SlideShare ist ein Scribd-Unternehmen logo
1 von 49
Downloaden Sie, um offline zu lesen
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Entanglement Dynamics of Two Superconducting Qubits
Subject to Random Telegraph Noise
Marta Agati
Università degl Studi di Catania
Dipartimento di Fisica e Astronomia
Corso di Laurea in Fisica
Matis CNR-IMM UOS Catania
Centro Siciliano Fisica Nucleare e
Struttura della Materia (CSFNSM)
QUINN QUantum INformation and
Nanonsystems group
Relatore
Prof.ssa Elisabetta Paladino
Correlatore
Prof. Giuseppe Falci
Dott. Antonio D’Arrigo
July 16, 2013
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Contents
1 Quantum Computation
Quantum Computing and Quantum Mechanics
2 Superconducting Qubits
Charge Qubit
3 Noise in Josephson Qubits
Methods
4 Entanglement Dynamics
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
5 Conclusions
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Introduction to Quantum Computation
Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Contents
1 Quantum Computation
Quantum Computing and Quantum Mechanics
2 Superconducting Qubits
Charge Qubit
3 Noise in Josephson Qubits
Methods
4 Entanglement Dynamics
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
5 Conclusions
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Unit of Quantum Information
Quantum bit or Qubit
Quantum bit or Qubit ψ = α0|0 + α1|1 Superposition Principle
Multiple-Qubit state
Two qubits ψ = α00|00 + α01|01 + α10|10 + α11|11
Product State
ψS = |01 +|11
√
2
= |0 +|1
√
2
⊗ |1
Entangled State
(Bell State)
ψE = |00 +|11
√
2
Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Unit of Quantum Information
Quantum bit or Qubit
Quantum bit or Qubit ψ = α0|0 + α1|1 Superposition Principle
Multiple-Qubit state
Two qubits ψ = α00|00 + α01|01 + α10|10 + α11|11
Product State
ψS = |01 +|11
√
2
= |0 +|1
√
2
⊗ |1
Entangled State
(Bell State)
ψE = |00 +|11
√
2
Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Unit of Quantum Information
Quantum bit or Qubit
Quantum bit or Qubit ψ = α0|0 + α1|1 Superposition Principle
Multiple-Qubit state
Two qubits ψ = α00|00 + α01|01 + α10|10 + α11|11
Product State
ψS = |01 +|11
√
2
= |0 +|1
√
2
⊗ |1
Entangled State
(Bell State)
ψE = |00 +|11
√
2
Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Entanglement Quantifiers
ρ ≡ Two-Qubit Density Matrix
=⇒ ˜ρ = (σy ⊗ σy ) ρ (σy ⊗ σy )
Wootters Concurrence
C(t) = 2Max 0,
√
λ1 −
√
λ2 −
√
λ3 −
√
λ4
λi , i = {1, . . . , 4}, eigenvalues of the matrix ρ˜ρ arranged in decreasing order.
Maximally Entangled States C=1
Product States C=0
Invariance for Local Unitary Transformations.
W. K. Wotters, Entanglement of Formation of an Arbitrary State of two Qubits, Phys. Rev. Lett., 80, 10,( 1998)
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Entanglement Quantifiers
ρ ≡ Two-Qubit Density Matrix
=⇒ ˜ρ = (σy ⊗ σy ) ρ (σy ⊗ σy )
Wootters Concurrence
C(t) = 2Max 0,
√
λ1 −
√
λ2 −
√
λ3 −
√
λ4
λi , i = {1, . . . , 4}, eigenvalues of the matrix ρ˜ρ arranged in decreasing order.
Maximally Entangled States C=1
Product States C=0
Invariance for Local Unitary Transformations.
W. K. Wotters, Entanglement of Formation of an Arbitrary State of two Qubits, Phys. Rev. Lett., 80, 10,( 1998)
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Quantum Gates
Universary set of Quantum Gates
Any multiple qubits logic gate may be composed of single qubit gates and at
least one entanglement-generating two-qubit gate.
CNot Gate
(|0 + |1 ) |0
√
2
⇒
|00 + |11
√
2
Motivation for our study on the
sensitivity of the entanglement
to external influences (environment)
Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Quantum Gates
Universary set of Quantum Gates
Any multiple qubits logic gate may be composed of single qubit gates and at
least one entanglement-generating two-qubit gate.
CNot Gate
(|0 + |1 ) |0
√
2
⇒
|00 + |11
√
2
Motivation for our study on the
sensitivity of the entanglement
to external influences (environment)
Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Quantum Computing and Quantum Mechanics
Quantum Computers Implementations
G. Chen, D. A. Church, B.G. Englert, C. Henkel, B. Ronwedder, M. O. Scully, M. Zubairy, Quantum Computing Devices: principles,
Designs and Analysis, Chapman et Hall/CRC, 2007
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Superconducting materials and Josephson junctions
Characteristics of Superconducting Materials
Hallmarks:
Perfect Conductivity
Perfect Diamagnetism (Meissner Effect)
Cooper pairs
Josephson Effect
Josephson Equations
I = IC sin φ
Stationary Josephson Effect:
a current flows at 0 Voltage.
V(t) = 2e
∂
∂t
φ
A.C. Josephson Effect
Michael Tinkham, Introduction to Superconductivity, McGRAW-HILL EDITIONS, 1996
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Superconducting materials and Josephson junctions
Characteristics of Superconducting Materials
Hallmarks:
Perfect Conductivity
Perfect Diamagnetism (Meissner Effect)
Cooper pairs
Josephson Effect
Josephson Equations
I = IC sin φ
Stationary Josephson Effect:
a current flows at 0 Voltage.
V(t) = 2e
∂
∂t
φ
A.C. Josephson Effect
Michael Tinkham, Introduction to Superconductivity, McGRAW-HILL EDITIONS, 1996
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Superconducting Qubits
Charge Qubit Phase Qubit
Other qubits based on Cooper Pair
Box: Quantronium and Trasmon
Flux Qubit
Appunti del Corso di fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Superconducting Qubits
Charge Qubit Phase Qubit
Other qubits based on Cooper Pair
Box: Quantronium and Trasmon
Flux Qubit
Appunti del Corso di fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Contents
1 Quantum Computation
Quantum Computing and Quantum Mechanics
2 Superconducting Qubits
Charge Qubit
3 Noise in Josephson Qubits
Methods
4 Entanglement Dynamics
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
5 Conclusions
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Network Equations for Josephson Circuits (Lagrangian form)
Electrostatic Energy
K = CΣ
2 2e
˙φ +
Cg
CΣ
Vg
2
CΣ ≡ (C + Cg)
Magnetic Energy
UJ (φ) =
t
0
dt I(t ) ˙Φ(t ) = EJ (1 − cosφ)
EJ ≡ 2e
Ic
Lagrangian
L(2e
φ, 2e
˙φ) = K( ˙φ) − U(φ)
Classical Hamiltonian
H(Q,
2e
φ) =
1
2CΣ
2e
(Q − CgVg)2
+ EJ (1 − cos φ)
Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Network Equations for Josephson Circuits (Lagrangian form)
Electrostatic Energy
K = CΣ
2 2e
˙φ +
Cg
CΣ
Vg
2
CΣ ≡ (C + Cg)
Magnetic Energy
UJ (φ) =
t
0
dt I(t ) ˙Φ(t ) = EJ (1 − cosφ)
EJ ≡ 2e
Ic
Lagrangian
L(2e
φ, 2e
˙φ) = K( ˙φ) − U(φ)
Classical Hamiltonian
H(Q,
2e
φ) =
1
2CΣ
2e
(Q − CgVg)2
+ EJ (1 − cos φ)
Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Network Equations for Josephson Circuits (Lagrangian form)
Electrostatic Energy
K = CΣ
2 2e
˙φ +
Cg
CΣ
Vg
2
CΣ ≡ (C + Cg)
Magnetic Energy
UJ (φ) =
t
0
dt I(t ) ˙Φ(t ) = EJ (1 − cosφ)
EJ ≡ 2e
Ic
Lagrangian
L(2e
φ, 2e
˙φ) = K( ˙φ) − U(φ)
Classical Hamiltonian
H(Q,
2e
φ) =
1
2CΣ
2e
(Q − CgVg)2
+ EJ (1 − cos φ)
Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Charge Qubit Hamiltonian
|n , |n + 1 ≡ Eigenstates of the charge in the island.
Quantum Hamiltonian (in the charge basis)
ˆH = EC
n
(n − qg)2
|n n| −
EJ
2 n
|n n + 1| + |n + 1 n|
Projection on to the lowest energy bidimensional subspace
Charge Qubit Hamiltonian
Hq = −1
2
σz − 1
2
∆σx
≡ 4EC(1 − 2qx )
∆ ≡ EJ
σi ≡ Pauli Matrices
Phenomenological Quantization of
the Phase φ
2e
, Q = i
Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Charge Qubit
