
x(i,1)=(b(i,1)-t)/A(i,i);
end


Part1:                                       Part2:
>> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1]          >> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1]
a=                                           a=

  1.0000 0.2000 0.2000                         1.0000     0.5000 0.5000
  0.2000 1.0000 0.2000                         0.5000     1.0000 0.5000
  0.2000 0.2000 1.0000                         0.5000     0.5000 1.0000

>> b=[2;2;2]                                 >> b=[2;2;2]

b=                                           b=

   2                                            2
   2                                            2
   2                                            2

>> x=[0;0;0]                                 >> x=[0;0;0]

x=                                           x=

   0                                            0
   0                                            0
   0                                            0

>> gauss_siedel(a,b,x)                       >> gauss_siedel(a,b,x)

The maximum no. of iteration required is 8   The maximum no of iteration required is 17
ans =                                        ans =

  1.4286                                       1.0000
  1.4286                                       1.0000
  1.4286                                       1.0000
Part3:

>> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1]
a=

  1.0000 0.9000 0.9000
  0.9000 1.0000 0.9000
  0.9000 0.9000 1.0000

>> b=[2;2;2]

b=

   2
   2
   2

>> x=[0;0;0]

x=

   0
   0
   0

>> gauss_siedel(a,b,x)

Norm of c is greater than 1, Solution will diverge
ans =

   0
   0
   0

************************************************************************

Spectral radius of C:

Spectral radius of C is maximum eigenvalue of C*CT.
In this case C=(I+L)-1 * U
1). >> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1]
a=

  1.0000 0.2000 0.2000
  0.2000 1.0000 0.2000
  0.2000 0.2000 1.0000

>> L=[0,0,0;.2,0,0;.2,.2,0]
L=

     0    0     0
  0.2000    0     0
  0.2000 0.2000     0

>> I=[1,0,0;0,1,0;0,0,1]
I=

   1    0    0
   0    1    0
   0    0    1

>> U=[0,.2,.2;0,0,.2;0,0,0]
U=

       0 0.2000 0.2000
       0    0 0.2000
       0    0    0

>> C=inv2(I+L)*U
C=

       0 0.2000 0.2000
       0 -0.0400 0.1600
       0 -0.0320 -0.0720

>> lamda=eig(C*C')

lamda =

  0.0000
  0.0181
  0.0953

>> SR=max(lamda)
SR =                                      Spectral Radius
0.0953
2).
>> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1]
a=

  1.0000 0.5000 0.5000
  0.5000 1.0000 0.5000
  0.5000 0.5000 1.0000

>> L=[0,0,0;.5,0,0;.5,.5,0]
L=

     0    0     0
  0.5000    0     0
  0.5000 0.5000     0

>> I=[1,0,0;0,1,0;0,0,1]
I=

   1    0    0
   0    1    0
   0    0    1

>> U=[0,.5,.5;0,0,.5;0,0,0]
U=

       0 0.5000 0.5000
       0    0 0.5000
       0    0    0

>> C=inv2(I+L)*U
C=

       0 0.5000 0.5000
       0 -0.2500 0.2500
       0 -0.1250 -0.3750

>> lamda=eig(C*C')
lamda =

  0.0000
  0.1481
  0.6332

>> SR=max(lamda)
SR =                                  Spectral Radius
  0.6332
3).
>> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1]
a=

  1.0000 0.9000 0.9000
  0.9000 1.0000 0.9000
  0.9000 0.9000 1.0000

>> L=[0,0,0;.9,0,0;.9,.9,0]
L=

     0    0     0
  0.9000    0     0
  0.9000 0.9000     0

>> I=[1,0,0;0,1,0;0,0,1]
I=

   1    0    0
   0    1    0
   0    0    1

>> U=[0,.9,.9;0,0,.9;0,0,0]
U=

       0 0.9000 0.9000
       0    0 0.9000
       0    0    0

>> C=inv2(I+L)*U
C=

       0 0.9000 0.9000
       0 -0.8100 0.0900
       0 -0.0810 -0.8910

>> lamda=eig(C*C')
lamda =

  0.0000
  0.7301
  2.3546

>> SR=max(lamda)
SR =                                  Spectral Radius
2.3546
Steps vs t :




