SlideShare ist ein Scribd-Unternehmen logo
1 von 90
Slopes and Derivatives
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1
= the difference in the
heights of the points.
Δx = x2 – x1
= the difference in the
run of the points.
Slopes and Derivatives
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1
= the difference in the
heights of the points.
Δx = x2 – x1
= the difference in the
run of the points.
Δy
Δx=The slope m is the ratio of the “rise” to the “run”.
Slopes and Derivatives
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1
= the difference in the
heights of the points.
Δx = x2 – x1
= the difference in the
run of the points.
Δy
Δx=The slope m is the ratio of the “rise” to the “run”.
The slope measures the tilt of a line in relation to the
horizon, that is, the steepness in relation to the x
axis.
Slopes and Derivatives
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1
= the difference in the
heights of the points.
Δx = x2 – x1
= the difference in the
run of the points.
Δy
Δx=The slope m is the ratio of the “rise” to the “run”.
The slope measures the tilt of a line in relation to the
horizon, that is, the steepness in relation to the x
axis. Therefore horizontal lines have its steepness or
slope = 0 .
Slopes and Derivatives
(x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
Geometry of Slope
Δy = y2 – y1
= the difference in the
heights of the points.
Δx = x2 – x1
= the difference in the
run of the points.
Δy
Δx=The slope m is the ratio of the “rise” to the “run”.
* http://www.mathwarehouse.com/algebra/linear_equation/interactive-
slope.php
The slope measures the tilt of a line in relation to the
horizon, that is, the steepness in relation to the x
axis. Therefore horizontal lines have its steepness or
slope = 0 . Steeper lines have “larger” slopes*.
Slopes and Derivatives
Algebra of Slope
Slopes and Derivatives
Algebra of Slope
Δy = y2 – y1
= the difference in the outputs y
Slopes and Derivatives
Algebra of Slope
Δy = y2 – y1
= the difference in the outputs y
Δx = x2 – x1
= the difference in the inputs x
Slopes and Derivatives
Algebra of Slope
Δy = y2 – y1
= the difference in the outputs y
Δx = x2 – x1
= the difference in the inputs x
Algebraically the slope
m = Δy/Δx = Δy : Δx is the ratio
the difference in the outputs the difference in the inputs:
Slopes and Derivatives
Algebra of Slope
Δy = y2 – y1
= the difference in the outputs y
Δx = x2 – x1
= the difference in the inputs x
Algebraically the slope
m = Δy/Δx = Δy : Δx is the ratio
the difference in the outputs the difference in the inputs:
The units of this ratio are (units of y) / (units of x).
Slopes and Derivatives
Algebra of Slope
Δy = y2 – y1
= the difference in the outputs y
Δx = x2 – x1
= the difference in the inputs x
Algebraically the slope
m = Δy/Δx = Δy : Δx is the ratio
the difference in the outputs the difference in the inputs:
The units of this ratio are (units of y) / (units of x).
This is also the amount of change in y for each unit
change in x.
Slopes and Derivatives
Algebra of Slope
Δy = y2 – y1
= the difference in the outputs y
Δx = x2 – x1
= the difference in the inputs x
Algebraically the slope
m = Δy/Δx = Δy : Δx is the ratio
the difference in the outputs the difference in the inputs:
The units of this ratio are (units of y) / (units of x).
This is also the amount of change in y for each unit
change in x. The ratio “2 eggs : 3 cakes” is the same
as “2/3 egg per cake”.
Slopes and Derivatives
Algebra of Slope
Δy = y2 – y1
= the difference in the outputs y
Δx = x2 – x1
= the difference in the inputs x
Algebraically the slope
m = Δy/Δx = Δy : Δx is the ratio
the difference in the outputs the difference in the inputs:
The units of this ratio are (units of y) / (units of x).
This is also the amount of change in y for each unit
change in x. The ratio “2 eggs : 3 cakes” is the same
as “2/3 egg per cake”. The slope m is “the amount of
change of y if x changes by one unit.
Slopes and Derivatives
Example A. We had 6 gallons of gas at the start of a
trip and the odometer was registered at 75,000 miles.
Two hours later, the gas gauge indicated there were
3 gallons left and the odometer was at 75,300 miles.
Let x = the gas–tank indicator reading
y = the odometer reading
t = the time in hours. Find the following slopes.
Slopes and Derivatives
Example A. We had 6 gallons of gas at the start of a
trip and the odometer was registered at 75,000 miles.
Two hours later, the gas gauge indicated there were
3 gallons left and the odometer was at 75,300 miles.
Let x = the gas–tank indicator reading
y = the odometer reading
t = the time in hours. Find the following slopes.
a. Compare the measurements of the fuel amount x
versus the distance y traveled, or (x, y),
Slopes and Derivatives
Example A. We had 6 gallons of gas at the start of a
trip and the odometer was registered at 75,000 miles.
Two hours later, the gas gauge indicated there were
3 gallons left and the odometer was at 75,300 miles.
Let x = the gas–tank indicator reading
y = the odometer reading
t = the time in hours. Find the following slopes.
a. Compare the measurements of the fuel amount x
versus the distance y traveled, or (x, y). We have
(6, 75000), (3, 75300).
Slopes and Derivatives
The slope m = (75,300 – 75,000) / (3 – 6)
= –100 mpg.
Example A. We had 6 gallons of gas at the start of a
trip and the odometer was registered at 75,000 miles.
Two hours later, the gas gauge indicated there were
3 gallons left and the odometer was at 75,300 miles.
Let x = the gas–tank indicator reading
y = the odometer reading
t = the time in hours. Find the following slopes.
a. Compare the measurements of the fuel amount x
versus the distance y traveled, or (x, y). We have
(6, 75000), (3, 75300).
Slopes and Derivatives
The slope m = (75,300 – 75,000) / (3 – 6)
= –100 mpg.
So the distance–to–fuel rate or the fuel efficiency
is 100 miles per gallon.
Example A. We had 6 gallons of gas at the start of a
trip and the odometer was registered at 75,000 miles.
Two hours later, the gas gauge indicated there were
3 gallons left and the odometer was at 75,300 miles.
Let x = the gas–tank indicator reading
y = the odometer reading
t = the time in hours. Find the following slopes.
a. Compare the measurements of the fuel amount x
versus the distance y traveled, or (x, y). We have
(6, 75000), (3, 75300).
Slopes and Derivatives
b. Compare the measurements of the time t versus
the distance y traveled, or (t, y).
Slopes and Derivatives
b. Compare the measurements of the time t versus
the distance y traveled, or (t, y). we have
(0, 75000), (2, 75300).
Slopes and Derivatives
The slope n = (75,300 – 70,000) / (2 – 0)
= 150 mph.
b. Compare the measurements of the time t versus
the distance y traveled, or (t, y). we have
(0, 75000), (2, 75300).
Slopes and Derivatives
So the distance–to–time rate (or the velocity) per hour
is 150 miles per hour.
The slope n = (75,300 – 70,000) / (2 – 0)
= 150 mph.
b. Compare the measurements of the time t versus
the distance y traveled, or (t, y). we have
(0, 75000), (2, 75300).
Slopes and Derivatives
So the distance–to–time rate (or the velocity) per hour
is 150 miles per hour.
The slope n = (75,300 – 70,000) / (2 – 0)
= 150 mph.
b. Compare the measurements of the time t versus
the distance y traveled, or (t, y). we have
(0, 75000), (2, 75300).
c. Compare the measurements of the time t versus
the amount of fuel x, or (t, x),
Slopes and Derivatives
So the distance–to–time rate (or the velocity) per hour
is 150 miles per hour.
The slope n = (75,300 – 70,000) / (2 – 0)
= 150 mph.
b. Compare the measurements of the time t versus
the distance y traveled, or (t, y). we have
(0, 75000), (2, 75300).
the slope n = (6 – 3) / (0 – 2)
= –1.5 gph.
c. Compare the measurements of the time t versus
the amount of fuel x, or (t, x). We have
(0, 6), (2, 3). The rate of change is
Slopes and Derivatives
So the distance–to–time rate (or the velocity) per hour
is 150 miles per hour.
The slope n = (75,300 – 70,000) / (2 – 0)
= 150 mph.
b. Compare the measurements of the time t versus
the distance y traveled, or (t, y). we have
(0, 75000), (2, 75300).
So the fuel–to–time rate of the fuel consumption per
hour is 1.50 gallon per hour.
c. Compare the measurements of the time t versus
the amount of fuel x, or (t, x). We have
(0, 6), (2, 3). The rate of change is
Slopes and Derivatives
the slope n = (6 – 3) / (0 – 2)
= –1.5 gph.
Question: What are the reciprocals of the above
rates and what do they measure?
Slopes and Derivatives
Question: What are the reciprocals of the above
rates and what do they measure?
Slopes measure steepness of straight lines.
Slopes and Derivatives
Question: What are the reciprocals of the above
rates and what do they measure?
Slopes measure steepness of straight lines.
We want to extend this system of geometric
measurement to measuring “steepness” of curves.
Slopes and Derivatives
Question: What are the reciprocals of the above
rates and what do they measure?
Slopes measure steepness of straight lines.
We want to extend this system of geometric
measurement to measuring “steepness” of curves.
A curve has “ups” and “downs”
so a curve has different
“slopes” at different points.
Slopes and Derivatives
Question: What are the reciprocals of the above
rates and what do they measure?
x
P
y= f(x)
Slopes measure steepness of straight lines.
We want to extend this system of geometric
measurement to measuring “steepness” of curves.
Q
A curve has “ups” and “downs”
so a curve has different
“slopes” at different points.
This may be seen in the figure
shown at points P and Q.
Slopes and Derivatives
Question: What are the reciprocals of the above
rates and what do they measure?
x
P
y= f(x)
Slopes measure steepness of straight lines.
We want to extend this system of geometric
measurement to measuring “steepness” of curves.
Q
A curve has “ups” and “downs”
so a curve has different
“slopes” at different points.
This may be seen in the figure
shown at points P and Q.
Obviously the “slope” at the point P should be positive,
and the “slope” at the point Q should be negative.
Slopes and Derivatives
Question: What are the reciprocals of the above
rates and what do they measure?
x
P
y= f(x)
Slopes measure steepness of straight lines.
We want to extend this system of geometric
measurement to measuring “steepness” of curves.
Q
A curve has “ups” and “downs”
so a curve has different
“slopes” at different points.
This may be seen in the figure
shown at points P and Q.
We define the “slope at a point P on the curve y = f(x)”
to be “the slope of the tangent line to y = f(x) at P” .
Obviously the “slope” at the point P should be positive,
and the “slope” at the point Q should be negative.
Slopes and Derivatives
Slopes and Derivatives
Derivatives
Slopes and Derivatives
Derivatives
If f(x) is an elementary function,
then the “slope” of the tangent is
well defined for “most” of the
points on its graph y = f(x).
Slopes and Derivatives
x
P
y= f(x)
Derivatives
If f(x) is an elementary function,
then the “slope” of the tangent is
well defined for “most” of the
points on its graph y = f(x).
Slopes and Derivatives
x
P
y= f(x)
Derivatives
If f(x) is an elementary function,
then the “slope” of the tangent is
well defined for “most” of the
points on its graph y = f(x).
The slope at a point P is also
called the derivative at P.
Slopes and Derivatives
x
P
y= f(x)
Derivatives
If f(x) is an elementary function,
then the “slope” of the tangent is
well defined for “most” of the
points on its graph y = f(x).
The slope at a point P is also
called the derivative at P.
By “well defined” we mean that the geometric notion of
“the tangent line at P” is intuitive and unambiguous so
its slope is unambiguous.
Slopes and Derivatives
x
P
y= f(x)
Derivatives
By “well defined” we mean that the geometric notion of
“the tangent line at P” is intuitive and unambiguous so
its slope is unambiguous.
We will examine the notion of the “tangent
line” in the next section. For now, we
accept the tangent line intuitively as a
straight line that leans against y = f(x) at P
as shown.
If f(x) is an elementary function,
then the “slope” of the tangent is
well defined for “most” of the
points on its graph y = f(x).
The slope at a point P is also
called the derivative at P.
Slopes and Derivatives
x
P
y= f(x)
Derivatives
By “well defined” we mean that the geometric notion of
“the tangent line at P” is intuitive and unambiguous so