Charge Qubit Hamiltonian
|n , |n + 1 ≡ Eigenstates of the charge in the island.
Quantum Hamiltonian (in the charge basis)
ˆH = EC
n
(n − qg)2
|n n| −
EJ
2 n
|n n + 1| + |n + 1 n|
Projection on to the lowest energy bidimensional subspace
Charge Qubit Hamiltonian
Hq = −1
2
σz − 1
2
∆σx
≡ 4EC(1 − 2qx )
∆ ≡ EJ
σi ≡ Pauli Matrices
Phenomenological Quantization of
the Phase φ
2e
, Q = i
Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Noise Sources
Quantum Coherence
|ψ, t = q1,··· ,qN
cq1,··· ,qN (t)|q1, · · · , qN =⇒ it exists a well defined
deterministic relation between the complex amplitudes cqi (t) provided by the
Schrödinger equation.
Open Quantum System
Decoherence
Noise
Classical Stochastic Process
Htot = −1
2
σz − 1
2
∆σx − 1
2
ξ(t)v · −→σ
Particular coupling conditions
Longitudinal Coupling v H
Transvers Coupling v ⊥ H
−→ Density Matrix Formalism
G. Falci, E. Paladino, R. Fazio, Decoherence in Josephson Qubits, Varenna Review 2003
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Noise Sources
Quantum Coherence
|ψ, t = q1,··· ,qN
cq1,··· ,qN (t)|q1, · · · , qN =⇒ it exists a well defined
deterministic relation between the complex amplitudes cqi (t) provided by the
Schrödinger equation.
Open Quantum System
Decoherence
Noise
Classical Stochastic Process
Htot = −1
2
σz − 1
2
∆σx − 1
2
ξ(t)v · −→σ
Particular coupling conditions
Longitudinal Coupling v H
Transvers Coupling v ⊥ H
−→ Density Matrix Formalism
G. Falci, E. Paladino, R. Fazio, Decoherence in Josephson Qubits, Varenna Review 2003
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Noise Sources
Quantum Coherence
|ψ, t = q1,··· ,qN
cq1,··· ,qN (t)|q1, · · · , qN =⇒ it exists a well defined
deterministic relation between the complex amplitudes cqi (t) provided by the
Schrödinger equation.
Open Quantum System
Decoherence
Noise
Classical Stochastic Process
Htot = −1
2
σz − 1
2
∆σx − 1
2
ξ(t)v · −→σ
Particular coupling conditions
Longitudinal Coupling v H
Transvers Coupling v ⊥ H
−→ Density Matrix Formalism
G. Falci, E. Paladino, R. Fazio, Decoherence in Josephson Qubits, Varenna Review 2003
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Noise in Josephson Qubits
Internal sources: Exitation of Quasi-particles
External environment:
Circuit
Preparation, Control and measurement apparata
Dynamic defects fluctuating between two localized states (Background
fluctuators) produce random telegraph noise (RTN)
Example
Background charged impurities trapped close to the insulating layer of
Charge Qubits or in the substrate.
Power Spectrum RTN
S(ω) = v2
2
γ
γ2+ω2
E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925,
submitted to RMP
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Noise in Josephson Qubits
Internal sources: Exitation of Quasi-particles
External environment:
Circuit
Preparation, Control and measurement apparata
Dynamic defects fluctuating between two localized states (Background
fluctuators) produce random telegraph noise (RTN)
Example
Background charged impurities trapped close to the insulating layer of
Charge Qubits or in the substrate.
Power Spectrum RTN
S(ω) = v2
2
γ
γ2+ω2
E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925,
submitted to RMP
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Noise in Josephson Qubits
Internal sources: Exitation of Quasi-particles
External environment:
Circuit
Preparation, Control and measurement apparata
Dynamic defects fluctuating between two localized states (Background
fluctuators) produce random telegraph noise (RTN)
Example
Background charged impurities trapped close to the insulating layer of
Charge Qubits or in the substrate.
Power Spectrum RTN
S(ω) = v2
2
γ
γ2+ω2
E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925,
submitted to RMP
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Noise in Josephson Qubits
Internal sources: Exitation of Quasi-particles
External environment:
Circuit
Preparation, Control and measurement apparata
Dynamic defects fluctuating between two localized states (Background
fluctuators) produce random telegraph noise (RTN)
Example
Background charged impurities trapped close to the insulating layer of
Charge Qubits or in the substrate.
Power Spectrum RTN
S(ω) = v2
2
γ
γ2+ω2
E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925,
submitted to RMP
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Noise in Josephson Qubits
Internal sources: Exitation of Quasi-particles
External environment:
Circuit
Preparation, Control and measurement apparata
Dynamic defects fluctuating between two localized states (Background
fluctuators) produce random telegraph noise (RTN)
Example
Background charged impurities trapped close to the insulating layer of
Charge Qubits or in the substrate.
Power Spectrum RTN
S(ω) = v2
2
γ
γ2+ω2
E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925,
submitted to RMP
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Contents
1 Quantum Computation
Quantum Computing and Quantum Mechanics
2 Superconducting Qubits
Charge Qubit
3 Noise in Josephson Qubits
Methods
4 Entanglement Dynamics
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
5 Conclusions
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Master Equation
Weak coupling and fast fluctuator: v Ω and v γ
ΓR = 1
2
sin2
θS(Ω) Relaxation Rate
(Decay of z-component of the
qubit Bloch vector)
Γφ = Γ0
φ + 1
2
ΓR = 1
2
cos2
θS(0) + 1
2
ΓR
Dephasing Rate (Decay of x- and
y-components of the
qubit Bloch vector)
Microscopic Model of Background Charges
ˆH = −1
2
σz − 1
2
∆σx + b+
b + k [Tk c+
k b + h.c.] + k k c+
k ck + (v/2)σz b+
b
ξ(t) = 0, +1 Asymmetric fluctuator
ξ(t) = −1, +1 Symmetric fluctuator
E. Paladino, L. Faoro, G. Falci, Decoherence Due to Discrete Noise in Josephson Qubits, Adv. in Sol. St. Phys., 43, (2003)
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Master Equation
Weak coupling and fast fluctuator: v Ω and v γ
ΓR = 1
2
sin2
θS(Ω) Relaxation Rate
(Decay of z-component of the
qubit Bloch vector)
Γφ = Γ0
φ + 1
2
ΓR = 1
2
cos2
θS(0) + 1
2
ΓR
Dephasing Rate (Decay of x- and
y-components of the
qubit Bloch vector)
Microscopic Model of Background Charges
ˆH = −1
2
σz − 1
2
∆σx + b+
b + k [Tk c+
k b + h.c.] + k k c+
k ck + (v/2)σz b+
b
ξ(t) = 0, +1 Asymmetric fluctuator
ξ(t) = −1, +1 Symmetric fluctuator
E. Paladino, L. Faoro, G. Falci, Decoherence Due to Discrete Noise in Josephson Qubits, Adv. in Sol. St. Phys., 43, (2003)
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Master Equation
Weak coupling and fast fluctuator: v Ω and v γ
ΓR = 1
2
sin2
θS(Ω) Relaxation Rate
(Decay of z-component of the
qubit Bloch vector)
Γφ = Γ0
φ + 1
2
ΓR = 1
2
cos2
θS(0) + 1
2
ΓR
Dephasing Rate (Decay of x- and
y-components of the
qubit Bloch vector)
Microscopic Model of Background Charges
ˆH = −1
2
σz − 1
2
∆σx + b+
b + k [Tk c+
k b + h.c.] + k k c+
k ck + (v/2)σz b+
b
ξ(t) = 0, +1 Asymmetric fluctuator
ξ(t) = −1, +1 Symmetric fluctuator
E. Paladino, L. Faoro, G. Falci, Decoherence Due to Discrete Noise in Josephson Qubits, Adv. in Sol. St. Phys., 43, (2003)
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Methods
Quasi-Hamiltonian Method
Transition Probability Matrix
(RTN)
W =
1 − p p
p 1 − p
Element of Qubit Transfer Matrix T(without
noise)
Tijξi
(∆t) = 1
2
Tr[σi Uξi
(∆t)σj U+
ξi
(∆t)]
Average Tranfer Matrix
T(t) ≡ xf |ΓN
|if
Γ ≡ W ⊗ T
Quasi-Hamiltonian HqH
ΓN
(t) ≡ (Γ(∆t))N
∼ (I − iHqH ∆t)N
∼ exp(−iHqH t)
First order expansion
Bloch vector evolution under noise
