SlideShare ist ein Scribd-Unternehmen logo
1 von 26

VCLA

(Vector Calculus & Linear
Algebra )
Linear
Transformation
Guided by:-
Gayatri Mam
1/78
Sr no NAME ENROLL.NO.
1). Mansi Acharya 150450116001
2). Drashti Patel 150450116024
3). Jyoti Mishra 150450116018
MADE BY:-
CONTENTS
 Introduction to Linear Transformations
 The Kernel and Range of a Linear Transformation
 Matrices for Linear Transformations
 Transition Matrices and Similarity
Introduction to Linear Transformations

Function T that maps a vector space V into a vector space W:
spacevector:,,: mapping
WVWVT  →
V: the domain of T
W: the codomain of T

Image of v under T:
If v is in V and w is in W such that
wv =)(T
Then w is called the image of v under T .

the range of T:
The set of all images of vectors in V.

the preimage of w:
The set of all v in V such that T(v)=w.

Ex 1: (A function from R2
into R2
)
22
: RRT →
)2,(),( 212121 vvvvvvT +−=
2
21 ),( Rvv ∈=v
(a) Find the image of v=(-1,2). (b) Find the preimage of w=(-1,11)
Sol:
)3,3())2(21,21()2,1()(
)2,1()(
−=+−−−=−=⇒
−=
TT
a
v
v
)11,1()()( −== wvTb
)11,1()2,(),( 212121 −=+−= vvvvvvT
112
1
21
21
=+
−=−⇒
vv
vv
4,3 21 ==⇒ vv Thus {(3, 4)} is the preimage of w=(-1,
11).

Linear Transformation (L.T.):
nnsformatiolinear trato::
spacevector:,
WVWVT
WV
→
VTTT ∈∀+=+ vuvuvu ,),()()((1)
RccTcT ∈∀= ),()()2( uu

Notes:
(1) A linear transformation is said to be operation preserving.
)()()( vuvu TTT +=+
Addition
in V
Addition
in W
)()( uu cTcT =
Scalar
multiplication
in V
Scalar
multiplication
in W
(2) A linear transformation from a vector space into itself
is called a linear operator.
VVT →:
),(),(
tionmultiplicaScalar)2(
2121 cucuuucc ==u
)(
)2,(
)2,(),()(
2121
212121
u
u
cT
uuuuc
cucucucucucuTcT
=
+−=
+−==
Therefore, T is a linear transformation.

Notes: Two uses of the term “linear”.
(1) is called a linear function because its graph is a
line.
1)( += xxf
(2) is not a linear transformation from a vector
space R into R because it preserves neither vector
addition nor scalar multiplication.
1)( += xxf

Zero transformation:
VWVT ∈→ vu,,:
VT ∈∀= vv ,0)(

Identity transformation:
VVT →: VT ∈∀= vvv ,)(

Thm : (Properties of linear transformations)
WVT →:
00 =)((1)T
)()((2) vv TT −=−
)()()((3) vuvu TTT −=−
)()()(
)()(Then
If(4)
2211
2211
2211
nn
nn
nn
vTcvTcvTc
vcvcvcTT
vcvcvc
+++=
+++=
+++=



v
v

Thm : (The linear transformation given by a matrix)
Let A be an m×n matrix. The function T defined by
vv AT =)(
is a linear transformation from Rn
into Rm
.

Note:












+++
+++
+++
=
























=
nmnmm
nn
nn
nmnmm
n
n
vavava
vavava
vavava
v
v
v
aaa
aaa
aaa
A









2211
2222121
1212111
2
1
21
22221
11211
v
vv AT =)(
mn
RRT →:
vectorn
R vectorm
R
The Kernel and Range of a Linear Transformation

Kernel of a linear transformation T:
Let be a linear transformationWVT →:
Then the set of all vectors v in V that satisfy is
called the kernel of T and is denoted by ker(T).
0)( =vT
},0)(|{)ker( VTT ∈∀== vvv

Ex 1: (Finding the kernel of a linear transformation)
):()( 3223 ×× →= MMTAAT T
Sol:




