its slope is unambiguous.
Furthermore, it is well defined because we are able to
compute the slopes of tangents at different locations
algebraically.
If f(x) is an elementary function,
then the “slope” of the tangent is
well defined for “most” of the
points on its graph y = f(x).
The slope at a point P is also
called the derivative at P.
Slopes and Derivatives
x
P
y= f(x)
Derivatives
By “well defined” we mean that the geometric notion of
“the tangent line at P” is intuitive and unambiguous so
its slope is unambiguous.
Furthermore, it is well defined because we are able to
compute the slopes of tangents at different locations
algebraically. We will carry out these computations for
the 2nd degree example from the last section.
If f(x) is an elementary function,
then the “slope” of the tangent is
well defined for “most” of the
points on its graph y = f(x).
The slope at a point P is also
called the derivative at P.
Example B.
Given f(x) = x2 – 2x + 2
a. Find the slope of the cord connecting the points
(x, f(x)) and (x+h,f(x+h)) with x = 2 and h = 0.2.
Slopes and Derivatives
Example B.
Given f(x) = x2 – 2x + 2
a. Find the slope of the cord connecting the points
(x, f(x)) and (x+h,f(x+h)) with x = 2 and h = 0.2.
Substitute the values of x and h,
we are find the slopes of the cord
connecting (2, f(2)=2) and
(2.2, f(2.2)). (2.2, f(2.2))
(2, 2)
2 2.2
0.2
Slopes and Derivatives
Example B.
Given f(x) = x2 – 2x + 2
a. Find the slope of the cord connecting the points
(x, f(x)) and (x+h,f(x+h)) with x = 2 and h = 0.2.
f(x+h) – f(x)
h
Substitute the values of x and h,
we are find the slopes of the cord
connecting (2, f(2)=2) and
(2.2, f(2.2)). Its slope is
f(2.2) – f(2)
0.2
= (2, 2)
2 2.2
0.2
(2.2, f(2.2))
Slopes and Derivatives
Example B.
Given f(x) = x2 – 2x + 2
a. Find the slope of the cord connecting the points
(x, f(x)) and (x+h,f(x+h)) with x = 2 and h = 0.2.
f(x+h) – f(x)
h
Substitute the values of x and h,
we are find the slopes of the cord
connecting (2, f(2)=2) and
(2.2, f(2.2)). Its slope is
f(2.2) – f(2)
0.2
=
=
2.44 – 2
0.2
= 2.2
(2, 2)
2 2.2=
0.44
0.2
0.44
0.2
slope m = 2.2
(2.2, f(2.2))
Slopes and Derivatives
b. Given f(x) = x2 – 2x + 2, simplify the formula for the
slope of the cord connecting the points (2, 2) and
(2+h, f(2+h)).
Slopes and Derivatives
b. Given f(x) = x2 – 2x + 2, simplify the formula for the
slope of the cord connecting the points (2, 2) and
(2+h, f(2+h)).
(2+h, f(2+h)
(2, 2)
2 2 + h
h
f(2+h)–f(2)
Slopes and Derivatives
b. Given f(x) = x2 – 2x + 2, simplify the formula for the
slope of the cord connecting the points (2, 2) and
(2+h, f(2+h)).
We are to simplify the difference quotient formula
with f(x) = x2 – 2x + 2 at x = 2.
(2+h, f(2+h)
(2, 2)
2 2 + h
h
f(2+h)–f(2)
Slopes and Derivatives
b. Given f(x) = x2 – 2x + 2, simplify the formula for the
slope of the cord connecting the points (2, 2) and
(2+h, f(2+h)).
f(2+h) – f(2)
h
We are to simplify the difference quotient formula
with f(x) = x2 – 2x + 2 at x = 2.
(2+h, f(2+h)
(2, 2)
2 2 + h
h
f(2+h)–f(2)
Slopes and Derivatives
b. Given f(x) = x2 – 2x + 2, simplify the formula for the
slope of the cord connecting the points (2, 2) and
(2+h, f(2+h)).
f(2+h) – f(2)
h
We are to simplify the difference quotient formula
with f(x) = x2 – 2x + 2 at x = 2.
=
[(2+h)2 – 2(2+h) + 2] – (2)
h
(2+h, f(2+h)
(2, 2)
2 2 + h
h
f(2+h)–f(2)
Slopes and Derivatives
b. Given f(x) = x2 – 2x + 2, simplify the formula for the
slope of the cord connecting the points (2, 2) and
(2+h, f(2+h)).
f(2+h) – f(2)
h
We are to simplify the difference quotient formula
with f(x) = x2 – 2x + 2 at x = 2.
=
[(2+h)2 – 2(2+h) + 2] – (2)
h
h2 + 2h
h
=
(2+h, f(2+h)
(2, 2)
2 2 + h
h
f(2+h)–f(2)
Slopes and Derivatives
b. Given f(x) = x2 – 2x + 2, simplify the formula for the
slope of the cord connecting the points (2, 2) and
(2+h, f(2+h)).
f(2+h) – f(2)
h
We are to simplify the difference quotient formula
with f(x) = x2 – 2x + 2 at x = 2.
=
[(2+h)2 – 2(2+h) + 2] – (2)
h
h2 + 2h
h
= h + 2
=
(2+h, f(2+h)
(2, 2)
2 2 + h
h
slope = h + 2
f(2+h)–f(2)
Slopes and Derivatives
c. Now we deduce the slope at the point (2, 2) in the
following geometric argument.
Slopes and Derivatives
c. Now we deduce the slope at the point (2, 2) in the
following geometric argument.
(2, 2)
2
y = x2–2x+2
Slopes and Derivatives
c. Now we deduce the slope at the point (2, 2) in the
following geometric argument.
The cord is fixed at the base–point
(2, 2) and the other end depends on
the value h.
(2, 2)
2
y = x2–2x+2
Slopes and Derivatives
c. Now we deduce the slope at the point (2, 2) in the
following geometric argument.
(2+h, f(2+h)
(2, 2)
2 2 + h
h
f(2+h)–f(2)
The cord is fixed at the base–point
(2, 2) and the other end depends on
the value h.
y = x2–2x+2
Slopes and Derivatives
c. Now we deduce the slope at the point (2, 2) in the
following geometric argument.
(2+h, f(2+h)
(2, 2)
2 2 + h
h
f(2+h)–f(2)
The cord is fixed at the base–point
(2, 2) and the other end depends on
the value h.
y = x2–2x+2
Slopes and Derivatives
c. Now we deduce the slope at the point (2, 2) in the
following geometric argument.
(2+h, f(2+h)
(2, 2)
2 2 + h
f(2+h)–f(2)
The cord is fixed at the base–point
(2, 2) and the other end depends on
the value h. As h varies, we obtained
different cords with different slopes.
h
y = x2–2x+2
Slopes and Derivatives
c. Now we deduce the slope at the point (2, 2) in the
following geometric argument.
(2+h, f(2+h)
(2, 2)
2 2 + h
f(2+h)–f(2)
The cord is fixed at the base–point
(2, 2) and the other end depends on
the value h. As h varies, we obtained
different cords with different slopes.
As h gets larger, the cords deviates
away from the tangent line at (2, 2)
and as h gets smaller the
corresponding cords swing and settle
toward the tangent line. h
y = x2–2x+2
Slopes and Derivatives
c. Now we deduce the slope at the point (2, 2) in the
following geometric argument.
(2+h, f(2+h)
(2, 2)
2 2 + h
f(2+h)–f(2)
The cord is fixed at the base–point
(2, 2) and the other end depends on
the value h. As h varies, we obtained
different cords with different slopes.
As h gets larger, the cords deviates
away from the tangent line at (2, 2)
and as h gets smaller the
corresponding cords swing and settle
toward the tangent line. These cords
have slopes 2 + h.
slope = 2 + h
h
y = x2–2x+2
Slopes and Derivatives
c. Now we deduce the slope at the point (2, 2) in the
following geometric argument.
(2+h, f(2+h)
(2, 2)
2 2 + h
slope = 2 + h
f(2+h)–f(2)
The cord is fixed at the base–point
(2, 2) and the other end depends on
the value h. As h varies, we obtained
different cords with different slopes.
As h gets larger, the cords deviates
away from the tangent line at (2, 2)
and as h gets smaller the
corresponding cords swing and settle
toward the tangent line. These cords
have slopes 2 + h. Hence as
h “shrinks” to 0, the slope or the
derivative at (2, 2) must be 2.
h
y = x2–2x+2
Slopes and Derivatives
d. Simplify the difference quotient of f(x) then find the
slope at the point (x, f(x)) – as a formula in x.
Slopes and Derivatives
Connect the cord at the base–point
(x, f(x)) to the other end point at
(x+h, f(x+h)).
d. Simplify the difference quotient of f(x) then find the
slope at the point (x, f(x)) – as a formula in x.
Slopes and Derivatives
(x+h, f(x+h)
(x, f(x))
x x + h
f(x+h)–f(x)
Connect the cord at the base–point
(x, f(x)) to the other end point at
(x+h, f(x+h)).
h
d. Simplify the difference quotient of f(x) then find the
slope at the point (x, f(x)) – as a formula in x.
y = x2–2x+2
Slopes and Derivatives
(x+h, f(x+h)
(x, f(x))
x x + h
f(x+h)–f(x)
Connect the cord at the base–point
(x, f(x)) to the other end point at
(x+h, f(x+h)). The difference quotient is
h
d. Simplify the difference quotient of f(x) then find the
slope at the point (x, f(x)) – as a formula in x.
f(x+h) – f(x)
h
y = x2–2x+2
Slopes and Derivatives
(x+h, f(x+h)
(x, f(x))
x x + h
f(x+h)–f(x)
Connect the cord at the base–point
(x, f(x)) to the other end point at
(x+h, f(x+h)). The difference quotient is
h
d. Simplify the difference quotient of f(x) then find the
slope at the point (x, f(x)) – as a formula in x.
f(x+h) – f(x)
h
=
(x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2]
h
y = x2–2x+2
Slopes and Derivatives
(x+h, f(x+h)
(x, f(x))
x x + h
f(x+h)–f(x)
Connect the cord at the base–point
(x, f(x)) to the other end point at
(x+h, f(x+h)). The difference quotient is
h
d. Simplify the difference quotient of f(x) then find the
slope at the point (x, f(x)) – as a formula in x.
f(x+h) – f(x)
h
=
(x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2]
h
2xh – 2h + h2
h
=
y = x2–2x+2
Slopes and Derivatives
(x+h, f(x+h)
(x, f(x))
x x + h
f(x+h)–f(x)
Connect the cord at the base–point
(x, f(x)) to the other end point at
(x+h, f(x+h)). The difference quotient is
h
d. Simplify the difference quotient of f(x) then find the
slope at the point (x, f(x)) – as a formula in x.
f(x+h) – f(x)
h
=
(x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2]
h
2xh – 2h + h2
h
= 2x – 2 + h
=
y = x2–2x+2
slope = 2x–2+h
Slopes and Derivatives
(x+h, f(x+h)
(x, f(x))
x x + h
f(x+h)–f(x)
Connect the cord at the base–point
(x, f(x)) to the other end point at
(x+h, f(x+h)). The difference quotient is
h
d. Simplify the difference quotient of f(x) then find the
slope at the point (x, f(x)) – as a formula in x.
f(x+h) – f(x)
h
=
(x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2]
h
2xh – 2h + h2
h
= 2x – 2 + h
=
As h shrinks to 0, the slopes of the
cords approach the value 2x – 2
y = x2–2x+2
slope = 2x–2+h
Slopes and Derivatives
(x+h, f(x+h)
(x, f(x))
x x + h
f(x+h)–f(x)
Connect the cord at the base–point
(x, f(x)) to the other end point at
(x+h, f(x+h)). The difference quotient is
h
d. Simplify the difference quotient of f(x) then find the
slope at the point (x, f(x)) – as a formula in x.
f(x+h) – f(x)
h
=
(x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2]
h
2xh – 2h + h2
h
= 2x – 2 + h.
=
As h shrinks to 0, the slopes of the
cords approach the value 2x – 2
which must be the slope at (x, f(x)).
y = x2–2x+2
slope = 2x–2+h
Slopes and Derivatives
Let’s summarize the result.
Slopes and Derivatives
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
Slopes and Derivatives
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
y = x2–2x+2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
y = x2–2x+2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
y = x2–2x+2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
y = x2–2x+2
slope at x
= 2x – 2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
This slope–formula is the derivative of
f(x) and it is written as f ’(x)
y = x2–2x+2
slope at x
= 2x – 2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
This slope–formula is the derivative of
f(x) and it is written as f ’(x) – it’s read
as “f prime of x”.
y = x2–2x+2
slope at x
= 2x – 2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
This slope–formula is the derivative of
f(x) and it is written as f ’(x) – it’s read
as “f prime of x”. So the derivative of
f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2.
y = x2–2x+2
slope at x
= 2x – 2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
This slope–formula is the derivative of
f(x) and it is written as f ’(x) – it’s read
as “f prime of x”. So the derivative of
f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2.
y = x2–2x+2
The name derivative came from the
fact that f’(x) = 2x – 2 is derived from
f(x) = x2 – 2x + 2.
slope at x
= 2x – 2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
This slope–formula is the derivative of
f(x) and it is written as f ’(x) – it’s read
as “f prime of x”. So the derivative of
f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2.
y = x2–2x+2
The name derivative came from the
fact that f’(x) = 2x – 2 is derived from
f(x) = x2 – 2x + 2. The derivative f ’(x) = 2x – 2 tells
us the slopes of f(x) = x2 – 2x + 2.
slope at x
= 2x – 2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
This slope–formula is the derivative of
f(x) and it is written as f ’(x) – it’s read
as “f prime of x”. So the derivative of
f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2.
y = x2–2x+2
The name derivative came from the
fact that f’(x) = 2x – 2 is derived from
f(x) = x2 – 2x + 2. The derivative f ’(x) = 2x – 2 tells
us the slopes of f(x) = x2 – 2x + 2.
For example the slope at x = 2 is f ’(2) = 2,
at x = 3 is f ’(3) = 4, etc