n(t) = xf | ψ |ψ eiωψt
ψ| |if n(0)
B. Cheng, Q.-H. Wang and R. Joynt, Transfer matrix solution of a model of qubit dechoerence due to telegraph noise, Physical Review A,
78, (2008)
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Two-Qubit System
Two-Qubit Density Matrix
Two uncorrelated systems, each composed of a single
qubit and a background charge.
The two-qubit density matrix depends on the initial
conditions ρ(0) and on the time-evolution of each qubit,
namely qubit A and qubit B under their own source of
noise.
The time-evolution is obtained the average transfer
matrices relative to qubit A and B: TA(t), TB(t).
ρ(t) = f(TA(t) ⊗ TB(t), ρ(0))
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Two-Qubit System
Two-Qubit Density Matrix
Two uncorrelated systems, each composed of a single
qubit and a background charge.
The two-qubit density matrix depends on the initial
conditions ρ(0) and on the time-evolution of each qubit,
namely qubit A and qubit B under their own source of
noise.
The time-evolution is obtained the average transfer
matrices relative to qubit A and B: TA(t), TB(t).
ρ(t) = f(TA(t) ⊗ TB(t), ρ(0))
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Entanglement time-evolution
Entanglement Sudden Death
Markovian noise, weak coupling
Entanglement Revivals
Markovian noise, strong coupling
Non-Markovian noise
Initial Conditions: Extended Werner Like (EWL) States
ˆρΦ = r|Φ Φ| + 1−r
4
I ˆρΨ = r|Ψ Ψ| + 1−r
4
I
r quantifies the mixedness;
|Φ = a|00 ± b|11 |Ψ = a|01 ± b|10
where a represents the initial degree of entanglement
of the pure part and |a|2
+ |b|2
= 1.
T. Yu and J. H. Eberly, Sudden Death of Entanglement,Science, 323, (2009)
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Entanglement time-evolution
Entanglement Sudden Death
Markovian noise, weak coupling
Entanglement Revivals
Markovian noise, strong coupling
Non-Markovian noise
Initial Conditions: Extended Werner Like (EWL) States
ˆρΦ = r|Φ Φ| + 1−r
4
I ˆρΨ = r|Ψ Ψ| + 1−r
4
I
r quantifies the mixedness;
|Φ = a|00 ± b|11 |Ψ = a|01 ± b|10
where a represents the initial degree of entanglement
of the pure part and |a|2
+ |b|2
= 1.
T. Yu and J. H. Eberly, Sudden Death of Entanglement,Science, 323, (2009)
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Contents
1 Quantum Computation
Quantum Computing and Quantum Mechanics
2 Superconducting Qubits
Charge Qubit
3 Noise in Josephson Qubits
Methods
4 Entanglement Dynamics
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
5 Conclusions
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Noise on one qubit: Concurrence Decay and Revivals
r=1
Weak Coupling −→
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nΤ
a
0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0
0.2
0.4
0.6
0.8
1.0
Τ
Λ1Τ,Λ2Τ,Λ3Τ,Λ4Τ
b
0.0 0.5 1.0 1.5 2.0 2.5
0.0
0.2
0.4
0.6
0.8
1.0
Τ
CΤ
c
Transition Region −→
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nΤ
a
0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0
0.2
0.4
0.6
0.8
1.0
Τ
Λ1Τ,Λ2Τ,Λ3Τ,Λ4Τ
b
0.00.51.01.52.02.5
0.0
0.2
0.4
0.6
0.8
1.0
Τ
CΤ
c
Strong Coupling
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nΤ
a
0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0
0.2
0.4
0.6
0.8
1.0
Τ
Λ1Τ,Λ2Τ,Λ3Τ,Λ4Τ
b
0.00.51.01.52.02.5
0.0
0.2
0.4
0.6
0.8
1.0
Τ
CΤ
c
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Noise on both qubits
Equal weakly coupled noise
0 1 2 3 4
1.0
0.5
0.0
0.5
1.0
Τ
nyΤ
a
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nzΤ
b
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nΤ
a
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
CΤ
d
Wekly coupled noise on one qubit
and Strong coupled noise on the other
0 1 2 3 4
1.0
0.5
0.0
0.5
1.0
Τ
nyΤ
a
0 1 2 3 4
1.0
0.5
0.0
0.5
1.0
Τ
nyΤ
a
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nzΤ
b
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nzΤ
b
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nΤ a
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nΤ
a
0 1 2 3 4
0.0
0.2
0.4
0.6
0.8
1.0
Τ
CΤ
d
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Contents
1 Quantum Computation
Quantum Computing and Quantum Mechanics
2 Superconducting Qubits
Charge Qubit
3 Noise in Josephson Qubits
Methods
4 Entanglement Dynamics
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
5 Conclusions
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Noise on one qubit
r=1
Asymmetric versus Symmetric
Weak coupling
0 1 2 3 4
1.0
0.5
0.0
0.5
1.0
Τ
nyΤ
Γ
40,
v
Γ
2
"Strong" coupling
0 1 2 3 4
1.0
0.5
0.0
0.5
1.0
Τ
nyΤ
Γ
40,
v
Γ
18
Transition Region
0 1 2 3 4
1.0
0.5
0.0
0.5
1.0
Τ
nyΤ
Γ
40,
v
Γ
9
"Strong" Symmetric
Fluctuator
0 1 2 3 4
1.0
0.5
0.0
0.5
1.0
Τ
nyΤ
a
v Γ 14
0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Τ
nzΤ
b
v Γ 14
0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0
Τ
nΤ
c
v Γ 14
0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0
Τ
CΤ
v Γ 14
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Contents
1 Quantum Computation
Quantum Computing and Quantum Mechanics
2 Superconducting Qubits
Charge Qubit
3 Noise in Josephson Qubits
Methods
4 Entanglement Dynamics
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
5 Conclusions
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Transvers Coupling, Asymmetric Fluctuator
Transvers Coupling, Comparison with Symmetric Fluctuator
Comparison with Longitudinal Coupling
Noise on one qubit
r=0.91
Longitudinal Coupling
v/γ = 0.5 Weak Coupling
v/γ = 5 Strong Coupling
Transvers Coupling (Crossover)
0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0
0.2
0.4
0.6
0.8
Τ
CΤ
v Γ 2
v Γ 5
v Γ 9
v Γ 14
v Γ 18
R. Lo Franco, A. D’Arrigo, G. Falci, C. Compagno, E. Paladino, Entanglement dynamics in superconducting qubits affected by local
bistable impurities, Phys.Scr., 9, (2012)
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Epilogue
Two superconducting qubits, each subject indipendently to Random
Telegraph Noise.
Example: Random Telegraph Noise by charged impurities trapped close to
a charge Josephson qubit.
Microscopic model of the RTN generation.
Application of the Quasi-Hamiltonian method.
Evaluation of the two-qubit density matrix.
Evaluation of the concurrence
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
Results
−→ Crossover between weak coupling and strong coupling.
−→ Asymmetric and symmetric fluctuator and comparison.
−→ Initial conditions as pure state and Extended Werner Like (EWL)
state.
−→ Analogous behaviour for the states ρΦ and ρΨ.
−→ For an asymmetric fluctuator model in weak coupling conditions the
entanglement displays ESD, while in strong coupling conditions the
entanglement displays dark peridos and revivals.
−→ For a symmetric fluctuator model the entanglement decays both in
weak coupling conditions and in strong coupling conditions. The
entanglement can also definitively vanish starting with a pure state or
an EWL state.
Marta Agati Entanglement Dynamics
Entanglement
Dynamics
Marta Agati
Quantum
Computa-
tion
Quantum
Computing
and Quantum
Mechanics
Superconducting
Qubits
Charge Qubit
Noise in
Josephson
Qubits
Methods
Entanglement
Dynamics
Transvers
Coupling,
Asymmetric
Fluctuator
Transvers
Coupling,
Comparison
with
Symmetric
Fluctuator
Comparison
with
Longitudinal
Coupling
Conclusions
Quantum Computation
Superconducting Qubits
Noise in Josephson Qubits
Entanglement Dynamics
Conclusions
So...
THANK YOU FOR THE KIND ATTENTION
Marta Agati Entanglement Dynamics