=
00
00
00
)ker(T

Thm : (The kernel is a subspace of V)
The kernel of a linear transformation is a subspace of
the domain V.
WVT →:
Pf:
VT ofsubsetnonemptyais)ker(∴
then.ofkernelin thevectorsbeandLet Tvu
000)()()( =+=+=+ vuvu TTT
00)()( === ccTcT uu )ker(Tc ∈⇒ u
)ker(T∈+⇒ vu
.ofsubspaceais)ker(Thus, VT

Note:
The kernel of T is sometimes called the nullspace of T.
Theorem(0)0( =T

Rank of a linear transformation T:V→W:
TTrank ofrangetheofdimensionthe)( =

Nullity of a linear transformation T:V→W:
TTnullity ofkerneltheofdimensionthe)( =

Note:
)()(
)()(
then,)(bygivenL.T.thebe:Let
AnullityTnullity
ArankTrank
ATRRT mn
=
=
=→ xx
then.spacevectorainto
spacevectorldimensiona-nanformL.T.abe:Let
W
VWVT →

Thm : (Sum of rank and nullity)
Pf:
AmatrixnmT anbydrepresenteisLet ×
)ofdomaindim()ofkerneldim()ofrangedim(
)()(
TTT
nTnullityTrank
=+
=+
rArank =)(Assume
rArank
ATTrank
==
==
)(
)ofspacecolumndim()ofrangedim()((1)
nrnrTnullityTrank =−+=+⇒ )()()(
rn
ATTnullity
−=
== )ofspacesolutiondim()ofkerneldim()()2(

Isomorphism:
other.eachtoisomorphicbetosaidare
andthen,tofrommisomorphisanexiststheresuch that
spacesvectorareandifMoreover,m.isomorphisancalledis
ontoandonetooneisthat:nnsformatiolinear traA
WVWV
WV
WVT →

Thm : (Isomorphic spaces and dimension)
Pf:
.dimensionhaswhere,toisomorphicisthatAssume nVWV
onto.andonetooneisthat:L.T.aexistsThere WVT →⇒
one-to-oneisT
nnTKerTT
TKer
=−=−=⇒
=⇒
0))(dim()ofdomaindim()ofrangedim(
0))(dim(
Two finite-dimensional vector space V and W are isomorphic
if and only if they are of the same dimension.
.dimensionhavebothandthatAssume nWV
onto.isT
nWT ==⇒ )dim()ofrangedim(
nWV == )dim()dim(Thus
{ }
{ } .ofbasisabe,,,let
andV,ofbasisabe,,,Let
21
21
Wwww
vvv
n
n


nnvcvcvc
V
+++= 2211
asdrepresentebecaninvectorarbitraryanThen
v
nnwcwcwcT
WVT
+++=
→
2211)(
follows.as:L.T.adefinecanyouand
v
It can be shown that this L.T. is both 1-1 and onto.
Thus V and W are isomorphic.
Matrices for Linear Transformations
)43,23,2(),,()1( 32321321321 xxxxxxxxxxxT +−+−−+=

Three reasons for matrix representation of a linear transformation:
















−−
−
==
3
2
1
430
231
112
)()2(
x
x
x
AT xx

It is simpler to write.

It is simpler to read.

It is more easily adapted for computer use.

Two representations of the linear transformation T:R3
→R3
:

Thm : (Standard matrix for a linear transformation)
such thatonansformatilinear trtabe:Let mn
RRT →
,)(,,)(,)( 2
1
2
22
12
2
1
21
11
1












=












=












=
mn
n
n
n
mm a
a
a
eT
a
a
a
eT
a
a
a
eT



)(tocorrespondcolumnssematrix whoThen the i
eTnnm×
.formatrixstandardthecalledisA
.ineveryfor)(such thatis
T
RAT n
vvv =
[ ]












==
mnmm
n
n
n
aaa
aaa
aaa
eTeTeTA





21
22221
11211
21 )()()(

Ex 1: (Finding the standard matrix of a linear transformation)
bydefine:L.T.for thematrixstandardtheFind 23
RRT →
)2,2(),,( yxyxzyxT +−=
Sol:
)2,1()0,0,1()( 1 == TeT
)1,2()0,1,0()( 2 −== TeT
)0,0()1,0,0()( 3 == TeT
2
1
)
0
0
1
()( 1 