slope at x
= 2x – 2
Slopes and Derivatives
(x, f(x))
x
Let’s summarize the result.
If f(x) = x2 – 2x + 2, then the slope at
the point (x, f(x)) is 2x – 2.
This slope–formula is the derivative of
f(x) and it is written as f ’(x) – it’s read
as “f prime of x”. So the derivative of
f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2.
y = x2–2x+2
The name derivative came from the
fact that f’(x) = 2x – 2 is derived from
f(x) = x2 – 2x + 2. The derivative f ’(x) = 2x – 2 tells
us the slopes of f(x) = x2 – 2x + 2.
For example the slope at x = 2 is f ’(2) = 2,
at x = 3 is f ’(3) = 4, etc
 The derivative f ’(x) is the
extension of the concept of slopes of lines to curves.
slope at x
= 2x – 2
Slopes and Derivatives
The first topic of the calculus course is derivatives.
Slopes and Derivatives
The first topic of the calculus course is derivatives.
We will examine derivative algebraically by
* developing the language of derivative which
makes the concept more rigorous
Slopes and Derivatives
The first topic of the calculus course is derivatives.
We will examine derivative algebraically by
* developing the language of derivative which
makes the concept more rigorous
* developing the computation techniques for finding
derivatives of all elementary functions
Slopes and Derivatives
The first topic of the calculus course is derivatives.
We will examine derivative algebraically by
* developing the language of derivative which
makes the concept more rigorous
* developing the computation techniques for finding
derivatives of all elementary functions
Slopes and Derivatives
We will examine derivative geometrically
The first topic of the calculus course is derivatives.
We will examine derivative algebraically by
* developing the language of derivative which
makes the concept more rigorous
* developing the computation techniques for finding
derivatives of all elementary functions
Slopes and Derivatives
We will examine derivative geometrically by
* developing the relations between derivatives f ’(x)
and the shape of the graph of y = f(x)
The first topic of the calculus course is derivatives.
We will examine derivative algebraically by
* developing the language of derivative which
makes the concept more rigorous
* developing the computation techniques for finding
derivatives of all elementary functions
Slopes and Derivatives
We will examine derivative geometrically by
* developing the relations between derivatives f ’(x)
and the shape of the graph of y = f(x)
* developing the computation procedures using f ’(x)
to locate special positions on y = f(x)
The first topic of the calculus course is derivatives.
We will examine derivative algebraically by
* developing the language of derivative which
makes the concept more rigorous
* developing the computation techniques for finding
derivatives of all elementary functions
Slopes and Derivatives
We will examine derivative geometrically by
* developing the relations between derivatives f ’(x)
and the shape of the graph of y = f(x)
* developing the computation procedures using f ’(x)
to locate special positions on y = f(x)
We will also investigate the applications of the
derivatives which include problems of optimization,
rates of change and numerical methods.