Spectral radius vs t :
Ques2:


Jacobi Method for Solving the Linear Equations:

%Implementing Jacobi Method
function x = jacobi(A,b,x)


I=[1 0 0; 0 1 0; 0 0 1];
c=I-A;

%Checking Norm
if norm2(c) > 1
     fprintf('nNorm is greater than one so it will diverge');
     return;
    end

    for j=1:50
x=b+(I-A)*x;
n=A*x-b;

%checking the condition of tolerance to stop the iterations
temp=0;
for i = 1:3
    temp= temp+ power(n(i,1),2);
end
   temp=sqrt(temp);
  if temp < 0.0001
      break;
  end
end
fprintf('nThe iteration required is %d',j);
end

MATLAB routine for Norm:
% Calculating Norm of matrix
function n0= norm2(c)
l=length(c);
n0=0;

    for m=1:l
        for n=1:l
            n0 = n0 + c(m,n)*c(m,n);
        end
    end
        n0=sqrt(n0);
  end
Part1:                                Part2

>> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1]   >> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1]

a=                                    a=

  1.0000 0.2000 0.2000                  1.0000     0.5000 0.5000
  0.2000 1.0000 0.2000                  0.5000     1.0000 0.5000
  0.2000 0.2000 1.0000                  0.5000     0.5000 1.0000

>> b=[2;2;2]                          >> b=[2;2;2]

b=                                    b=

   2                                     2
   2                                     2
   2                                     2

>> x=[0;0;0]                          >> x=[0;0;0]

x=                                    x=

   0                                     0
   0                                     0
   0                                     0

>> jacobi(a,b,x)                      >> jacobi(a,b,x)

The iteration required is 12          Norm is greater than one so it will diverge
ans =                                 ans =

  1.4285                                 0
  1.4285                                 0
  1.4285                                 0
Part3 :

>> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1]

a=

  1.0000 0.9000 0.9000
  0.9000 1.0000 0.9000
  0.9000 0.9000 1.0000

>> b=[2;2;2]

b=

   2
   2
   2

>> x=[0;0;0]

x=

   0
   0
   0

>> jacobi(a,b,x)

Norm is greater than one so it will diverge
ans =

   0
   0
   0

From the Data we have calculated we find that Gauss_Siedel Method Diverge more
fastly than Jacobi Method.
Ques3:



Cholesky Method for Solving the Linear Equations:
% Implementing Cholesky Method
function x = cholesky(A,b,x)
n=length(A)
l(1,1)=sqrt(A(1,1));
for i=2:n
    l(i,1)=A(i,1)/l(1,1);
end

for j=2:(n-1)
    temp=0;
    for k=1:j-1
    temp=temp+l(j,k)*l(j,k);
    end
    l(j,j)= sqrt(A(j,j)-temp);
end

for j=2:(n-1)
    for i=j+1:n
        temp=0;
        for k=1:j-1
        temp=temp+l(i,k)*l(j,k);
        end
l(i,j)=(A(i,j)-temp)/l(j,j);
    end

end
temp1=l(n,1)*l(n,1)+l(n,2)*l(n,2);
l(n,n)=sqrt(A(n,n)-temp1);

y=forward_subs(l,b);    %Using Forward Substitution Concept
x=back_subs(l',y);
end
Part1:                                Part2

>> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1]   >> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1]
a=                                    a=

  1.0000 0.2000 0.2000                  1.0000     0.5000 0.5000
  0.2000 1.0000 0.2000                  0.5000     1.0000 0.5000
  0.2000 0.2000 1.0000                  0.5000     0.5000 1.0000

>> b=[2;2;2]                          >> b=[2;2;2]

b=                                    b=

   2                                     2
   2                                     2
   2                                     2

>> x=[0;0;0]                          >> x=[0;0;0]
x=                                    x=

   0                                     0
   0                                     0
   0                                     0

>> cholesky(a,b,x)                    >> cholesky(a,b,x)
ans =                                 ans =

  1.4286                                1.0000
  1.4286                                1.0000
  1.4286                                1.0000
Part3:
>> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1]
a=