=








= TeT
1
2
)
0
1
0
()( 2 




−
=










= TeT
0
0
)
1
0
0
()( 3 



=








= TeT
Vector Notation Matrix Notation
 Composition of T1:Rn
→Rm
with T2:Rm
→Rp
:
n
RTTT ∈= vvv )),(()( 12
112 ofdomainofdomain, TTTTT == 

Thm: (Composition of linear transformations)
then,andmatricesstandardwith
L.T.be:and:Let
21
21
AA
RRTRRT pmmn
→→
L.T.ais)),(()(bydefined,:ncompositioThe(1) 12 vv TTTRRT pn
=→
12productmatrixby thegivenisformatrixstandardThe)2( AAATA =

Inverse linear transformation:
ineveryfors.t.L.T.are:and:If 21
nnnnn
RRRTRRT v→→
))((and))(( 2112 vvvv == TTTT
invertiblebetosaidisandofinversethecalledisThen 112 TTT

Note:
If the transformation T is invertible, then the inverse is
unique and denoted by T–1
.

the matrix of T relative to the bases B and B':
)forbasis(a},,,{'
)forbasis(a},,,{
)L.T.a(:
21
21
WwwwB
VvvvB
WVT
m
n


=
=
→
Thus, the matrix of T relative to the bases B and B' is
[ ] [ ] [ ][ ] nmBnBB
MvTvTvTA ×∈= ''2'1 )(,,)(,)( 
Transition Matrices and Similarity
)ofbasis(a},,,{'
)ofbasisa(},,,{
)L.T.a(:
21
21
VwwwB
VvvvB
VVT
n
n


=
=
→
[ ] [ ] [ ][ ] )torelativeofmatrix()(,,)(,)( 21 BTvTvTvTA BnBB
=
[ ] [ ] [ ][ ] )'torelativeof(matrix)(,,)(,)(' ''2'1 BTwTwTwTA BnBB
=
[ ] [ ] [ ][ ] )to'frommatrixntransitio(,,, 21 BBwwwP BnBB
=
[ ] [ ] [ ][ ] )'tofrommatrixntransitio(,,, ''2'1
1
BBvvvP BnBB
=−
[ ] [ ] [ ] [ ]BBBB PP vvvv 1
'', −
==∴
[ ] [ ]
[ ] [ ] '' ')(
)(
BB
BB
AT
AT
vv
vv
=
=

Two ways to get from to :
'' )]([]['
)direct)(1(
BB TA vv =
[ ] 'Bv [ ] ')( BT v
''
1
)]([][
(indirect))2(
BB TAPP vv =−
APPA 1
' −
=⇒
direct
indirect

Similar matrix:
For square matrices A and A‘ of order n, A‘ is said to be
similar to A if there exist an invertible matrix P s.t. APPA 1
' −
=

Thm : (Properties of similar matrices)
Let A, B, and C be square matrices of order n.
Then the following properties are true.
(1) A is similar to A.
(2) If A is similar to B, then B is similar to A.
(3) If A is similar to B and B is similar to C, then A is similar to C.
Pf:
nn AIIA =)1(
)(
)()2(
111
1111
−−−
−−−−
==⇒=
=⇒=
PQBAQQBPAP
PBPPPPAPBPPA

Weitere ähnliche Inhalte

Was ist angesagt?

system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matricesAditya Vaishampayan
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace2461998
 
3.2.interpolation lagrange
3.2.interpolation lagrange3.2.interpolation lagrange
3.2.interpolation lagrangeSamuelOseiAsare
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace Manikanta satyala
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & DimensionManikanta satyala
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matricesStudent
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimensionATUL KUMAR YADAV
 
Presentation mathmatic 3
Presentation mathmatic 3Presentation mathmatic 3
Presentation mathmatic 3nashaat algrara
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
 
Differential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabDifferential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabRavi Jindal
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIADheeraj Kataria
 
Stability of Differential Equations
Stability of Differential EquationsStability of Differential Equations
Stability of Differential EquationsAbdullahMdSaifee
 

Was ist angesagt? (20)

system linear equations and matrices
 system linear equations and matrices system linear equations and matrices
system linear equations and matrices
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace
 
3.2.interpolation lagrange
3.2.interpolation lagrange3.2.interpolation lagrange
3.2.interpolation lagrange
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
Vector space
Vector spaceVector space
Vector space
 