Weitere Àhnliche Inhalte

Was ist angesagt?

4.5 continuous functions and differentiable functions
4.5 continuous functions and differentiable functions4.5 continuous functions and differentiable functions
4.5 continuous functions and differentiable functions
math265
 
2.2 limits ii
2.2 limits ii2.2 limits ii
2.2 limits ii
math265
 
5.3 areas, riemann sums, and the fundamental theorem of calaculus
5.3 areas, riemann sums, and the fundamental theorem of calaculus5.3 areas, riemann sums, and the fundamental theorem of calaculus
5.3 areas, riemann sums, and the fundamental theorem of calaculus
math265
 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities
math265
 
1.3 review on trig functions
1.3 review on trig functions1.3 review on trig functions
1.3 review on trig functions
math265
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivatives
math265
 
3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions
math265
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
math265
 
1.6 slopes and the difference quotient
1.6 slopes and the difference quotient1.6 slopes and the difference quotient
1.6 slopes and the difference quotient
math265
 
3.4 derivative and graphs
3.4 derivative and graphs3.4 derivative and graphs
3.4 derivative and graphs
math265
 

Was ist angesagt? (20)

4.5 continuous functions and differentiable functions
4.5 continuous functions and differentiable functions4.5 continuous functions and differentiable functions
4.5 continuous functions and differentiable functions
 
2.2 limits ii
2.2 limits ii2.2 limits ii
2.2 limits ii
 
5.3 areas, riemann sums, and the fundamental theorem of calaculus
5.3 areas, riemann sums, and the fundamental theorem of calaculus5.3 areas, riemann sums, and the fundamental theorem of calaculus
5.3 areas, riemann sums, and the fundamental theorem of calaculus
 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities
 
1.3 review on trig functions
1.3 review on trig functions1.3 review on trig functions
1.3 review on trig functions
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivatives
 
20 methods of division x
20 methods of division x20 methods of division x
20 methods of division x
 
3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions
 
7 sign charts of factorable formulas y
7 sign charts of factorable formulas y7 sign charts of factorable formulas y
7 sign charts of factorable formulas y
 
15 translations of graphs x
15 translations of graphs x15 translations of graphs x
15 translations of graphs x
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts x
 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions x
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient x
 
1.6 slopes and the difference quotient
1.6 slopes and the difference quotient1.6 slopes and the difference quotient
1.6 slopes and the difference quotient
 
23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x
 
11 the inverse trigonometric functions x
11 the inverse trigonometric functions x11 the inverse trigonometric functions x
11 the inverse trigonometric functions x
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
 
3.4 derivative and graphs
3.4 derivative and graphs3.4 derivative and graphs
3.4 derivative and graphs
 
28 more on log and exponential equations x
28 more on log and exponential equations x28 more on log and exponential equations x
28 more on log and exponential equations x
 

Andere mochten auch

2.3 continuity
2.3 continuity2.3 continuity
2.3 continuity
math265
 
2.7 chain rule short cuts
2.7 chain rule short cuts2.7 chain rule short cuts
2.7 chain rule short cuts
math265
 
Hw2 ppt
Hw2 pptHw2 ppt
Hw2 ppt
math265
 
2.4 defintion of derivative
2.4 defintion of derivative2.4 defintion of derivative
2.4 defintion of derivative
math265
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functions
math265
 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivatives
math265
 
3.1 properties of logarithm
3.1 properties of logarithm3.1 properties of logarithm
3.1 properties of logarithm
math123c
 

Andere mochten auch (7)

2.3 continuity
2.3 continuity2.3 continuity
2.3 continuity
 
2.7 chain rule short cuts
2.7 chain rule short cuts2.7 chain rule short cuts
2.7 chain rule short cuts
 
Hw2 ppt
Hw2 pptHw2 ppt
Hw2 ppt
 
2.4 defintion of derivative
2.4 defintion of derivative2.4 defintion of derivative
2.4 defintion of derivative
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functions
 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivatives
 
3.1 properties of logarithm
3.1 properties of logarithm3.1 properties of logarithm
3.1 properties of logarithm
 

Ähnlich wie 1.7 derivative

Calculus Final Review Joshua Conyers
Calculus Final Review Joshua ConyersCalculus Final Review Joshua Conyers
Calculus Final Review Joshua Conyers
jcon44
 
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdfMATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
HebaEng
 

Ähnlich wie 1.7 derivative (20)

Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
 
IVS-B UNIT-1_merged. Semester 2 fundamental of sciencepdf
IVS-B UNIT-1_merged. Semester 2 fundamental of sciencepdfIVS-B UNIT-1_merged. Semester 2 fundamental of sciencepdf
IVS-B UNIT-1_merged. Semester 2 fundamental of sciencepdf
 