  1.0000 0.9000 0.9000
  0.9000 1.0000 0.9000
  0.9000 0.9000 1.0000

>> b=[2;2;2]
b=

   2
   2
   2

>> x=[0;0;0]
x=

   0
   0
   0

>> cholesky(a,b,x)

ans =

  0.7143
  0.7143
  0.7143
Ques4:

Matlab Subroutine to calculate Condition Number:
% Calculating Condition Number

function [] = cond(a,b,b1);
x0=[0;0;0];
val1=max(abs(eig(a)));
val2=min(abs(eig(a)));

val=val1/val2                  %definition of Condition number

x=gauss_siedel(a,b,x0);
x1=gauss_siedel(a,b1,x0);
errip=norm(x-x1)/norm(x);
errop=norm(b-b1)/norm(b);
fprintf('nerror in i/p is %d          nand error in o/p is
%dn',errip,errop);

end




1).
>> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1]

a=

  1.0000 0.2000 0.2000
  0.2000 1.0000 0.2000
  0.2000 0.2000 1.0000

>> b=[2;2;2]

b=

   2
   2
   2

>> b1=[1.1;2.1;3.1]

b1 =

  1.1000
  2.1000
  3.1000
>> cond(a,b,b1)

a=

  1.0800 0.4400 0.4400
  0.4400 1.0800 0.4400
  0.4400 0.4400 1.0800


val =

  3.0625             Condition Number.


The maximum no. of iteration required is 14
error in i/p is 1.309812e+000
and error in o/p is 4.112988e-001



2).
>> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1]

a=

  1.0000 0.5000 0.5000
  0.5000 1.0000 0.5000
  0.5000 0.5000 1.0000

>> b=[2;2;2]

b=

   2
   2
   2

>> b1=[1.1;2.1;3.1]

b1 =

  1.1000
  2.1000
  3.1000
>> cond(a,b,b1)
a=

  1.5000 1.2500 1.2500
  1.2500 1.5000 1.2500
  1.2500 1.2500 1.5000

val =

 16.0000          Condition Number
Norm of c is greater than 1, Solution will diverge.


3).
>> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1]

a=

  1.0000 0.9000 0.9000
  0.9000 1.0000 0.9000
  0.9000 0.9000 1.0000

>> b1=[1.1;2.1;3.1]
b1 =

  1.1000
  2.1000
  3.1000

>> b1=[1.1;2.1;3.1]

b1 =

  1.1000
  2.1000
  3.1000

>> b=[2;2;2]
b=

   2
   2
   2
>> cond(a,b,b1)

a=

  2.6200 2.6100 2.6100
  2.6100 2.6200 2.6100
  2.6100 2.6100 2.6200


val =

 28.0000                  Condition Number.

Norm of c is greater than 1, Solution will diverge.

Weitere ähnliche Inhalte

Was ist angesagt?

Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)Matthew Leingang
 
Integral table
Integral tableIntegral table
Integral tablebags07
 
Integral table
Integral tableIntegral table
Integral tablezzzubair
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in indiaEdhole.com
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsolziich
 
Computer Aided Manufacturing Design
Computer Aided Manufacturing DesignComputer Aided Manufacturing Design
Computer Aided Manufacturing DesignV Tripathi
 
The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...
The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...
The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...ijtsrd
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」Ken'ichi Matsui
 
A Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsA Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsIRJET Journal
 
Re:ゲーム理論入門 第14回 - 仁 -
Re:ゲーム理論入門 第14回 - 仁 -Re:ゲーム理論入門 第14回 - 仁 -
Re:ゲーム理論入門 第14回 - 仁 -ssusere0a682
 
【演習】Re:ゲーム理論入門 第14回 -仁-
【演習】Re:ゲーム理論入門 第14回 -仁-【演習】Re:ゲーム理論入門 第14回 -仁-
【演習】Re:ゲーム理論入門 第14回 -仁-ssusere0a682
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」Ken'ichi Matsui
 
lecture 24
lecture 24lecture 24
lecture 24sajinsc
 
19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-xmath266
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integrationKamel Attar
 
Complex analysis and differential equation
Complex analysis and differential equationComplex analysis and differential equation
Complex analysis and differential equationSpringer
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Nahla Hazem
 

Was ist angesagt? (20)

Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 
Integral table
Integral tableIntegral table
Integral table
 
Integral table
Integral tableIntegral table
Integral table
 
Integral table
Integral tableIntegral table
Integral table
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Computer Aided Manufacturing Design
Computer Aided Manufacturing DesignComputer Aided Manufacturing Design
Computer Aided Manufacturing Design
 
Lap lace
Lap laceLap lace
Lap lace
 
The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...
The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...
The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
 
A Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsA Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point Theorems
 
Re:ゲーム理論入門 第14回 - 仁 -
Re:ゲーム理論入門 第14回 - 仁 -Re:ゲーム理論入門 第14回 - 仁 -
Re:ゲーム理論入門 第14回 - 仁 -
 
【演習】Re:ゲーム理論入門 第14回 -仁-
【演習】Re:ゲーム理論入門 第14回 -仁-【演習】Re:ゲーム理論入門 第14回 -仁-
【演習】Re:ゲーム理論入門 第14回 -仁-
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
 
lecture 24
lecture 24lecture 24
lecture 24
 
19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-x
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
 
Complex analysis and differential equation
Complex analysis and differential equationComplex analysis and differential equation
Complex analysis and differential equation
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5
 

Andere mochten auch

Andere mochten auch (20)

Interp lagrange
Interp lagrangeInterp lagrange
Interp lagrange
 
Cast Iron
Cast IronCast Iron
Cast Iron
 
Es272 ch5b
Es272 ch5bEs272 ch5b
Es272 ch5b
 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolation
 
Lagrange’s interpolation formula
Lagrange’s interpolation formulaLagrange’s interpolation formula
Lagrange’s interpolation formula
 
Metals aug. 4
Metals aug. 4Metals aug. 4
Metals aug. 4
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference Formula
 
Non ferrous metals properties
Non ferrous metals  propertiesNon ferrous metals  properties
Non ferrous metals properties
 
introduction to Cast Iron
introduction to Cast Ironintroduction to Cast Iron
introduction to Cast Iron
 
Mechanical properties
Mechanical propertiesMechanical properties
Mechanical properties
 
Applied Numerical Methods Curve Fitting: Least Squares Regression, Interpolation
Applied Numerical Methods Curve Fitting: Least Squares Regression, InterpolationApplied Numerical Methods Curve Fitting: Least Squares Regression, Interpolation
Applied Numerical Methods Curve Fitting: Least Squares Regression, Interpolation
 
Cast irons
Cast  ironsCast  irons
Cast irons
 
What is cast iron, its process, properties and applications
What is cast iron, its process, properties and applicationsWhat is cast iron, its process, properties and applications
What is cast iron, its process, properties and applications
 
material science
material sciencematerial science
material science
 
Alloy Steel
Alloy SteelAlloy Steel
Alloy Steel
 
Mechanical properties of Material
Mechanical properties of MaterialMechanical properties of Material
Mechanical properties of Material
 
Non-Ferrous Metals
Non-Ferrous MetalsNon-Ferrous Metals
Non-Ferrous Metals
 
TOOL STEELS & THEIR HEAT TREATMENT
TOOL STEELS & THEIR HEAT TREATMENTTOOL STEELS & THEIR HEAT TREATMENT
TOOL STEELS & THEIR HEAT TREATMENT
 
Cast iron
Cast ironCast iron
Cast iron
 
Non ferrous metal
Non ferrous metalNon ferrous metal
Non ferrous metal
 

Ähnlich wie Numerical Methods Solving Linear Equations

Solution of matlab chapter 1
Solution of matlab chapter 1Solution of matlab chapter 1
Solution of matlab chapter 1AhsanIrshad8
 
LP Graphical Solution
LP Graphical SolutionLP Graphical Solution
LP Graphical Solutionunemployedmba
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manualnodyligomi
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)asghar123456
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonPamelaew
 
MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)hasnulslides
 
A fixed point theorem for weakly c contraction mappings of integral type.
A fixed point theorem for  weakly c   contraction mappings of integral type.A fixed point theorem for  weakly c   contraction mappings of integral type.
A fixed point theorem for weakly c contraction mappings of integral type.Alexander Decker
 
ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)CrackDSE
 
Solution of matlab chapter 3
Solution of matlab chapter 3Solution of matlab chapter 3
Solution of matlab chapter 3AhsanIrshad8
 
[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기
[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기
[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기NAVER D2
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...journal ijrtem
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functionsSelvaraj John
 
Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)asghar123456
 
Função quadrática resumo teórico e exercícios - celso brasil
Função quadrática   resumo teórico e exercícios - celso brasilFunção quadrática   resumo teórico e exercícios - celso brasil
Função quadrática resumo teórico e exercícios - celso brasilCelso do Rozário Brasil Gonçalves
 
Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Sudersana Viswanathan
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematicsgeraldsiew
 

Ähnlich wie Numerical Methods Solving Linear Equations (20)

jacobi method, gauss siedel for solving linear equations
jacobi method, gauss siedel for solving linear equationsjacobi method, gauss siedel for solving linear equations
jacobi method, gauss siedel for solving linear equations
 
Solution of matlab chapter 1
Solution of matlab chapter 1Solution of matlab chapter 1
Solution of matlab chapter 1
 
LP Graphical Solution
LP Graphical SolutionLP Graphical Solution
LP Graphical Solution
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
Appendex
AppendexAppendex
Appendex
 
MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)
 
A fixed point theorem for weakly c contraction mappings of integral type.
A fixed point theorem for  weakly c   contraction mappings of integral type.A fixed point theorem for  weakly c   contraction mappings of integral type.
A fixed point theorem for weakly c contraction mappings of integral type.
 
ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)
 
Solution of matlab chapter 3
Solution of matlab chapter 3Solution of matlab chapter 3
Solution of matlab chapter 3
 
[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기
[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기
[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functions
 
Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)Amth250 octave matlab some solutions (4)
Amth250 octave matlab some solutions (4)
 
Função quadrática resumo teórico e exercícios - celso brasil
Função quadrática   resumo teórico e exercícios - celso brasilFunção quadrática   resumo teórico e exercícios - celso brasil
Função quadrática resumo teórico e exercícios - celso brasil
 
Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Trigonometric ratios and identities 1
Trigonometric ratios and identities 1
 
Additional mathematics
Additional mathematicsAdditional mathematics
Additional mathematics
 
Position Vector.pdf
Position Vector.pdfPosition Vector.pdf
Position Vector.pdf
 
Numerical methods generating polynomial
Numerical methods generating polynomialNumerical methods generating polynomial
Numerical methods generating polynomial
 

Mehr von Department of Telecommunications, Ministry of Communication & IT (INDIA) (7)

Workshop proposal
Workshop proposalWorkshop proposal
Workshop proposal
 
Feeding system for disabled report
Feeding system for disabled reportFeeding system for disabled report
Feeding system for disabled report
 
Design ideas mayank
Design ideas mayankDesign ideas mayank
Design ideas mayank
 
Adaptive signal processing simon haykins
Adaptive signal processing simon haykinsAdaptive signal processing simon haykins
Adaptive signal processing simon haykins
 
Pdpm,mayank awasthi,jabalpur,i it kanpur, servo motor,keil code
Pdpm,mayank awasthi,jabalpur,i it kanpur, servo motor,keil codePdpm,mayank awasthi,jabalpur,i it kanpur, servo motor,keil code
Pdpm,mayank awasthi,jabalpur,i it kanpur, servo motor,keil code
 
Analogic
AnalogicAnalogic
Analogic
 
An Introduction To Speech Recognition
An Introduction To Speech RecognitionAn Introduction To Speech Recognition
An Introduction To Speech Recognition
 