Presentation mathmatic 3
Presentation mathmatic 3Presentation mathmatic 3
Presentation mathmatic 3
 
Power series
Power series Power series
Power series
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
 
Differential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabDifferential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlab
 
Unit1 vrs
Unit1 vrsUnit1 vrs
Unit1 vrs
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Stability of Differential Equations
Stability of Differential EquationsStability of Differential Equations
Stability of Differential Equations
 
Determinants
DeterminantsDeterminants
Determinants
 

Andere mochten auch

linear transformation
linear transformationlinear transformation
linear transformation8laddu8
 
Linear Algebra: Application to Chemistry
Linear Algebra: Application to ChemistryLinear Algebra: Application to Chemistry
Linear Algebra: Application to Chemistryrasen58
 
Linear Transformations, Matrix Algebra
Linear Transformations, Matrix AlgebraLinear Transformations, Matrix Algebra
Linear Transformations, Matrix AlgebraPrasanth George
 
Computing Transformations Spring2005
Computing Transformations Spring2005Computing Transformations Spring2005
Computing Transformations Spring2005guest5989655
 
2.3 stem and leaf displays
2.3 stem and leaf displays2.3 stem and leaf displays
2.3 stem and leaf displaysleblance
 
Poisson distribution
Poisson distributionPoisson distribution
Poisson distributionAnindya Jana
 
Binomial Distribution
Binomial DistributionBinomial Distribution
Binomial Distributionarm74
 
Transformation of random variables
Transformation of random variablesTransformation of random variables
Transformation of random variablesTarun Gehlot
 
Using Spss Compute (Another Method)
Using Spss   Compute (Another Method)Using Spss   Compute (Another Method)
Using Spss Compute (Another Method)Dr Ali Yusob Md Zain
 
Poisson distribution assign
Poisson distribution assignPoisson distribution assign
Poisson distribution assignAbdul Kader
 
Using Spss Transforming Variable - Compute
Using Spss Transforming Variable - ComputeUsing Spss Transforming Variable - Compute
Using Spss Transforming Variable - ComputeDr Ali Yusob Md Zain
 
Binomial probability distribution
Binomial probability distributionBinomial probability distribution
Binomial probability distributionMuhammad Yahaya
 
Probability Concepts Applications
Probability Concepts  ApplicationsProbability Concepts  Applications
Probability Concepts Applicationsguest44b78
 
Poisson distribution
Poisson distributionPoisson distribution
Poisson distributionStudent
 
Types of graphs used in medicine
Types of graphs used in medicineTypes of graphs used in medicine
Types of graphs used in medicineSamir Haffar
 
Stem and-leaf-diagram-ppt.-dfs
Stem and-leaf-diagram-ppt.-dfsStem and-leaf-diagram-ppt.-dfs
Stem and-leaf-diagram-ppt.-dfsFarhana Shaheen
 

Andere mochten auch (20)

Linear Transformations
Linear TransformationsLinear Transformations
Linear Transformations
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Linear Algebra: Application to Chemistry
Linear Algebra: Application to ChemistryLinear Algebra: Application to Chemistry
Linear Algebra: Application to Chemistry
 
Linear Transformations, Matrix Algebra
Linear Transformations, Matrix AlgebraLinear Transformations, Matrix Algebra
Linear Transformations, Matrix Algebra
 
Computing Transformations Spring2005
Computing Transformations Spring2005Computing Transformations Spring2005
Computing Transformations Spring2005
 
2.3 stem and leaf displays
2.3 stem and leaf displays2.3 stem and leaf displays
2.3 stem and leaf displays
 
Transformation of variables
Transformation of variablesTransformation of variables
Transformation of variables
 
Poisson lecture
Poisson lecturePoisson lecture
Poisson lecture
 
Poisson distribution
Poisson distributionPoisson distribution
Poisson distribution
 
Binomial Distribution
Binomial DistributionBinomial Distribution
Binomial Distribution
 
Transformation of random variables
Transformation of random variablesTransformation of random variables
Transformation of random variables
 
Using Spss Compute (Another Method)
Using Spss   Compute (Another Method)Using Spss   Compute (Another Method)
Using Spss Compute (Another Method)
 
Poisson distribution assign
Poisson distribution assignPoisson distribution assign
Poisson distribution assign
 
Poission distribution
Poission distributionPoission distribution
Poission distribution
 