Weitere ähnliche Inhalte

Was ist angesagt?

quantum view of Harmonic oscillator
quantum view of Harmonic oscillator quantum view of Harmonic oscillator
quantum view of Harmonic oscillator Ahmed Haider
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationRawat DA Greatt
 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsK. M.
 
Schrödinger wave equation
Schrödinger wave equationSchrödinger wave equation
Schrödinger wave equationHARSHWALIA9
 
Chapter 2 lecture 2 mechanical vibration
Chapter 2  lecture 2 mechanical vibrationChapter 2  lecture 2 mechanical vibration
Chapter 2 lecture 2 mechanical vibrationBahr Alyafei
 
The Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equationThe Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equationVasil Penchev
 
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...ijrap
 
Radiation of an Accelerated Charge
Radiation of an Accelerated Charge  Radiation of an Accelerated Charge
Radiation of an Accelerated Charge ijeljournal
 
Radiation of an Accelerated Charge
Radiation of an Accelerated ChargeRadiation of an Accelerated Charge
Radiation of an Accelerated Chargeijeljournal
 
Radiation of an accelerated charge
Radiation of an accelerated chargeRadiation of an accelerated charge
Radiation of an accelerated chargeijeljournal
 
Physics Quantum mechanics
Physics Quantum mechanicsPhysics Quantum mechanics
Physics Quantum mechanics2569294Mohan
 
Senior Honors Research Thesis
Senior Honors Research ThesisSenior Honors Research Thesis
Senior Honors Research ThesisMichael McMearty
 
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...iosrjce
 
Quantum theory of dispersion of light ppt
Quantum theory of dispersion of light pptQuantum theory of dispersion of light ppt
Quantum theory of dispersion of light ppttedoado
 
Mechanical Vibrations Theory and Applications 1st Edition Kelly Solutions Manual
Mechanical Vibrations Theory and Applications 1st Edition Kelly Solutions ManualMechanical Vibrations Theory and Applications 1st Edition Kelly Solutions Manual
Mechanical Vibrations Theory and Applications 1st Edition Kelly Solutions Manualvilyku
 
Bound states in 1d, 2d and 3d quantum wells
Bound states in 1d, 2d and 3d quantum wellsBound states in 1d, 2d and 3d quantum wells
Bound states in 1d, 2d and 3d quantum wellsAhmed Aslam
 

Was ist angesagt? (20)

quantum view of Harmonic oscillator
quantum view of Harmonic oscillator quantum view of Harmonic oscillator
quantum view of Harmonic oscillator
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanics
 
04 molecular dynamics
04 molecular dynamics04 molecular dynamics
04 molecular dynamics
 
Schrödinger wave equation
Schrödinger wave equationSchrödinger wave equation
Schrödinger wave equation
 
One dimensional box
One dimensional boxOne dimensional box
One dimensional box
 
Chapter 2 lecture 2 mechanical vibration
Chapter 2  lecture 2 mechanical vibrationChapter 2  lecture 2 mechanical vibration
Chapter 2 lecture 2 mechanical vibration
 
The Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equationThe Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equation
 
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
 
Radiation of an Accelerated Charge
Radiation of an Accelerated Charge  Radiation of an Accelerated Charge
Radiation of an Accelerated Charge
 
Radiation of an Accelerated Charge
Radiation of an Accelerated ChargeRadiation of an Accelerated Charge
Radiation of an Accelerated Charge
 
Radiation of an accelerated charge
Radiation of an accelerated chargeRadiation of an accelerated charge
Radiation of an accelerated charge
 
Physics Quantum mechanics
Physics Quantum mechanicsPhysics Quantum mechanics
Physics Quantum mechanics
 
Senior Honors Research Thesis
Senior Honors Research ThesisSenior Honors Research Thesis
Senior Honors Research Thesis
 
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
 
CHAPTER 6 Quantum Mechanics II
CHAPTER 6 Quantum Mechanics IICHAPTER 6 Quantum Mechanics II
CHAPTER 6 Quantum Mechanics II
 
Quantum theory of dispersion of light ppt
Quantum theory of dispersion of light pptQuantum theory of dispersion of light ppt
Quantum theory of dispersion of light ppt
 
Rigid rotators
Rigid rotatorsRigid rotators
Rigid rotators
 
Mechanical Vibrations Theory and Applications 1st Edition Kelly Solutions Manual
Mechanical Vibrations Theory and Applications 1st Edition Kelly Solutions ManualMechanical Vibrations Theory and Applications 1st Edition Kelly Solutions Manual
Mechanical Vibrations Theory and Applications 1st Edition Kelly Solutions Manual
 
Bound states in 1d, 2d and 3d quantum wells
Bound states in 1d, 2d and 3d quantum wellsBound states in 1d, 2d and 3d quantum wells
Bound states in 1d, 2d and 3d quantum wells
 

Ähnlich wie Entanglement Dynamics of Two Superconducting Qubits

Quantum Computing: The Why and How
Quantum Computing: The Why and HowQuantum Computing: The Why and How
Quantum Computing: The Why and Howinside-BigData.com
 
Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum ComputingGDSC PJATK
 
Experimental one-way
Experimental one-wayExperimental one-way
Experimental one-wayCAA Sudan
 
Let's build a quantum computer!
Let's build a quantum computer!Let's build a quantum computer!
Let's build a quantum computer!Andreas Dewes
 
Machine learning with quantum computers
Machine learning with quantum computersMachine learning with quantum computers
Machine learning with quantum computersSpeck&Tech
 
Sound Generation nd Propagation with Lattice Boltzmann Method
Sound Generation nd Propagation with Lattice Boltzmann MethodSound Generation nd Propagation with Lattice Boltzmann Method
Sound Generation nd Propagation with Lattice Boltzmann MethodSalih Kocak
 
Noise Resilience of Variational Quantum Compiling
Noise Resilience of Variational Quantum CompilingNoise Resilience of Variational Quantum Compiling
Noise Resilience of Variational Quantum CompilingKunalSharma515
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezEscalante Supertramp
 
Syllabus for electronics and communication engineering (ec) gate 2013
Syllabus for electronics and communication engineering (ec)   gate 2013Syllabus for electronics and communication engineering (ec)   gate 2013
Syllabus for electronics and communication engineering (ec) gate 2013Vinaysrichand Bandaru
 

Ähnlich wie Entanglement Dynamics of Two Superconducting Qubits (20)

MASTER_THESIS-libre
MASTER_THESIS-libreMASTER_THESIS-libre
MASTER_THESIS-libre
 
Quantum Computing: The Why and How
Quantum Computing: The Why and HowQuantum Computing: The Why and How
Quantum Computing: The Why and How
 
Introduction to Quantum Computing
Introduction to Quantum ComputingIntroduction to Quantum Computing
Introduction to Quantum Computing
 
Ieee lecture
Ieee lectureIeee lecture
Ieee lecture
 
Experimental one-way
Experimental one-wayExperimental one-way
Experimental one-way
 
The Evolution of Quantum Computers
The Evolution of Quantum ComputersThe Evolution of Quantum Computers
The Evolution of Quantum Computers
 
Let's build a quantum computer!
Let's build a quantum computer!Let's build a quantum computer!
Let's build a quantum computer!
 
QuantumFuzzylogic
QuantumFuzzylogicQuantumFuzzylogic
QuantumFuzzylogic
 
Quantum Fuzzy Logic
Quantum Fuzzy LogicQuantum Fuzzy Logic
Quantum Fuzzy Logic
 
Machine learning with quantum computers
Machine learning with quantum computersMachine learning with quantum computers
Machine learning with quantum computers
 
Structural systems
Structural systemsStructural systems
Structural systems
 
Sound Generation nd Propagation with Lattice Boltzmann Method
Sound Generation nd Propagation with Lattice Boltzmann MethodSound Generation nd Propagation with Lattice Boltzmann Method
Sound Generation nd Propagation with Lattice Boltzmann Method
 
Noise Resilience of Variational Quantum Compiling
Noise Resilience of Variational Quantum CompilingNoise Resilience of Variational Quantum Compiling
Noise Resilience of Variational Quantum Compiling
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante Fernandez
 
Modifed my_poster
Modifed my_posterModifed my_poster
Modifed my_poster
 
Thesis defense
Thesis defenseThesis defense
Thesis defense
 
Syllabus for electronics and communication engineering (ec) gate 2013
Syllabus for electronics and communication engineering (ec)   gate 2013Syllabus for electronics and communication engineering (ec)   gate 2013
Syllabus for electronics and communication engineering (ec) gate 2013
 
Quantum computing
Quantum computingQuantum computing
Quantum computing
 
Quantum & AI in Finance
Quantum & AI in FinanceQuantum & AI in Finance
Quantum & AI in Finance
 
VD PPT.pptx
VD PPT.pptxVD PPT.pptx
VD PPT.pptx
 

Kürzlich hochgeladen

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 

Kürzlich hochgeladen (20)