11. amplitude, phase shift and period of trig formulas-x
11. amplitude, phase shift and period of trig formulas-x11. amplitude, phase shift and period of trig formulas-x
11. amplitude, phase shift and period of trig formulas-x
 
Lesson 6 differentials parametric-curvature
Lesson 6 differentials parametric-curvatureLesson 6 differentials parametric-curvature
Lesson 6 differentials parametric-curvature
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Calculus Final Review Joshua Conyers
Calculus Final Review Joshua ConyersCalculus Final Review Joshua Conyers
Calculus Final Review Joshua Conyers
 
1. VECTORS.pptx
1. VECTORS.pptx1. VECTORS.pptx
1. VECTORS.pptx
 
Derivatie class 12
Derivatie class 12Derivatie class 12
Derivatie class 12
 
Math For Physics
Math For PhysicsMath For Physics
Math For Physics
 
TIU CET Review Math Session 6 - part 2 of 2
TIU CET Review Math Session 6 - part 2 of 2TIU CET Review Math Session 6 - part 2 of 2
TIU CET Review Math Session 6 - part 2 of 2
 
Chapter11
Chapter11Chapter11
Chapter11
 
Fst ch3 notes
Fst ch3 notesFst ch3 notes
Fst ch3 notes
 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
 
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdfMATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
 
Slope
SlopeSlope
Slope
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vector
 
Acceleration
AccelerationAcceleration
Acceleration
 
characteristic of function, average rate chnage, instant rate chnage.pptx
characteristic of function, average rate chnage, instant rate chnage.pptxcharacteristic of function, average rate chnage, instant rate chnage.pptx
characteristic of function, average rate chnage, instant rate chnage.pptx
 

Mehr von math265

Chpt 3-exercise
Chpt 3-exerciseChpt 3-exercise
Chpt 3-exercise
math265
 
5.5 volumes
5.5 volumes5.5 volumes
5.5 volumes
math265
 
5.4 more areas
5.4 more areas5.4 more areas
5.4 more areas
math265
 
5.2 the substitution methods
5.2 the substitution methods5.2 the substitution methods
5.2 the substitution methods
math265
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
math265
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivatives
math265
 
Exercise set 4.3
Exercise set 4.3Exercise set 4.3
Exercise set 4.3
math265
 
Exercise set 4.2
Exercise set 4.2Exercise set 4.2
Exercise set 4.2
math265
 
Exercise set 3.7
Exercise set 3.7Exercise set 3.7
Exercise set 3.7
math265
 
Exercise set 3.6
Exercise set 3.6Exercise set 3.6
Exercise set 3.6
math265
 
3.7 applications of tangent lines
3.7 applications of tangent lines3.7 applications of tangent lines
3.7 applications of tangent lines
math265
 
3.6 applications in optimization
3.6 applications in optimization3.6 applications in optimization
3.6 applications in optimization
math265
 
4.2 more derivatives as rates
4.2 more derivatives as rates4.2 more derivatives as rates
4.2 more derivatives as rates
math265
 
Exercise set 3.5
Exercise set 3.5Exercise set 3.5
Exercise set 3.5
math265
 
265 excel-formula-box
265 excel-formula-box265 excel-formula-box
265 excel-formula-box
math265
 
3.5 extrema and the second derivative
3.5 extrema and the second derivative3.5 extrema and the second derivative
3.5 extrema and the second derivative
math265
 

Mehr von math265 (18)

x2.1Limits I.pptx
x2.1Limits I.pptxx2.1Limits I.pptx
x2.1Limits I.pptx
 
x2.1Limits I.pptx
x2.1Limits I.pptxx2.1Limits I.pptx
x2.1Limits I.pptx
 
Chpt 3-exercise
Chpt 3-exerciseChpt 3-exercise
Chpt 3-exercise
 
5.5 volumes
5.5 volumes5.5 volumes
5.5 volumes
 
5.4 more areas
5.4 more areas5.4 more areas
5.4 more areas
 
5.2 the substitution methods
5.2 the substitution methods5.2 the substitution methods
5.2 the substitution methods
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
 
4.4 review on derivatives
4.4 review on derivatives4.4 review on derivatives
4.4 review on derivatives
 
Exercise set 4.3
Exercise set 4.3Exercise set 4.3
Exercise set 4.3
 
Exercise set 4.2
Exercise set 4.2Exercise set 4.2
Exercise set 4.2
 
Exercise set 3.7
Exercise set 3.7Exercise set 3.7
Exercise set 3.7
 
Exercise set 3.6
Exercise set 3.6Exercise set 3.6
Exercise set 3.6
 
3.7 applications of tangent lines
3.7 applications of tangent lines3.7 applications of tangent lines
3.7 applications of tangent lines
 
3.6 applications in optimization
3.6 applications in optimization3.6 applications in optimization
3.6 applications in optimization
 
4.2 more derivatives as rates
4.2 more derivatives as rates4.2 more derivatives as rates
4.2 more derivatives as rates
 
Exercise set 3.5
Exercise set 3.5Exercise set 3.5
Exercise set 3.5
 
265 excel-formula-box
265 excel-formula-box265 excel-formula-box
265 excel-formula-box
 
3.5 extrema and the second derivative
3.5 extrema and the second derivative3.5 extrema and the second derivative
3.5 extrema and the second derivative
 

KĂŒrzlich hochgeladen

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

KĂŒrzlich hochgeladen (20)

WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 

1.7 derivative

  • 2. (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the run of the points. Slopes and Derivatives
  • 3. (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the run of the points. Δy Δx=The slope m is the ratio of the “rise” to the “run”. Slopes and Derivatives
  • 4. (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the run of the points. Δy Δx=The slope m is the ratio of the “rise” to the “run”. The slope measures the tilt of a line in relation to the horizon, that is, the steepness in relation to the x axis. Slopes and Derivatives
  • 5. (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the run of the points. Δy Δx=The slope m is the ratio of the “rise” to the “run”. The slope measures the tilt of a line in relation to the horizon, that is, the steepness in relation to the x axis. Therefore horizontal lines have its steepness or slope = 0 . Slopes and Derivatives
  • 6. (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run Geometry of Slope Δy = y2 – y1 = the difference in the heights of the points. Δx = x2 – x1 = the difference in the run of the points. Δy Δx=The slope m is the ratio of the “rise” to the “run”. * http://www.mathwarehouse.com/algebra/linear_equation/interactive- slope.php The slope measures the tilt of a line in relation to the horizon, that is, the steepness in relation to the x axis. Therefore horizontal lines have its steepness or slope = 0 . Steeper lines have “larger” slopes*. Slopes and Derivatives
  • 7. Algebra of Slope Slopes and Derivatives
  • 8. Algebra of Slope Δy = y2 – y1 = the difference in the outputs y Slopes and Derivatives
  • 9. Algebra of Slope Δy = y2 – y1 = the difference in the outputs y Δx = x2 – x1 = the difference in the inputs x Slopes and Derivatives
  • 10. Algebra of Slope Δy = y2 – y1 = the difference in the outputs y Δx = x2 – x1 = the difference in the inputs x Algebraically the slope m = Δy/Δx = Δy : Δx is the ratio the difference in the outputs the difference in the inputs: Slopes and Derivatives
  • 11. Algebra of Slope Δy = y2 – y1 = the difference in the outputs y Δx = x2 – x1 = the difference in the inputs x Algebraically the slope m = Δy/Δx = Δy : Δx is the ratio the difference in the outputs the difference in the inputs: The units of this ratio are (units of y) / (units of x). Slopes and Derivatives
  • 12. Algebra of Slope Δy = y2 – y1 = the difference in the outputs y Δx = x2 – x1 = the difference in the inputs x Algebraically the slope m = Δy/Δx = Δy : Δx is the ratio the difference in the outputs the difference in the inputs: The units of this ratio are (units of y) / (units of x). This is also the amount of change in y for each unit change in x. Slopes and Derivatives
  • 13. Algebra of Slope Δy = y2 – y1 = the difference in the outputs y Δx = x2 – x1 = the difference in the inputs x Algebraically the slope m = Δy/Δx = Δy : Δx is the ratio the difference in the outputs the difference in the inputs: The units of this ratio are (units of y) / (units of x). This is also the amount of change in y for each unit change in x. The ratio “2 eggs : 3 cakes” is the same as “2/3 egg per cake”. Slopes and Derivatives
  • 14. Algebra of Slope Δy = y2 – y1 = the difference in the outputs y Δx = x2 – x1 = the difference in the inputs x Algebraically the slope m = Δy/Δx = Δy : Δx is the ratio the difference in the outputs the difference in the inputs: The units of this ratio are (units of y) / (units of x). This is also the amount of change in y for each unit change in x. The ratio “2 eggs : 3 cakes” is the same as “2/3 egg per cake”. The slope m is “the amount of change of y if x changes by one unit. Slopes and Derivatives
  • 15. Example A. We had 6 gallons of gas at the start of a trip and the odometer was registered at 75,000 miles. Two hours later, the gas gauge indicated there were 3 gallons left and the odometer was at 75,300 miles. Let x = the gas–tank indicator reading y = the odometer reading t = the time in hours. Find the following slopes. Slopes and Derivatives
  • 16. Example A. We had 6 gallons of gas at the start of a trip and the odometer was registered at 75,000 miles. Two hours later, the gas gauge indicated there were 3 gallons left and the odometer was at 75,300 miles. Let x = the gas–tank indicator reading y = the odometer reading t = the time in hours. Find the following slopes. a. Compare the measurements of the fuel amount x versus the distance y traveled, or (x, y), Slopes and Derivatives
  • 17. Example A. We had 6 gallons of gas at the start of a trip and the odometer was registered at 75,000 miles. Two hours later, the gas gauge indicated there were 3 gallons left and the odometer was at 75,300 miles. Let x = the gas–tank indicator reading y = the odometer reading t = the time in hours. Find the following slopes. a. Compare the measurements of the fuel amount x versus the distance y traveled, or (x, y). We have (6, 75000), (3, 75300). Slopes and Derivatives
  • 18. The slope m = (75,300 – 75,000) / (3 – 6) = –100 mpg. Example A. We had 6 gallons of gas at the start of a trip and the odometer was registered at 75,000 miles. Two hours later, the gas gauge indicated there were 3 gallons left and the odometer was at 75,300 miles. Let x = the gas–tank indicator reading y = the odometer reading t = the time in hours. Find the following slopes. a. Compare the measurements of the fuel amount x versus the distance y traveled, or (x, y). We have (6, 75000), (3, 75300). Slopes and Derivatives
  • 19. The slope m = (75,300 – 75,000) / (3 – 6) = –100 mpg. So the distance–to–fuel rate or the fuel efficiency is 100 miles per gallon. Example A. We had 6 gallons of gas at the start of a trip and the odometer was registered at 75,000 miles. Two hours later, the gas gauge indicated there were 3 gallons left and the odometer was at 75,300 miles. Let x = the gas–tank indicator reading y = the odometer reading t = the time in hours. Find the following slopes. a. Compare the measurements of the fuel amount x versus the distance y traveled, or (x, y). We have (6, 75000), (3, 75300). Slopes and Derivatives
  • 20. b. Compare the measurements of the time t versus the distance y traveled, or (t, y). Slopes and Derivatives
  • 21. b. Compare the measurements of the time t versus the distance y traveled, or (t, y). we have (0, 75000), (2, 75300). Slopes and Derivatives
  • 22. The slope n = (75,300 – 70,000) / (2 – 0) = 150 mph. b. Compare the measurements of the time t versus the distance y traveled, or (t, y). we have (0, 75000), (2, 75300). Slopes and Derivatives
  • 23. So the distance–to–time rate (or the velocity) per hour is 150 miles per hour. The slope n = (75,300 – 70,000) / (2 – 0) = 150 mph. b. Compare the measurements of the time t versus the distance y traveled, or (t, y). we have (0, 75000), (2, 75300). Slopes and Derivatives
  • 24. So the distance–to–time rate (or the velocity) per hour is 150 miles per hour. The slope n = (75,300 – 70,000) / (2 – 0) = 150 mph. b. Compare the measurements of the time t versus the distance y traveled, or (t, y). we have (0, 75000), (2, 75300). c. Compare the measurements of the time t versus the amount of fuel x, or (t, x), Slopes and Derivatives
  • 25. So the distance–to–time rate (or the velocity) per hour is 150 miles per hour. The slope n = (75,300 – 70,000) / (2 – 0) = 150 mph. b. Compare the measurements of the time t versus the distance y traveled, or (t, y). we have (0, 75000), (2, 75300). the slope n = (6 – 3) / (0 – 2) = –1.5 gph. c. Compare the measurements of the time t versus the amount of fuel x, or (t, x). We have (0, 6), (2, 3). The rate of change is Slopes and Derivatives
  • 26. So the distance–to–time rate (or the velocity) per hour is 150 miles per hour. The slope n = (75,300 – 70,000) / (2 – 0) = 150 mph. b. Compare the measurements of the time t versus the distance y traveled, or (t, y). we have (0, 75000), (2, 75300). So the fuel–to–time rate of the fuel consumption per hour is 1.50 gallon per hour. c. Compare the measurements of the time t versus the amount of fuel x, or (t, x). We have (0, 6), (2, 3). The rate of change is Slopes and Derivatives the slope n = (6 – 3) / (0 – 2) = –1.5 gph.
  • 27. Question: What are the reciprocals of the above rates and what do they measure? Slopes and Derivatives
  • 28. Question: What are the reciprocals of the above rates and what do they measure? Slopes measure steepness of straight lines. Slopes and Derivatives
  • 29. Question: What are the reciprocals of the above rates and what do they measure? Slopes measure steepness of straight lines. We want to extend this system of geometric measurement to measuring “steepness” of curves. Slopes and Derivatives
  • 30. Question: What are the reciprocals of the above rates and what do they measure? Slopes measure steepness of straight lines. We want to extend this system of geometric measurement to measuring “steepness” of curves. A curve has “ups” and “downs” so a curve has different “slopes” at different points. Slopes and Derivatives
  • 31. Question: What are the reciprocals of the above rates and what do they measure? x P y= f(x) Slopes measure steepness of straight lines. We want to extend this system of geometric measurement to measuring “steepness” of curves. Q A curve has “ups” and “downs” so a curve has different “slopes” at different points. This may be seen in the figure shown at points P and Q. Slopes and Derivatives