Using Spss Transforming Variable - Compute
Using Spss Transforming Variable - ComputeUsing Spss Transforming Variable - Compute
Using Spss Transforming Variable - Compute
 
Binomial probability distribution
Binomial probability distributionBinomial probability distribution
Binomial probability distribution
 
Probability Concepts Applications
Probability Concepts  ApplicationsProbability Concepts  Applications
Probability Concepts Applications
 
Poisson distribution
Poisson distributionPoisson distribution
Poisson distribution
 
Types of graphs used in medicine
Types of graphs used in medicineTypes of graphs used in medicine
Types of graphs used in medicine
 
Stem and-leaf-diagram-ppt.-dfs
Stem and-leaf-diagram-ppt.-dfsStem and-leaf-diagram-ppt.-dfs
Stem and-leaf-diagram-ppt.-dfs
 

Ähnlich wie linear transformation

linear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdflinear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdfBinitAgarwala3
 
Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)DeepRaval7
 
linear tranformation- VC&LA
linear tranformation- VC&LAlinear tranformation- VC&LA
linear tranformation- VC&LAKaushal Patel
 
2.5 Calculus of Vector & Matrix_2022.ppsx
2.5  Calculus of Vector & Matrix_2022.ppsx2.5  Calculus of Vector & Matrix_2022.ppsx
2.5 Calculus of Vector & Matrix_2022.ppsxEvelynEvelyn37
 
Linear transformation vcla (160920107003)
Linear transformation vcla (160920107003)Linear transformation vcla (160920107003)
Linear transformation vcla (160920107003)Prashant odhavani
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformNimithaSoman
 
torsionbinormalnotes
torsionbinormalnotestorsionbinormalnotes
torsionbinormalnotesJeremy Lane
 
MATH 200-004 Multivariate Calculus Winter 2014Chapter 12.docx
MATH 200-004 Multivariate Calculus Winter 2014Chapter 12.docxMATH 200-004 Multivariate Calculus Winter 2014Chapter 12.docx
MATH 200-004 Multivariate Calculus Winter 2014Chapter 12.docxandreecapon
 
Digital signal processing on arm new
Digital signal processing on arm newDigital signal processing on arm new
Digital signal processing on arm newIsrael Gbati
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem Manthan Chavda
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...Waqas Afzal
 
On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectCemal Ardil
 
Linear Transformations_part1.pdf
Linear Transformations_part1.pdfLinear Transformations_part1.pdf
Linear Transformations_part1.pdfHirunManujaya
 

Ähnlich wie linear transformation (20)

linear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdflinear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdf
 
nabil-201-chap-06.ppt
nabil-201-chap-06.pptnabil-201-chap-06.ppt
nabil-201-chap-06.ppt
 
Vcla 1
Vcla 1Vcla 1
Vcla 1
 
Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)Linear transforamtion and it,s applications.(VCLA)
Linear transforamtion and it,s applications.(VCLA)
 
linear tranformation- VC&LA
linear tranformation- VC&LAlinear tranformation- VC&LA
linear tranformation- VC&LA
 
2.5 Calculus of Vector & Matrix_2022.ppsx
2.5  Calculus of Vector & Matrix_2022.ppsx2.5  Calculus of Vector & Matrix_2022.ppsx
2.5 Calculus of Vector & Matrix_2022.ppsx
 
Signal Processing Assignment Help
Signal Processing Assignment HelpSignal Processing Assignment Help
Signal Processing Assignment Help
 
Linear transformation vcla (160920107003)
Linear transformation vcla (160920107003)Linear transformation vcla (160920107003)
Linear transformation vcla (160920107003)
 
ch3-2
ch3-2ch3-2
ch3-2
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
Signals and System Assignment Help
Signals and System Assignment HelpSignals and System Assignment Help
Signals and System Assignment Help
 
torsionbinormalnotes
torsionbinormalnotestorsionbinormalnotes
torsionbinormalnotes
 
MATH 200-004 Multivariate Calculus Winter 2014Chapter 12.docx
MATH 200-004 Multivariate Calculus Winter 2014Chapter 12.docxMATH 200-004 Multivariate Calculus Winter 2014Chapter 12.docx
MATH 200-004 Multivariate Calculus Winter 2014Chapter 12.docx
 
Vectors and Kinematics
Vectors and KinematicsVectors and Kinematics
Vectors and Kinematics
 
Digital signal processing on arm new
Digital signal processing on arm newDigital signal processing on arm new
Digital signal processing on arm new
 
Ch4
Ch4Ch4
Ch4
 
linear transformation and rank nullity theorem
linear transformation and rank nullity theorem linear transformation and rank nullity theorem
linear transformation and rank nullity theorem
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...
 