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 

Entanglement Dynamics of Two Superconducting Qubits

  • 1. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Entanglement Dynamics of Two Superconducting Qubits Subject to Random Telegraph Noise Marta Agati Università degl Studi di Catania Dipartimento di Fisica e Astronomia Corso di Laurea in Fisica Matis CNR-IMM UOS Catania Centro Siciliano Fisica Nucleare e Struttura della Materia (CSFNSM) QUINN QUantum INformation and Nanonsystems group Relatore Prof.ssa Elisabetta Paladino Correlatore Prof. Giuseppe Falci Dott. Antonio D’Arrigo July 16, 2013 Marta Agati Entanglement Dynamics
  • 2. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Contents 1 Quantum Computation Quantum Computing and Quantum Mechanics 2 Superconducting Qubits Charge Qubit 3 Noise in Josephson Qubits Methods 4 Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling 5 Conclusions Marta Agati Entanglement Dynamics
  • 3. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Introduction to Quantum Computation Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010 Marta Agati Entanglement Dynamics
  • 4. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Contents 1 Quantum Computation Quantum Computing and Quantum Mechanics 2 Superconducting Qubits Charge Qubit 3 Noise in Josephson Qubits Methods 4 Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling 5 Conclusions Marta Agati Entanglement Dynamics
  • 5. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Unit of Quantum Information Quantum bit or Qubit Quantum bit or Qubit ψ = α0|0 + α1|1 Superposition Principle Multiple-Qubit state Two qubits ψ = α00|00 + α01|01 + α10|10 + α11|11 Product State ψS = |01 +|11 √ 2 = |0 +|1 √ 2 ⊗ |1 Entangled State (Bell State) ψE = |00 +|11 √ 2 Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010 Marta Agati Entanglement Dynamics
  • 6. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Unit of Quantum Information Quantum bit or Qubit Quantum bit or Qubit ψ = α0|0 + α1|1 Superposition Principle Multiple-Qubit state Two qubits ψ = α00|00 + α01|01 + α10|10 + α11|11 Product State ψS = |01 +|11 √ 2 = |0 +|1 √ 2 ⊗ |1 Entangled State (Bell State) ψE = |00 +|11 √ 2 Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010 Marta Agati Entanglement Dynamics
  • 7. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Unit of Quantum Information Quantum bit or Qubit Quantum bit or Qubit ψ = α0|0 + α1|1 Superposition Principle Multiple-Qubit state Two qubits ψ = α00|00 + α01|01 + α10|10 + α11|11 Product State ψS = |01 +|11 √ 2 = |0 +|1 √ 2 ⊗ |1 Entangled State (Bell State) ψE = |00 +|11 √ 2 Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010 Marta Agati Entanglement Dynamics
  • 8. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Entanglement Quantifiers ρ ≡ Two-Qubit Density Matrix =⇒ ˜ρ = (σy ⊗ σy ) ρ (σy ⊗ σy ) Wootters Concurrence C(t) = 2Max 0, √ λ1 − √ λ2 − √ λ3 − √ λ4 λi , i = {1, . . . , 4}, eigenvalues of the matrix ρ˜ρ arranged in decreasing order. Maximally Entangled States C=1 Product States C=0 Invariance for Local Unitary Transformations. W. K. Wotters, Entanglement of Formation of an Arbitrary State of two Qubits, Phys. Rev. Lett., 80, 10,( 1998) Marta Agati Entanglement Dynamics
  • 9. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Entanglement Quantifiers ρ ≡ Two-Qubit Density Matrix =⇒ ˜ρ = (σy ⊗ σy ) ρ (σy ⊗ σy ) Wootters Concurrence C(t) = 2Max 0, √ λ1 − √ λ2 − √ λ3 − √ λ4 λi , i = {1, . . . , 4}, eigenvalues of the matrix ρ˜ρ arranged in decreasing order. Maximally Entangled States C=1 Product States C=0 Invariance for Local Unitary Transformations. W. K. Wotters, Entanglement of Formation of an Arbitrary State of two Qubits, Phys. Rev. Lett., 80, 10,( 1998) Marta Agati Entanglement Dynamics
  • 10. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Quantum Gates Universary set of Quantum Gates Any multiple qubits logic gate may be composed of single qubit gates and at least one entanglement-generating two-qubit gate. CNot Gate (|0 + |1 ) |0 √ 2 ⇒ |00 + |11 √ 2 Motivation for our study on the sensitivity of the entanglement to external influences (environment) Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010 Marta Agati Entanglement Dynamics
  • 11. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Quantum Gates Universary set of Quantum Gates Any multiple qubits logic gate may be composed of single qubit gates and at least one entanglement-generating two-qubit gate. CNot Gate (|0 + |1 ) |0 √ 2 ⇒ |00 + |11 √ 2 Motivation for our study on the sensitivity of the entanglement to external influences (environment) Michael A. Nielsen, Isaac L. Chuang; Quantum Computation and Quantum Information, Cambridge University Press, 2010 Marta Agati Entanglement Dynamics
  • 12. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Quantum Computing and Quantum Mechanics Quantum Computers Implementations G. Chen, D. A. Church, B.G. Englert, C. Henkel, B. Ronwedder, M. O. Scully, M. Zubairy, Quantum Computing Devices: principles, Designs and Analysis, Chapman et Hall/CRC, 2007 Marta Agati Entanglement Dynamics
  • 13. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Superconducting materials and Josephson junctions Characteristics of Superconducting Materials Hallmarks: Perfect Conductivity Perfect Diamagnetism (Meissner Effect) Cooper pairs Josephson Effect Josephson Equations I = IC sin φ Stationary Josephson Effect: a current flows at 0 Voltage. V(t) = 2e ∂ ∂t φ A.C. Josephson Effect Michael Tinkham, Introduction to Superconductivity, McGRAW-HILL EDITIONS, 1996 Marta Agati Entanglement Dynamics
  • 14. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Superconducting materials and Josephson junctions Characteristics of Superconducting Materials Hallmarks: Perfect Conductivity Perfect Diamagnetism (Meissner Effect) Cooper pairs Josephson Effect Josephson Equations I = IC sin φ Stationary Josephson Effect: a current flows at 0 Voltage. V(t) = 2e ∂ ∂t φ A.C. Josephson Effect Michael Tinkham, Introduction to Superconductivity, McGRAW-HILL EDITIONS, 1996 Marta Agati Entanglement Dynamics
  • 15. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Superconducting Qubits Charge Qubit Phase Qubit Other qubits based on Cooper Pair Box: Quantronium and Trasmon Flux Qubit Appunti del Corso di fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013 Marta Agati Entanglement Dynamics
  • 16. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Superconducting Qubits Charge Qubit Phase Qubit Other qubits based on Cooper Pair Box: Quantronium and Trasmon Flux Qubit Appunti del Corso di fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013 Marta Agati Entanglement Dynamics
  • 17. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Contents 1 Quantum Computation Quantum Computing and Quantum Mechanics 2 Superconducting Qubits Charge Qubit 3 Noise in Josephson Qubits Methods 4 Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling 5 Conclusions Marta Agati Entanglement Dynamics
  • 18. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Network Equations for Josephson Circuits (Lagrangian form) Electrostatic Energy K = CΣ 2 2e ˙φ + Cg CΣ Vg 2 CΣ ≡ (C + Cg) Magnetic Energy UJ (φ) = t 0 dt I(t ) ˙Φ(t ) = EJ (1 − cosφ) EJ ≡ 2e Ic Lagrangian L(2e φ, 2e ˙φ) = K( ˙φ) − U(φ) Classical Hamiltonian H(Q, 2e φ) = 1 2CΣ 2e (Q − CgVg)2 + EJ (1 − cos φ) Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013 Marta Agati Entanglement Dynamics
  • 19. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Network Equations for Josephson Circuits (Lagrangian form) Electrostatic Energy K = CΣ 2 2e ˙φ + Cg CΣ Vg 2 CΣ ≡ (C + Cg) Magnetic Energy UJ (φ) = t 0 dt I(t ) ˙Φ(t ) = EJ (1 − cosφ) EJ ≡ 2e Ic Lagrangian L(2e φ, 2e ˙φ) = K( ˙φ) − U(φ) Classical Hamiltonian H(Q, 2e φ) = 1 2CΣ 2e (Q − CgVg)2 + EJ (1 − cos φ) Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013 Marta Agati Entanglement Dynamics
  • 20. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Network Equations for Josephson Circuits (Lagrangian form) Electrostatic Energy K = CΣ 2 2e ˙φ + Cg CΣ Vg 2 CΣ ≡ (C + Cg) Magnetic Energy UJ (φ) = t 0 dt I(t ) ˙Φ(t ) = EJ (1 − cosφ) EJ ≡ 2e Ic Lagrangian L(2e φ, 2e ˙φ) = K( ˙φ) − U(φ) Classical Hamiltonian H(Q, 2e φ) = 1 2CΣ 2e (Q − CgVg)2 + EJ (1 − cos φ) Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013 Marta Agati Entanglement Dynamics