  • 32. Question: What are the reciprocals of the above rates and what do they measure? x P y= f(x) Slopes measure steepness of straight lines. We want to extend this system of geometric measurement to measuring “steepness” of curves. Q A curve has “ups” and “downs” so a curve has different “slopes” at different points. This may be seen in the figure shown at points P and Q. Obviously the “slope” at the point P should be positive, and the “slope” at the point Q should be negative. Slopes and Derivatives
  • 33. Question: What are the reciprocals of the above rates and what do they measure? x P y= f(x) Slopes measure steepness of straight lines. We want to extend this system of geometric measurement to measuring “steepness” of curves. Q A curve has “ups” and “downs” so a curve has different “slopes” at different points. This may be seen in the figure shown at points P and Q. We define the “slope at a point P on the curve y = f(x)” to be “the slope of the tangent line to y = f(x) at P” . Obviously the “slope” at the point P should be positive, and the “slope” at the point Q should be negative. Slopes and Derivatives
  • 35. Slopes and Derivatives Derivatives If f(x) is an elementary function, then the “slope” of the tangent is well defined for “most” of the points on its graph y = f(x).
  • 36. Slopes and Derivatives x P y= f(x) Derivatives If f(x) is an elementary function, then the “slope” of the tangent is well defined for “most” of the points on its graph y = f(x).
  • 37. Slopes and Derivatives x P y= f(x) Derivatives If f(x) is an elementary function, then the “slope” of the tangent is well defined for “most” of the points on its graph y = f(x). The slope at a point P is also called the derivative at P.
  • 38. Slopes and Derivatives x P y= f(x) Derivatives If f(x) is an elementary function, then the “slope” of the tangent is well defined for “most” of the points on its graph y = f(x). The slope at a point P is also called the derivative at P. By “well defined” we mean that the geometric notion of “the tangent line at P” is intuitive and unambiguous so its slope is unambiguous.
  • 39. Slopes and Derivatives x P y= f(x) Derivatives By “well defined” we mean that the geometric notion of “the tangent line at P” is intuitive and unambiguous so its slope is unambiguous. We will examine the notion of the “tangent line” in the next section. For now, we accept the tangent line intuitively as a straight line that leans against y = f(x) at P as shown. If f(x) is an elementary function, then the “slope” of the tangent is well defined for “most” of the points on its graph y = f(x). The slope at a point P is also called the derivative at P.
  • 40. Slopes and Derivatives x P y= f(x) Derivatives By “well defined” we mean that the geometric notion of “the tangent line at P” is intuitive and unambiguous so its slope is unambiguous. Furthermore, it is well defined because we are able to compute the slopes of tangents at different locations algebraically. If f(x) is an elementary function, then the “slope” of the tangent is well defined for “most” of the points on its graph y = f(x). The slope at a point P is also called the derivative at P.
  • 41. Slopes and Derivatives x P y= f(x) Derivatives By “well defined” we mean that the geometric notion of “the tangent line at P” is intuitive and unambiguous so its slope is unambiguous. Furthermore, it is well defined because we are able to compute the slopes of tangents at different locations algebraically. We will carry out these computations for the 2nd degree example from the last section. If f(x) is an elementary function, then the “slope” of the tangent is well defined for “most” of the points on its graph y = f(x). The slope at a point P is also called the derivative at P.
  • 42. Example B. Given f(x) = x2 – 2x + 2 a. Find the slope of the cord connecting the points (x, f(x)) and (x+h,f(x+h)) with x = 2 and h = 0.2. Slopes and Derivatives
  • 43. Example B. Given f(x) = x2 – 2x + 2 a. Find the slope of the cord connecting the points (x, f(x)) and (x+h,f(x+h)) with x = 2 and h = 0.2. Substitute the values of x and h, we are find the slopes of the cord connecting (2, f(2)=2) and (2.2, f(2.2)). (2.2, f(2.2)) (2, 2) 2 2.2 0.2 Slopes and Derivatives
  • 44. Example B. Given f(x) = x2 – 2x + 2 a. Find the slope of the cord connecting the points (x, f(x)) and (x+h,f(x+h)) with x = 2 and h = 0.2. f(x+h) – f(x) h Substitute the values of x and h, we are find the slopes of the cord connecting (2, f(2)=2) and (2.2, f(2.2)). Its slope is f(2.2) – f(2) 0.2 = (2, 2) 2 2.2 0.2 (2.2, f(2.2)) Slopes and Derivatives
  • 45. Example B. Given f(x) = x2 – 2x + 2 a. Find the slope of the cord connecting the points (x, f(x)) and (x+h,f(x+h)) with x = 2 and h = 0.2. f(x+h) – f(x) h Substitute the values of x and h, we are find the slopes of the cord connecting (2, f(2)=2) and (2.2, f(2.2)). Its slope is f(2.2) – f(2) 0.2 = = 2.44 – 2 0.2 = 2.2 (2, 2) 2 2.2= 0.44 0.2 0.44 0.2 slope m = 2.2 (2.2, f(2.2)) Slopes and Derivatives
  • 46. b. Given f(x) = x2 – 2x + 2, simplify the formula for the slope of the cord connecting the points (2, 2) and (2+h, f(2+h)). Slopes and Derivatives
  • 47. b. Given f(x) = x2 – 2x + 2, simplify the formula for the slope of the cord connecting the points (2, 2) and (2+h, f(2+h)). (2+h, f(2+h) (2, 2) 2 2 + h h f(2+h)–f(2) Slopes and Derivatives
  • 48. b. Given f(x) = x2 – 2x + 2, simplify the formula for the slope of the cord connecting the points (2, 2) and (2+h, f(2+h)). We are to simplify the difference quotient formula with f(x) = x2 – 2x + 2 at x = 2. (2+h, f(2+h) (2, 2) 2 2 + h h f(2+h)–f(2) Slopes and Derivatives
  • 49. b. Given f(x) = x2 – 2x + 2, simplify the formula for the slope of the cord connecting the points (2, 2) and (2+h, f(2+h)). f(2+h) – f(2) h We are to simplify the difference quotient formula with f(x) = x2 – 2x + 2 at x = 2. (2+h, f(2+h) (2, 2) 2 2 + h h f(2+h)–f(2) Slopes and Derivatives
  • 50. b. Given f(x) = x2 – 2x + 2, simplify the formula for the slope of the cord connecting the points (2, 2) and (2+h, f(2+h)). f(2+h) – f(2) h We are to simplify the difference quotient formula with f(x) = x2 – 2x + 2 at x = 2. = [(2+h)2 – 2(2+h) + 2] – (2) h (2+h, f(2+h) (2, 2) 2 2 + h h f(2+h)–f(2) Slopes and Derivatives
  • 51. b. Given f(x) = x2 – 2x + 2, simplify the formula for the slope of the cord connecting the points (2, 2) and (2+h, f(2+h)). f(2+h) – f(2) h We are to simplify the difference quotient formula with f(x) = x2 – 2x + 2 at x = 2. = [(2+h)2 – 2(2+h) + 2] – (2) h h2 + 2h h = (2+h, f(2+h) (2, 2) 2 2 + h h f(2+h)–f(2) Slopes and Derivatives
  • 52. b. Given f(x) = x2 – 2x + 2, simplify the formula for the slope of the cord connecting the points (2, 2) and (2+h, f(2+h)). f(2+h) – f(2) h We are to simplify the difference quotient formula with f(x) = x2 – 2x + 2 at x = 2. = [(2+h)2 – 2(2+h) + 2] – (2) h h2 + 2h h = h + 2 = (2+h, f(2+h) (2, 2) 2 2 + h h slope = h + 2 f(2+h)–f(2) Slopes and Derivatives
  • 53. c. Now we deduce the slope at the point (2, 2) in the following geometric argument. Slopes and Derivatives
  • 54. c. Now we deduce the slope at the point (2, 2) in the following geometric argument. (2, 2) 2 y = x2–2x+2 Slopes and Derivatives
  • 55. c. Now we deduce the slope at the point (2, 2) in the following geometric argument. The cord is fixed at the base–point (2, 2) and the other end depends on the value h. (2, 2) 2 y = x2–2x+2 Slopes and Derivatives
  • 56. c. Now we deduce the slope at the point (2, 2) in the following geometric argument. (2+h, f(2+h) (2, 2) 2 2 + h h f(2+h)–f(2) The cord is fixed at the base–point (2, 2) and the other end depends on the value h. y = x2–2x+2 Slopes and Derivatives
  • 57. c. Now we deduce the slope at the point (2, 2) in the following geometric argument. (2+h, f(2+h) (2, 2) 2 2 + h h f(2+h)–f(2) The cord is fixed at the base–point (2, 2) and the other end depends on the value h. y = x2–2x+2 Slopes and Derivatives
  • 58. c. Now we deduce the slope at the point (2, 2) in the following geometric argument. (2+h, f(2+h) (2, 2) 2 2 + h f(2+h)–f(2) The cord is fixed at the base–point (2, 2) and the other end depends on the value h. As h varies, we obtained different cords with different slopes. h y = x2–2x+2 Slopes and Derivatives
  • 59. c. Now we deduce the slope at the point (2, 2) in the following geometric argument. (2+h, f(2+h) (2, 2) 2 2 + h f(2+h)–f(2) The cord is fixed at the base–point (2, 2) and the other end depends on the value h. As h varies, we obtained different cords with different slopes. As h gets larger, the cords deviates away from the tangent line at (2, 2) and as h gets smaller the corresponding cords swing and settle toward the tangent line. h y = x2–2x+2 Slopes and Derivatives
  • 60. c. Now we deduce the slope at the point (2, 2) in the following geometric argument. (2+h, f(2+h) (2, 2) 2 2 + h f(2+h)–f(2) The cord is fixed at the base–point (2, 2) and the other end depends on the value h. As h varies, we obtained different cords with different slopes. As h gets larger, the cords deviates away from the tangent line at (2, 2) and as h gets smaller the corresponding cords swing and settle toward the tangent line. These cords have slopes 2 + h. slope = 2 + h h y = x2–2x+2 Slopes and Derivatives