On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-object
 
Linear Transformations_part1.pdf
Linear Transformations_part1.pdfLinear Transformations_part1.pdf
Linear Transformations_part1.pdf
 

Mehr von mansi acharya

transistor transistor logic
transistor transistor logictransistor transistor logic
transistor transistor logicmansi acharya
 
Microcomputer controlled bradeamaking machine
Microcomputer controlled bradeamaking machineMicrocomputer controlled bradeamaking machine
Microcomputer controlled bradeamaking machinemansi acharya
 
Introduction to engineering graphics
Introduction to engineering graphics Introduction to engineering graphics
Introduction to engineering graphics mansi acharya
 

Mehr von mansi acharya (7)

types of error
types of errortypes of error
types of error
 
transistor transistor logic
transistor transistor logictransistor transistor logic
transistor transistor logic
 
Microcomputer controlled bradeamaking machine
Microcomputer controlled bradeamaking machineMicrocomputer controlled bradeamaking machine
Microcomputer controlled bradeamaking machine
 
Basic electronics
Basic electronicsBasic electronics
Basic electronics
 
Go down wiring
Go down wiringGo down wiring
Go down wiring
 
Introduction to engineering graphics
Introduction to engineering graphics Introduction to engineering graphics
Introduction to engineering graphics
 
Group discussion
Group discussionGroup discussion
Group discussion
 

Kürzlich hochgeladen

Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 

Kürzlich hochgeladen (20)

Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 

linear transformation

  • 1.  VCLA  (Vector Calculus & Linear Algebra ) Linear Transformation Guided by:- Gayatri Mam 1/78 Sr no NAME ENROLL.NO. 1). Mansi Acharya 150450116001 2). Drashti Patel 150450116024 3). Jyoti Mishra 150450116018 MADE BY:-
  • 2. CONTENTS  Introduction to Linear Transformations  The Kernel and Range of a Linear Transformation  Matrices for Linear Transformations  Transition Matrices and Similarity
  • 3. Introduction to Linear Transformations  Function T that maps a vector space V into a vector space W: spacevector:,,: mapping WVWVT  → V: the domain of T W: the codomain of T
  • 4.  Image of v under T: If v is in V and w is in W such that wv =)(T Then w is called the image of v under T .  the range of T: The set of all images of vectors in V.  the preimage of w: The set of all v in V such that T(v)=w.
  • 5.  Ex 1: (A function from R2 into R2 ) 22 : RRT → )2,(),( 212121 vvvvvvT +−= 2 21 ),( Rvv ∈=v (a) Find the image of v=(-1,2). (b) Find the preimage of w=(-1,11) Sol: )3,3())2(21,21()2,1()( )2,1()( −=+−−−=−=⇒ −= TT a v v )11,1()()( −== wvTb )11,1()2,(),( 212121 −=+−= vvvvvvT 112 1 21 21 =+ −=−⇒ vv vv 4,3 21 ==⇒ vv Thus {(3, 4)} is the preimage of w=(-1, 11).
  • 6.  Linear Transformation (L.T.): nnsformatiolinear trato:: spacevector:, WVWVT WV → VTTT ∈∀+=+ vuvuvu ,),()()((1) RccTcT ∈∀= ),()()2( uu
  • 7.  Notes: (1) A linear transformation is said to be operation preserving. )()()( vuvu TTT +=+ Addition in V Addition in W )()( uu cTcT = Scalar multiplication in V Scalar multiplication in W (2) A linear transformation from a vector space into itself is called a linear operator. VVT →:
  • 9.  Notes: Two uses of the term “linear”. (1) is called a linear function because its graph is a line. 1)( += xxf (2) is not a linear transformation from a vector space R into R because it preserves neither vector addition nor scalar multiplication. 1)( += xxf
  • 10.  Zero transformation: VWVT ∈→ vu,,: VT ∈∀= vv ,0)(  Identity transformation: VVT →: VT ∈∀= vvv ,)(  Thm : (Properties of linear transformations) WVT →: 00 =)((1)T )()((2) vv TT −=− )()()((3) vuvu TTT −=− )()()( )()(Then If(4) 2211 2211 2211 nn nn nn vTcvTcvTc vcvcvcTT vcvcvc +++= +++= +++=    v v
  • 11.  Thm : (The linear transformation given by a matrix) Let A be an m×n matrix. The function T defined by vv AT =)( is a linear transformation from Rn into Rm .  Note:             +++ +++ +++ =                         = nmnmm nn nn nmnmm n n vavava vavava vavava v v v aaa aaa aaa A          2211 2222121 1212111 2 1 21 22221 11211 v vv AT =)( mn RRT →: vectorn R vectorm R
  • 12. The Kernel and Range of a Linear Transformation  Kernel of a linear transformation T: Let be a linear transformationWVT →: Then the set of all vectors v in V that satisfy is called the kernel of T and is denoted by ker(T). 0)( =vT },0)(|{)ker( VTT ∈∀== vvv  Ex 1: (Finding the kernel of a linear transformation) ):()( 3223 ×× →= MMTAAT T Sol:                     = 00 00 00 )ker(T
  • 13.  Thm : (The kernel is a subspace of V) The kernel of a linear transformation is a subspace of the domain V. WVT →: Pf: VT ofsubsetnonemptyais)ker(∴ then.ofkernelin thevectorsbeandLet Tvu 000)()()( =+=+=+ vuvu TTT 00)()( === ccTcT uu )ker(Tc ∈⇒ u )ker(T∈+⇒ vu .ofsubspaceais)ker(Thus, VT  Note: The kernel of T is sometimes called the nullspace of T. Theorem(0)0( =T
  • 14.  Rank of a linear transformation T:V→W: TTrank ofrangetheofdimensionthe)( =  Nullity of a linear transformation T:V→W: TTnullity ofkerneltheofdimensionthe)( =  Note: )()( )()( then,)(bygivenL.T.thebe:Let AnullityTnullity ArankTrank ATRRT mn = = =→ xx
  • 15. then.spacevectorainto spacevectorldimensiona-nanformL.T.abe:Let W VWVT →  Thm : (Sum of rank and nullity) Pf: AmatrixnmT anbydrepresenteisLet × )ofdomaindim()ofkerneldim()ofrangedim( )()( TTT nTnullityTrank =+ =+ rArank =)(Assume rArank ATTrank == == )( )ofspacecolumndim()ofrangedim()((1) nrnrTnullityTrank =−+=+⇒ )()()( rn ATTnullity −= == )ofspacesolutiondim()ofkerneldim()()2(