Numerical Methods Solving Linear Equations

  • 1. EC 313: Numerical Methods Mayank Awasthi(2006033) MATLAB Assignment – 2 B.Tech 3rd Year(ECE) Pdpm IIITDM, JABALPUR Ques1: Gauss Siedel Method for Solving the Linear Equations: % Implementing Gauss Siedel method % a is matrix whose diagonal elements are non-zero else rearrange it function x = gauss_siedel(a,b,x) n=length(a); l=zeros(n,n); u=zeros(n,n); d=zeros(n,n); id=[1,0,0;0,1,0;0,0,1]; for i=1:n for j=1:n a(i,j)= a(i,j)/a(i,i); %making the diagonal elements 1. % Breaking the matrix as a sum of ( L+U+I ) if i>j l(i,j)=a(i,j); end if i<j u(i,j)=a(i,j); end if i==j d(i,j)=a(i,j); end end end %Implementing Norm of c where c = inverse(I+L)*U norm2(inv2(id+l)*u); if norm2(inv2(id+l)*u)>1 fprintf('Norm of c is greater than 1, Solution will diverge'); return; end for i=1:n b(i,1)=b(i,1)/a(i,i); end % Calculating x using FORWARD DIFFERENCE CONCEPT x=[0;0;0]; for i=1:100 x= forward_subs((l+d),(b-u*x)); m=a*x-b;
  • 2. % Calculating(dis(A*x,b)<1e-6)to stop iteration at the given tolerance temp=0; for j=1:n temp=temp+power(m(j,1),2); end temp=sqrt(temp); if temp<0.0000001 break; end end fprintf('nThe maximum no. of iteration required is %d',i); end MATLAB routine for Inverse of 3x3 matrix : % Calculating Inverse of 3x3 matrix function x = inv2(A) I=[1,0,0;0,1,0;0,0,1]; n=length(A); a21=A(2,1)/A(1,1); for k = 1:n-1 % Elimination Phase for i= k+1:n if A(i,k) ~= 0 lambda = A(i,k)/A(k,k); A(i,k:n) = A(i,k:n) - lambda*A(k,k:n); I(i,k:n)= I(i,k:n) - lambda*I(k,k:n); I(3,1)=I(2,1)*I(3,2)+I(3,1); end end end x1=back_subs(A,I(:,1)); % Backward Substitution x2=back_subs(A,I(:,2)); x3=back_subs(A,I(:,3)); x=[x1,x2,x3]; end MATLAB routine for Norm: % Calculating Norm of matrix function n0= norm2(c) l=length(c); n0=0; for m=1:l for n=1:l n0 = n0 + c(m,n)*c(m,n); end end n0=sqrt(n0); end
  • 3. MATLAB routine for Forward Substitution: % Implementing Forward Substitution function x=forward_subs(A,b) n=length(A); for i = 1:3 t=0; for j = 1:(i-1) t=t+A(i,j)*x(j); end x(i,1)=(b(i,1)-t)/A(i,i); end Part1: Part2: >> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1] >> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1] a= a= 1.0000 0.2000 0.2000 1.0000 0.5000 0.5000 0.2000 1.0000 0.2000 0.5000 1.0000 0.5000 0.2000 0.2000 1.0000 0.5000 0.5000 1.0000 >> b=[2;2;2] >> b=[2;2;2] b= b= 2 2 2 2 2 2 >> x=[0;0;0] >> x=[0;0;0] x= x= 0 0 0 0 0 0 >> gauss_siedel(a,b,x) >> gauss_siedel(a,b,x) The maximum no. of iteration required is 8 The maximum no of iteration required is 17 ans = ans = 1.4286 1.0000 1.4286 1.0000 1.4286 1.0000
  • 4. Part3: >> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1] a= 1.0000 0.9000 0.9000 0.9000 1.0000 0.9000 0.9000 0.9000 1.0000 >> b=[2;2;2] b= 2 2 2 >> x=[0;0;0] x= 0 0 0 >> gauss_siedel(a,b,x) Norm of c is greater than 1, Solution will diverge ans = 0 0 0 ************************************************************************ Spectral radius of C: Spectral radius of C is maximum eigenvalue of C*CT. In this case C=(I+L)-1 * U