  • 21. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Charge Qubit Hamiltonian |n , |n + 1 ≡ Eigenstates of the charge in the island. Quantum Hamiltonian (in the charge basis) ˆH = EC n (n − qg)2 |n n| − EJ 2 n |n n + 1| + |n + 1 n| Projection on to the lowest energy bidimensional subspace Charge Qubit Hamiltonian Hq = −1 2 σz − 1 2 ∆σx ≡ 4EC(1 − 2qx ) ∆ ≡ EJ σi ≡ Pauli Matrices Phenomenological Quantization of the Phase φ 2e , Q = i Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013 Marta Agati Entanglement Dynamics
  • 22. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Charge Qubit Charge Qubit Hamiltonian |n , |n + 1 ≡ Eigenstates of the charge in the island. Quantum Hamiltonian (in the charge basis) ˆH = EC n (n − qg)2 |n n| − EJ 2 n |n n + 1| + |n + 1 n| Projection on to the lowest energy bidimensional subspace Charge Qubit Hamiltonian Hq = −1 2 σz − 1 2 ∆σx ≡ 4EC(1 − 2qx ) ∆ ≡ EJ σi ≡ Pauli Matrices Phenomenological Quantization of the Phase φ 2e , Q = i Appunti del Corso di Fisica dei Nanosistemi, Giuseppe Falci, AA 2012-2013 Marta Agati Entanglement Dynamics
  • 23. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Noise Sources Quantum Coherence |ψ, t = q1,··· ,qN cq1,··· ,qN (t)|q1, · · · , qN =⇒ it exists a well defined deterministic relation between the complex amplitudes cqi (t) provided by the Schrödinger equation. Open Quantum System Decoherence Noise Classical Stochastic Process Htot = −1 2 σz − 1 2 ∆σx − 1 2 ξ(t)v · −→σ Particular coupling conditions Longitudinal Coupling v H Transvers Coupling v ⊥ H −→ Density Matrix Formalism G. Falci, E. Paladino, R. Fazio, Decoherence in Josephson Qubits, Varenna Review 2003 Marta Agati Entanglement Dynamics
  • 24. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Noise Sources Quantum Coherence |ψ, t = q1,··· ,qN cq1,··· ,qN (t)|q1, · · · , qN =⇒ it exists a well defined deterministic relation between the complex amplitudes cqi (t) provided by the Schrödinger equation. Open Quantum System Decoherence Noise Classical Stochastic Process Htot = −1 2 σz − 1 2 ∆σx − 1 2 ξ(t)v · −→σ Particular coupling conditions Longitudinal Coupling v H Transvers Coupling v ⊥ H −→ Density Matrix Formalism G. Falci, E. Paladino, R. Fazio, Decoherence in Josephson Qubits, Varenna Review 2003 Marta Agati Entanglement Dynamics
  • 25. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Noise Sources Quantum Coherence |ψ, t = q1,··· ,qN cq1,··· ,qN (t)|q1, · · · , qN =⇒ it exists a well defined deterministic relation between the complex amplitudes cqi (t) provided by the Schrödinger equation. Open Quantum System Decoherence Noise Classical Stochastic Process Htot = −1 2 σz − 1 2 ∆σx − 1 2 ξ(t)v · −→σ Particular coupling conditions Longitudinal Coupling v H Transvers Coupling v ⊥ H −→ Density Matrix Formalism G. Falci, E. Paladino, R. Fazio, Decoherence in Josephson Qubits, Varenna Review 2003 Marta Agati Entanglement Dynamics
  • 26. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Noise in Josephson Qubits Internal sources: Exitation of Quasi-particles External environment: Circuit Preparation, Control and measurement apparata Dynamic defects fluctuating between two localized states (Background fluctuators) produce random telegraph noise (RTN) Example Background charged impurities trapped close to the insulating layer of Charge Qubits or in the substrate. Power Spectrum RTN S(ω) = v2 2 γ γ2+ω2 E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925, submitted to RMP Marta Agati Entanglement Dynamics
  • 27. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Noise in Josephson Qubits Internal sources: Exitation of Quasi-particles External environment: Circuit Preparation, Control and measurement apparata Dynamic defects fluctuating between two localized states (Background fluctuators) produce random telegraph noise (RTN) Example Background charged impurities trapped close to the insulating layer of Charge Qubits or in the substrate. Power Spectrum RTN S(ω) = v2 2 γ γ2+ω2 E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925, submitted to RMP Marta Agati Entanglement Dynamics
  • 28. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Noise in Josephson Qubits Internal sources: Exitation of Quasi-particles External environment: Circuit Preparation, Control and measurement apparata Dynamic defects fluctuating between two localized states (Background fluctuators) produce random telegraph noise (RTN) Example Background charged impurities trapped close to the insulating layer of Charge Qubits or in the substrate. Power Spectrum RTN S(ω) = v2 2 γ γ2+ω2 E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925, submitted to RMP Marta Agati Entanglement Dynamics
  • 29. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Noise in Josephson Qubits Internal sources: Exitation of Quasi-particles External environment: Circuit Preparation, Control and measurement apparata Dynamic defects fluctuating between two localized states (Background fluctuators) produce random telegraph noise (RTN) Example Background charged impurities trapped close to the insulating layer of Charge Qubits or in the substrate. Power Spectrum RTN S(ω) = v2 2 γ γ2+ω2 E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925, submitted to RMP Marta Agati Entanglement Dynamics
  • 30. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Noise in Josephson Qubits Internal sources: Exitation of Quasi-particles External environment: Circuit Preparation, Control and measurement apparata Dynamic defects fluctuating between two localized states (Background fluctuators) produce random telegraph noise (RTN) Example Background charged impurities trapped close to the insulating layer of Charge Qubits or in the substrate. Power Spectrum RTN S(ω) = v2 2 γ γ2+ω2 E. Paladino, Y. M. Galperin, G. Falci, B. L. Altshuler, 1/f noise: implications for solid-state quantum information,a rXiv:1304.7925, submitted to RMP Marta Agati Entanglement Dynamics
  • 31. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Contents 1 Quantum Computation Quantum Computing and Quantum Mechanics 2 Superconducting Qubits Charge Qubit 3 Noise in Josephson Qubits Methods 4 Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling 5 Conclusions Marta Agati Entanglement Dynamics
  • 32. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Master Equation Weak coupling and fast fluctuator: v Ω and v γ ΓR = 1 2 sin2 θS(Ω) Relaxation Rate (Decay of z-component of the qubit Bloch vector) Γφ = Γ0 φ + 1 2 ΓR = 1 2 cos2 θS(0) + 1 2 ΓR Dephasing Rate (Decay of x- and y-components of the qubit Bloch vector) Microscopic Model of Background Charges ˆH = −1 2 σz − 1 2 ∆σx + b+ b + k [Tk c+ k b + h.c.] + k k c+ k ck + (v/2)σz b+ b ξ(t) = 0, +1 Asymmetric fluctuator ξ(t) = −1, +1 Symmetric fluctuator E. Paladino, L. Faoro, G. Falci, Decoherence Due to Discrete Noise in Josephson Qubits, Adv. in Sol. St. Phys., 43, (2003) Marta Agati Entanglement Dynamics
  • 33. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Master Equation Weak coupling and fast fluctuator: v Ω and v γ ΓR = 1 2 sin2 θS(Ω) Relaxation Rate (Decay of z-component of the qubit Bloch vector) Γφ = Γ0 φ + 1 2 ΓR = 1 2 cos2 θS(0) + 1 2 ΓR Dephasing Rate (Decay of x- and y-components of the qubit Bloch vector) Microscopic Model of Background Charges ˆH = −1 2 σz − 1 2 ∆σx + b+ b + k [Tk c+ k b + h.c.] + k k c+ k ck + (v/2)σz b+ b ξ(t) = 0, +1 Asymmetric fluctuator ξ(t) = −1, +1 Symmetric fluctuator E. Paladino, L. Faoro, G. Falci, Decoherence Due to Discrete Noise in Josephson Qubits, Adv. in Sol. St. Phys., 43, (2003) Marta Agati Entanglement Dynamics
  • 34. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Master Equation Weak coupling and fast fluctuator: v Ω and v γ ΓR = 1 2 sin2 θS(Ω) Relaxation Rate (Decay of z-component of the qubit Bloch vector) Γφ = Γ0 φ + 1 2 ΓR = 1 2 cos2 θS(0) + 1 2 ΓR Dephasing Rate (Decay of x- and y-components of the qubit Bloch vector) Microscopic Model of Background Charges ˆH = −1 2 σz − 1 2 ∆σx + b+ b + k [Tk c+ k b + h.c.] + k k c+ k ck + (v/2)σz b+ b ξ(t) = 0, +1 Asymmetric fluctuator ξ(t) = −1, +1 Symmetric fluctuator E. Paladino, L. Faoro, G. Falci, Decoherence Due to Discrete Noise in Josephson Qubits, Adv. in Sol. St. Phys., 43, (2003) Marta Agati Entanglement Dynamics