  • 16.  Isomorphism: other.eachtoisomorphicbetosaidare andthen,tofrommisomorphisanexiststheresuch that spacesvectorareandifMoreover,m.isomorphisancalledis ontoandonetooneisthat:nnsformatiolinear traA WVWV WV WVT →  Thm : (Isomorphic spaces and dimension) Pf: .dimensionhaswhere,toisomorphicisthatAssume nVWV onto.andonetooneisthat:L.T.aexistsThere WVT →⇒ one-to-oneisT nnTKerTT TKer =−=−=⇒ =⇒ 0))(dim()ofdomaindim()ofrangedim( 0))(dim( Two finite-dimensional vector space V and W are isomorphic if and only if they are of the same dimension.
  • 17. .dimensionhavebothandthatAssume nWV onto.isT nWT ==⇒ )dim()ofrangedim( nWV == )dim()dim(Thus { } { } .ofbasisabe,,,let andV,ofbasisabe,,,Let 21 21 Wwww vvv n n   nnvcvcvc V +++= 2211 asdrepresentebecaninvectorarbitraryanThen v nnwcwcwcT WVT +++= → 2211)( follows.as:L.T.adefinecanyouand v It can be shown that this L.T. is both 1-1 and onto. Thus V and W are isomorphic.
  • 18. Matrices for Linear Transformations )43,23,2(),,()1( 32321321321 xxxxxxxxxxxT +−+−−+=  Three reasons for matrix representation of a linear transformation:                 −− − == 3 2 1 430 231 112 )()2( x x x AT xx  It is simpler to write.  It is simpler to read.  It is more easily adapted for computer use.  Two representations of the linear transformation T:R3 →R3 :
  • 19.  Thm : (Standard matrix for a linear transformation) such thatonansformatilinear trtabe:Let mn RRT → ,)(,,)(,)( 2 1 2 22 12 2 1 21 11 1             =             =             = mn n n n mm a a a eT a a a eT a a a eT    )(tocorrespondcolumnssematrix whoThen the i eTnnm× .formatrixstandardthecalledisA .ineveryfor)(such thatis T RAT n vvv = [ ]             == mnmm n n n aaa aaa aaa eTeTeTA      21 22221 11211 21 )()()(
  • 20.  Ex 1: (Finding the standard matrix of a linear transformation) bydefine:L.T.for thematrixstandardtheFind 23 RRT → )2,2(),,( yxyxzyxT +−= Sol: )2,1()0,0,1()( 1 == TeT )1,2()0,1,0()( 2 −== TeT )0,0()1,0,0()( 3 == TeT 2 1 ) 0 0 1 ()( 1     =         = TeT 1 2 ) 0 1 0 ()( 2      − =           = TeT 0 0 ) 1 0 0 ()( 3     =         = TeT Vector Notation Matrix Notation
  • 21.  Composition of T1:Rn →Rm with T2:Rm →Rp : n RTTT ∈= vvv )),(()( 12 112 ofdomainofdomain, TTTTT ==   Thm: (Composition of linear transformations) then,andmatricesstandardwith L.T.be:and:Let 21 21 AA RRTRRT pmmn →→ L.T.ais)),(()(bydefined,:ncompositioThe(1) 12 vv TTTRRT pn =→ 12productmatrixby thegivenisformatrixstandardThe)2( AAATA =
  • 22.  Inverse linear transformation: ineveryfors.t.L.T.are:and:If 21 nnnnn RRRTRRT v→→ ))((and))(( 2112 vvvv == TTTT invertiblebetosaidisandofinversethecalledisThen 112 TTT  Note: If the transformation T is invertible, then the inverse is unique and denoted by T–1 .
  • 23.  the matrix of T relative to the bases B and B': )forbasis(a},,,{' )forbasis(a},,,{ )L.T.a(: 21 21 WwwwB VvvvB WVT m n   = = → Thus, the matrix of T relative to the bases B and B' is [ ] [ ] [ ][ ] nmBnBB MvTvTvTA ×∈= ''2'1 )(,,)(,)( 
  • 24. Transition Matrices and Similarity )ofbasis(a},,,{' )ofbasisa(},,,{ )L.T.a(: 21 21 VwwwB VvvvB VVT n n   = = → [ ] [ ] [ ][ ] )torelativeofmatrix()(,,)(,)( 21 BTvTvTvTA BnBB = [ ] [ ] [ ][ ] )'torelativeof(matrix)(,,)(,)(' ''2'1 BTwTwTwTA BnBB = [ ] [ ] [ ][ ] )to'frommatrixntransitio(,,, 21 BBwwwP BnBB = [ ] [ ] [ ][ ] )'tofrommatrixntransitio(,,, ''2'1 1 BBvvvP BnBB =− [ ] [ ] [ ] [ ]BBBB PP vvvv 1 '', − ==∴ [ ] [ ] [ ] [ ] '' ')( )( BB BB AT AT vv vv = =
  • 25.  Two ways to get from to : '' )]([][' )direct)(1( BB TA vv = [ ] 'Bv [ ] ')( BT v '' 1 )]([][ (indirect))2( BB TAPP vv =− APPA 1 ' − =⇒ direct indirect
  • 26.  Similar matrix: For square matrices A and A‘ of order n, A‘ is said to be similar to A if there exist an invertible matrix P s.t. APPA 1 ' − =  Thm : (Properties of similar matrices) Let A, B, and C be square matrices of order n. Then the following properties are true. (1) A is similar to A. (2) If A is similar to B, then B is similar to A. (3) If A is similar to B and B is similar to C, then A is similar to C. Pf: nn AIIA =)1( )( )()2( 111 1111 −−− −−−− ==⇒= =⇒= PQBAQQBPAP PBPPPPAPBPPA