  • 5. 1). >> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1] a= 1.0000 0.2000 0.2000 0.2000 1.0000 0.2000 0.2000 0.2000 1.0000 >> L=[0,0,0;.2,0,0;.2,.2,0] L= 0 0 0 0.2000 0 0 0.2000 0.2000 0 >> I=[1,0,0;0,1,0;0,0,1] I= 1 0 0 0 1 0 0 0 1 >> U=[0,.2,.2;0,0,.2;0,0,0] U= 0 0.2000 0.2000 0 0 0.2000 0 0 0 >> C=inv2(I+L)*U C= 0 0.2000 0.2000 0 -0.0400 0.1600 0 -0.0320 -0.0720 >> lamda=eig(C*C') lamda = 0.0000 0.0181 0.0953 >> SR=max(lamda) SR = Spectral Radius 0.0953
  • 6. 2). >> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1] a= 1.0000 0.5000 0.5000 0.5000 1.0000 0.5000 0.5000 0.5000 1.0000 >> L=[0,0,0;.5,0,0;.5,.5,0] L= 0 0 0 0.5000 0 0 0.5000 0.5000 0 >> I=[1,0,0;0,1,0;0,0,1] I= 1 0 0 0 1 0 0 0 1 >> U=[0,.5,.5;0,0,.5;0,0,0] U= 0 0.5000 0.5000 0 0 0.5000 0 0 0 >> C=inv2(I+L)*U C= 0 0.5000 0.5000 0 -0.2500 0.2500 0 -0.1250 -0.3750 >> lamda=eig(C*C') lamda = 0.0000 0.1481 0.6332 >> SR=max(lamda) SR = Spectral Radius 0.6332
  • 7. 3). >> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1] a= 1.0000 0.9000 0.9000 0.9000 1.0000 0.9000 0.9000 0.9000 1.0000 >> L=[0,0,0;.9,0,0;.9,.9,0] L= 0 0 0 0.9000 0 0 0.9000 0.9000 0 >> I=[1,0,0;0,1,0;0,0,1] I= 1 0 0 0 1 0 0 0 1 >> U=[0,.9,.9;0,0,.9;0,0,0] U= 0 0.9000 0.9000 0 0 0.9000 0 0 0 >> C=inv2(I+L)*U C= 0 0.9000 0.9000 0 -0.8100 0.0900 0 -0.0810 -0.8910 >> lamda=eig(C*C') lamda = 0.0000 0.7301 2.3546 >> SR=max(lamda) SR = Spectral Radius 2.3546
  • 8. Steps vs t : Spectral radius vs t :
  • 9. Ques2: Jacobi Method for Solving the Linear Equations: %Implementing Jacobi Method function x = jacobi(A,b,x) I=[1 0 0; 0 1 0; 0 0 1]; c=I-A; %Checking Norm if norm2(c) > 1 fprintf('nNorm is greater than one so it will diverge'); return; end for j=1:50 x=b+(I-A)*x; n=A*x-b; %checking the condition of tolerance to stop the iterations temp=0; for i = 1:3 temp= temp+ power(n(i,1),2); end temp=sqrt(temp); if temp < 0.0001 break; end end fprintf('nThe iteration required is %d',j); end MATLAB routine for Norm: % Calculating Norm of matrix function n0= norm2(c) l=length(c); n0=0; for m=1:l for n=1:l n0 = n0 + c(m,n)*c(m,n); end end n0=sqrt(n0); end
  • 10. Part1: Part2 >> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1] >> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1] a= a= 1.0000 0.2000 0.2000 1.0000 0.5000 0.5000 0.2000 1.0000 0.2000 0.5000 1.0000 0.5000 0.2000 0.2000 1.0000 0.5000 0.5000 1.0000 >> b=[2;2;2] >> b=[2;2;2] b= b= 2 2 2 2 2 2 >> x=[0;0;0] >> x=[0;0;0] x= x= 0 0 0 0 0 0 >> jacobi(a,b,x) >> jacobi(a,b,x) The iteration required is 12 Norm is greater than one so it will diverge ans = ans = 1.4285 0 1.4285 0 1.4285 0
  • 11. Part3 : >> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1] a= 1.0000 0.9000 0.9000 0.9000 1.0000 0.9000 0.9000 0.9000 1.0000 >> b=[2;2;2] b= 2 2 2 >> x=[0;0;0] x= 0 0 0 >> jacobi(a,b,x) Norm is greater than one so it will diverge ans = 0 0 0 From the Data we have calculated we find that Gauss_Siedel Method Diverge more fastly than Jacobi Method.