  • 35. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Methods Quasi-Hamiltonian Method Transition Probability Matrix (RTN) W = 1 − p p p 1 − p Element of Qubit Transfer Matrix T(without noise) Tijξi (∆t) = 1 2 Tr[σi Uξi (∆t)σj U+ ξi (∆t)] Average Tranfer Matrix T(t) ≡ xf |ΓN |if Γ ≡ W ⊗ T Quasi-Hamiltonian HqH ΓN (t) ≡ (Γ(∆t))N ∼ (I − iHqH ∆t)N ∼ exp(−iHqH t) First order expansion Bloch vector evolution under noise n(t) = xf | ψ |ψ eiωψt ψ| |if n(0) B. Cheng, Q.-H. Wang and R. Joynt, Transfer matrix solution of a model of qubit dechoerence due to telegraph noise, Physical Review A, 78, (2008) Marta Agati Entanglement Dynamics
  • 36. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Two-Qubit System Two-Qubit Density Matrix Two uncorrelated systems, each composed of a single qubit and a background charge. The two-qubit density matrix depends on the initial conditions ρ(0) and on the time-evolution of each qubit, namely qubit A and qubit B under their own source of noise. The time-evolution is obtained the average transfer matrices relative to qubit A and B: TA(t), TB(t). ρ(t) = f(TA(t) ⊗ TB(t), ρ(0)) Marta Agati Entanglement Dynamics
  • 37. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Two-Qubit System Two-Qubit Density Matrix Two uncorrelated systems, each composed of a single qubit and a background charge. The two-qubit density matrix depends on the initial conditions ρ(0) and on the time-evolution of each qubit, namely qubit A and qubit B under their own source of noise. The time-evolution is obtained the average transfer matrices relative to qubit A and B: TA(t), TB(t). ρ(t) = f(TA(t) ⊗ TB(t), ρ(0)) Marta Agati Entanglement Dynamics
  • 38. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Entanglement time-evolution Entanglement Sudden Death Markovian noise, weak coupling Entanglement Revivals Markovian noise, strong coupling Non-Markovian noise Initial Conditions: Extended Werner Like (EWL) States ˆρΦ = r|Φ Φ| + 1−r 4 I ˆρΨ = r|Ψ Ψ| + 1−r 4 I r quantifies the mixedness; |Φ = a|00 ± b|11 |Ψ = a|01 ± b|10 where a represents the initial degree of entanglement of the pure part and |a|2 + |b|2 = 1. T. Yu and J. H. Eberly, Sudden Death of Entanglement,Science, 323, (2009) Marta Agati Entanglement Dynamics
  • 39. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Entanglement time-evolution Entanglement Sudden Death Markovian noise, weak coupling Entanglement Revivals Markovian noise, strong coupling Non-Markovian noise Initial Conditions: Extended Werner Like (EWL) States ˆρΦ = r|Φ Φ| + 1−r 4 I ˆρΨ = r|Ψ Ψ| + 1−r 4 I r quantifies the mixedness; |Φ = a|00 ± b|11 |Ψ = a|01 ± b|10 where a represents the initial degree of entanglement of the pure part and |a|2 + |b|2 = 1. T. Yu and J. H. Eberly, Sudden Death of Entanglement,Science, 323, (2009) Marta Agati Entanglement Dynamics
  • 40. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Contents 1 Quantum Computation Quantum Computing and Quantum Mechanics 2 Superconducting Qubits Charge Qubit 3 Noise in Josephson Qubits Methods 4 Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling 5 Conclusions Marta Agati Entanglement Dynamics
  • 41. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Noise on one qubit: Concurrence Decay and Revivals r=1 Weak Coupling −→ 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ nΤ a 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.2 0.4 0.6 0.8 1.0 Τ Λ1Τ,Λ2Τ,Λ3Τ,Λ4Τ b 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0 Τ CΤ c Transition Region −→ 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ nΤ a 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.2 0.4 0.6 0.8 1.0 Τ Λ1Τ,Λ2Τ,Λ3Τ,Λ4Τ b 0.00.51.01.52.02.5 0.0 0.2 0.4 0.6 0.8 1.0 Τ CΤ c Strong Coupling 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ nΤ a 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.2 0.4 0.6 0.8 1.0 Τ Λ1Τ,Λ2Τ,Λ3Τ,Λ4Τ b 0.00.51.01.52.02.5 0.0 0.2 0.4 0.6 0.8 1.0 Τ CΤ c Marta Agati Entanglement Dynamics
  • 42. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Noise on both qubits Equal weakly coupled noise 0 1 2 3 4 1.0 0.5 0.0 0.5 1.0 Τ nyΤ a 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ nzΤ b 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ nΤ a 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ CΤ d Wekly coupled noise on one qubit and Strong coupled noise on the other 0 1 2 3 4 1.0 0.5 0.0 0.5 1.0 Τ nyΤ a 0 1 2 3 4 1.0 0.5 0.0 0.5 1.0 Τ nyΤ a 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ nzΤ b 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ nzΤ b 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ nΤ a 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ nΤ a 0 1 2 3 4 0.0 0.2 0.4 0.6 0.8 1.0 Τ CΤ d Marta Agati Entanglement Dynamics
  • 43. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Contents 1 Quantum Computation Quantum Computing and Quantum Mechanics 2 Superconducting Qubits Charge Qubit 3 Noise in Josephson Qubits Methods 4 Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling 5 Conclusions Marta Agati Entanglement Dynamics
  • 44. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Noise on one qubit r=1 Asymmetric versus Symmetric Weak coupling 0 1 2 3 4 1.0 0.5 0.0 0.5 1.0 Τ nyΤ Γ 40, v Γ 2 "Strong" coupling 0 1 2 3 4 1.0 0.5 0.0 0.5 1.0 Τ nyΤ Γ 40, v Γ 18 Transition Region 0 1 2 3 4 1.0 0.5 0.0 0.5 1.0 Τ nyΤ Γ 40, v Γ 9 "Strong" Symmetric Fluctuator 0 1 2 3 4 1.0 0.5 0.0 0.5 1.0 Τ nyΤ a v Γ 14 0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Τ nzΤ b v Γ 14 0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0 Τ nΤ c v Γ 14 0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0 Τ CΤ v Γ 14 Marta Agati Entanglement Dynamics
  • 45. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Contents 1 Quantum Computation Quantum Computing and Quantum Mechanics 2 Superconducting Qubits Charge Qubit 3 Noise in Josephson Qubits Methods 4 Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling 5 Conclusions Marta Agati Entanglement Dynamics
  • 46. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Noise on one qubit r=0.91 Longitudinal Coupling v/γ = 0.5 Weak Coupling v/γ = 5 Strong Coupling Transvers Coupling (Crossover) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.2 0.4 0.6 0.8 Τ CΤ v Γ 2 v Γ 5 v Γ 9 v Γ 14 v Γ 18 R. Lo Franco, A. D’Arrigo, G. Falci, C. Compagno, E. Paladino, Entanglement dynamics in superconducting qubits affected by local bistable impurities, Phys.Scr., 9, (2012) Marta Agati Entanglement Dynamics
  • 47. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Epilogue Two superconducting qubits, each subject indipendently to Random Telegraph Noise. Example: Random Telegraph Noise by charged impurities trapped close to a charge Josephson qubit. Microscopic model of the RTN generation. Application of the Quasi-Hamiltonian method. Evaluation of the two-qubit density matrix. Evaluation of the concurrence Marta Agati Entanglement Dynamics
  • 48. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions Results −→ Crossover between weak coupling and strong coupling. −→ Asymmetric and symmetric fluctuator and comparison. −→ Initial conditions as pure state and Extended Werner Like (EWL) state. −→ Analogous behaviour for the states ρΦ and ρΨ. −→ For an asymmetric fluctuator model in weak coupling conditions the entanglement displays ESD, while in strong coupling conditions the entanglement displays dark peridos and revivals. −→ For a symmetric fluctuator model the entanglement decays both in weak coupling conditions and in strong coupling conditions. The entanglement can also definitively vanish starting with a pure state or an EWL state. Marta Agati Entanglement Dynamics
  • 49. Entanglement Dynamics Marta Agati Quantum Computa- tion Quantum Computing and Quantum Mechanics Superconducting Qubits Charge Qubit Noise in Josephson Qubits Methods Entanglement Dynamics Transvers Coupling, Asymmetric Fluctuator Transvers Coupling, Comparison with Symmetric Fluctuator Comparison with Longitudinal Coupling Conclusions Quantum Computation Superconducting Qubits Noise in Josephson Qubits Entanglement Dynamics Conclusions So... THANK YOU FOR THE KIND ATTENTION Marta Agati Entanglement Dynamics