  • 61. c. Now we deduce the slope at the point (2, 2) in the following geometric argument. (2+h, f(2+h) (2, 2) 2 2 + h slope = 2 + h f(2+h)–f(2) The cord is fixed at the base–point (2, 2) and the other end depends on the value h. As h varies, we obtained different cords with different slopes. As h gets larger, the cords deviates away from the tangent line at (2, 2) and as h gets smaller the corresponding cords swing and settle toward the tangent line. These cords have slopes 2 + h. Hence as h “shrinks” to 0, the slope or the derivative at (2, 2) must be 2. h y = x2–2x+2 Slopes and Derivatives
  • 62. d. Simplify the difference quotient of f(x) then find the slope at the point (x, f(x)) – as a formula in x. Slopes and Derivatives
  • 63. Connect the cord at the base–point (x, f(x)) to the other end point at (x+h, f(x+h)). d. Simplify the difference quotient of f(x) then find the slope at the point (x, f(x)) – as a formula in x. Slopes and Derivatives
  • 64. (x+h, f(x+h) (x, f(x)) x x + h f(x+h)–f(x) Connect the cord at the base–point (x, f(x)) to the other end point at (x+h, f(x+h)). h d. Simplify the difference quotient of f(x) then find the slope at the point (x, f(x)) – as a formula in x. y = x2–2x+2 Slopes and Derivatives
  • 65. (x+h, f(x+h) (x, f(x)) x x + h f(x+h)–f(x) Connect the cord at the base–point (x, f(x)) to the other end point at (x+h, f(x+h)). The difference quotient is h d. Simplify the difference quotient of f(x) then find the slope at the point (x, f(x)) – as a formula in x. f(x+h) – f(x) h y = x2–2x+2 Slopes and Derivatives
  • 66. (x+h, f(x+h) (x, f(x)) x x + h f(x+h)–f(x) Connect the cord at the base–point (x, f(x)) to the other end point at (x+h, f(x+h)). The difference quotient is h d. Simplify the difference quotient of f(x) then find the slope at the point (x, f(x)) – as a formula in x. f(x+h) – f(x) h = (x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2] h y = x2–2x+2 Slopes and Derivatives
  • 67. (x+h, f(x+h) (x, f(x)) x x + h f(x+h)–f(x) Connect the cord at the base–point (x, f(x)) to the other end point at (x+h, f(x+h)). The difference quotient is h d. Simplify the difference quotient of f(x) then find the slope at the point (x, f(x)) – as a formula in x. f(x+h) – f(x) h = (x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2] h 2xh – 2h + h2 h = y = x2–2x+2 Slopes and Derivatives
  • 68. (x+h, f(x+h) (x, f(x)) x x + h f(x+h)–f(x) Connect the cord at the base–point (x, f(x)) to the other end point at (x+h, f(x+h)). The difference quotient is h d. Simplify the difference quotient of f(x) then find the slope at the point (x, f(x)) – as a formula in x. f(x+h) – f(x) h = (x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2] h 2xh – 2h + h2 h = 2x – 2 + h = y = x2–2x+2 slope = 2x–2+h Slopes and Derivatives
  • 69. (x+h, f(x+h) (x, f(x)) x x + h f(x+h)–f(x) Connect the cord at the base–point (x, f(x)) to the other end point at (x+h, f(x+h)). The difference quotient is h d. Simplify the difference quotient of f(x) then find the slope at the point (x, f(x)) – as a formula in x. f(x+h) – f(x) h = (x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2] h 2xh – 2h + h2 h = 2x – 2 + h = As h shrinks to 0, the slopes of the cords approach the value 2x – 2 y = x2–2x+2 slope = 2x–2+h Slopes and Derivatives
  • 70. (x+h, f(x+h) (x, f(x)) x x + h f(x+h)–f(x) Connect the cord at the base–point (x, f(x)) to the other end point at (x+h, f(x+h)). The difference quotient is h d. Simplify the difference quotient of f(x) then find the slope at the point (x, f(x)) – as a formula in x. f(x+h) – f(x) h = (x+h)2 – 2(x+h) + 2 – [x2 – 2x + 2] h 2xh – 2h + h2 h = 2x – 2 + h. = As h shrinks to 0, the slopes of the cords approach the value 2x – 2 which must be the slope at (x, f(x)). y = x2–2x+2 slope = 2x–2+h Slopes and Derivatives
  • 71. Let’s summarize the result. Slopes and Derivatives
  • 72. Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. Slopes and Derivatives
  • 73. Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. y = x2–2x+2 Slopes and Derivatives
  • 74. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. y = x2–2x+2 Slopes and Derivatives
  • 75. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. y = x2–2x+2 Slopes and Derivatives
  • 76. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. y = x2–2x+2 slope at x = 2x – 2 Slopes and Derivatives
  • 77. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. This slope–formula is the derivative of f(x) and it is written as f ’(x) y = x2–2x+2 slope at x = 2x – 2 Slopes and Derivatives
  • 78. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. This slope–formula is the derivative of f(x) and it is written as f ’(x) – it’s read as “f prime of x”. y = x2–2x+2 slope at x = 2x – 2 Slopes and Derivatives
  • 79. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. This slope–formula is the derivative of f(x) and it is written as f ’(x) – it’s read as “f prime of x”. So the derivative of f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2. y = x2–2x+2 slope at x = 2x – 2 Slopes and Derivatives
  • 80. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. This slope–formula is the derivative of f(x) and it is written as f ’(x) – it’s read as “f prime of x”. So the derivative of f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2. y = x2–2x+2 The name derivative came from the fact that f’(x) = 2x – 2 is derived from f(x) = x2 – 2x + 2. slope at x = 2x – 2 Slopes and Derivatives
  • 81. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. This slope–formula is the derivative of f(x) and it is written as f ’(x) – it’s read as “f prime of x”. So the derivative of f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2. y = x2–2x+2 The name derivative came from the fact that f’(x) = 2x – 2 is derived from f(x) = x2 – 2x + 2. The derivative f ’(x) = 2x – 2 tells us the slopes of f(x) = x2 – 2x + 2. slope at x = 2x – 2 Slopes and Derivatives
  • 82. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. This slope–formula is the derivative of f(x) and it is written as f ’(x) – it’s read as “f prime of x”. So the derivative of f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2. y = x2–2x+2 The name derivative came from the fact that f’(x) = 2x – 2 is derived from f(x) = x2 – 2x + 2. The derivative f ’(x) = 2x – 2 tells us the slopes of f(x) = x2 – 2x + 2. For example the slope at x = 2 is f ’(2) = 2, at x = 3 is f ’(3) = 4, etc
 slope at x = 2x – 2 Slopes and Derivatives
  • 83. (x, f(x)) x Let’s summarize the result. If f(x) = x2 – 2x + 2, then the slope at the point (x, f(x)) is 2x – 2. This slope–formula is the derivative of f(x) and it is written as f ’(x) – it’s read as “f prime of x”. So the derivative of f(x) = x2 – 2x + 2 is f ’(x) = 2x – 2. y = x2–2x+2 The name derivative came from the fact that f’(x) = 2x – 2 is derived from f(x) = x2 – 2x + 2. The derivative f ’(x) = 2x – 2 tells us the slopes of f(x) = x2 – 2x + 2. For example the slope at x = 2 is f ’(2) = 2, at x = 3 is f ’(3) = 4, etc
 The derivative f ’(x) is the extension of the concept of slopes of lines to curves. slope at x = 2x – 2 Slopes and Derivatives
  • 84. The first topic of the calculus course is derivatives. Slopes and Derivatives
  • 85. The first topic of the calculus course is derivatives. We will examine derivative algebraically by * developing the language of derivative which makes the concept more rigorous Slopes and Derivatives
  • 86. The first topic of the calculus course is derivatives. We will examine derivative algebraically by * developing the language of derivative which makes the concept more rigorous * developing the computation techniques for finding derivatives of all elementary functions Slopes and Derivatives
  • 87. The first topic of the calculus course is derivatives. We will examine derivative algebraically by * developing the language of derivative which makes the concept more rigorous * developing the computation techniques for finding derivatives of all elementary functions Slopes and Derivatives We will examine derivative geometrically
  • 88. The first topic of the calculus course is derivatives. We will examine derivative algebraically by * developing the language of derivative which makes the concept more rigorous * developing the computation techniques for finding derivatives of all elementary functions Slopes and Derivatives We will examine derivative geometrically by * developing the relations between derivatives f ’(x) and the shape of the graph of y = f(x)
  • 89. The first topic of the calculus course is derivatives. We will examine derivative algebraically by * developing the language of derivative which makes the concept more rigorous * developing the computation techniques for finding derivatives of all elementary functions Slopes and Derivatives We will examine derivative geometrically by * developing the relations between derivatives f ’(x) and the shape of the graph of y = f(x) * developing the computation procedures using f ’(x) to locate special positions on y = f(x)
  • 90. The first topic of the calculus course is derivatives. We will examine derivative algebraically by * developing the language of derivative which makes the concept more rigorous * developing the computation techniques for finding derivatives of all elementary functions Slopes and Derivatives We will examine derivative geometrically by * developing the relations between derivatives f ’(x) and the shape of the graph of y = f(x) * developing the computation procedures using f ’(x) to locate special positions on y = f(x) We will also investigate the applications of the derivatives which include problems of optimization, rates of change and numerical methods.