  • 12. Ques3: Cholesky Method for Solving the Linear Equations: % Implementing Cholesky Method function x = cholesky(A,b,x) n=length(A) l(1,1)=sqrt(A(1,1)); for i=2:n l(i,1)=A(i,1)/l(1,1); end for j=2:(n-1) temp=0; for k=1:j-1 temp=temp+l(j,k)*l(j,k); end l(j,j)= sqrt(A(j,j)-temp); end for j=2:(n-1) for i=j+1:n temp=0; for k=1:j-1 temp=temp+l(i,k)*l(j,k); end l(i,j)=(A(i,j)-temp)/l(j,j); end end temp1=l(n,1)*l(n,1)+l(n,2)*l(n,2); l(n,n)=sqrt(A(n,n)-temp1); y=forward_subs(l,b); %Using Forward Substitution Concept x=back_subs(l',y); end
  • 13. Part1: Part2 >> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1] >> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1] a= a= 1.0000 0.2000 0.2000 1.0000 0.5000 0.5000 0.2000 1.0000 0.2000 0.5000 1.0000 0.5000 0.2000 0.2000 1.0000 0.5000 0.5000 1.0000 >> b=[2;2;2] >> b=[2;2;2] b= b= 2 2 2 2 2 2 >> x=[0;0;0] >> x=[0;0;0] x= x= 0 0 0 0 0 0 >> cholesky(a,b,x) >> cholesky(a,b,x) ans = ans = 1.4286 1.0000 1.4286 1.0000 1.4286 1.0000
  • 14. Part3: >> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1] a= 1.0000 0.9000 0.9000 0.9000 1.0000 0.9000 0.9000 0.9000 1.0000 >> b=[2;2;2] b= 2 2 2 >> x=[0;0;0] x= 0 0 0 >> cholesky(a,b,x) ans = 0.7143 0.7143 0.7143
  • 15. Ques4: Matlab Subroutine to calculate Condition Number: % Calculating Condition Number function [] = cond(a,b,b1); x0=[0;0;0]; val1=max(abs(eig(a))); val2=min(abs(eig(a))); val=val1/val2 %definition of Condition number x=gauss_siedel(a,b,x0); x1=gauss_siedel(a,b1,x0); errip=norm(x-x1)/norm(x); errop=norm(b-b1)/norm(b); fprintf('nerror in i/p is %d nand error in o/p is %dn',errip,errop); end 1). >> a=[1 ,.2 .2;.2, 1, .2;.2, .2, 1] a= 1.0000 0.2000 0.2000 0.2000 1.0000 0.2000 0.2000 0.2000 1.0000 >> b=[2;2;2] b= 2 2 2 >> b1=[1.1;2.1;3.1] b1 = 1.1000 2.1000 3.1000
  • 16. >> cond(a,b,b1) a= 1.0800 0.4400 0.4400 0.4400 1.0800 0.4400 0.4400 0.4400 1.0800 val = 3.0625 Condition Number. The maximum no. of iteration required is 14 error in i/p is 1.309812e+000 and error in o/p is 4.112988e-001 2). >> a=[1 ,.5 .5;.5, 1, .5;.5, .5, 1] a= 1.0000 0.5000 0.5000 0.5000 1.0000 0.5000 0.5000 0.5000 1.0000 >> b=[2;2;2] b= 2 2 2 >> b1=[1.1;2.1;3.1] b1 = 1.1000 2.1000 3.1000
  • 17. >> cond(a,b,b1) a= 1.5000 1.2500 1.2500 1.2500 1.5000 1.2500 1.2500 1.2500 1.5000 val = 16.0000 Condition Number Norm of c is greater than 1, Solution will diverge. 3). >> a=[1 ,.9 .9;.9, 1, .9;.9, .9, 1] a= 1.0000 0.9000 0.9000 0.9000 1.0000 0.9000 0.9000 0.9000 1.0000 >> b1=[1.1;2.1;3.1] b1 = 1.1000 2.1000 3.1000 >> b1=[1.1;2.1;3.1] b1 = 1.1000 2.1000 3.1000 >> b=[2;2;2] b= 2 2 2
  • 18. >> cond(a,b,b1) a= 2.6200 2.6100 2.6100 2.6100 2.6200 2.6100 2.6100 2.6100 2.6200 val = 28.0000 Condition Number. Norm of c is greater than 1, Solution will diverge.