Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

EVIEWS_1418112021.pdf

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige

Hier ansehen

1 von 80 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie EVIEWS_1418112021.pdf (20)

Weitere von Mamdouh Mohamed (20)

Anzeige

Aktuellste (20)

EVIEWS_1418112021.pdf

  1. 1. Modeling and forecasting on EVIEWS TRAINING PROVIDED BY NASREDDINE DRIDI 2021 STATISTICAL ENGINEER DIRECTOR OF MACROECONOMIC FORECASTS
  2. 2. Main forecasting steps I. Preparing and processing the required data II. Elaboration of linear equations (sectoral value added, production, intermediate consumption) and exploiting them for forecasting III. Estimate the pool data equations (IPI idustrual sectoriel production indicator) IV. Estimate the equations system V. Time Series: Univariate Modeling (CPI) and Forecasting VI. Targeting ECModels for long-term and short-term prediction NASREDDINE DRIDI : TRAINING 2021 2
  3. 3. I. Preparing and processing the required data Date Variable1 Variable2 D1 V11 V21 D2 V12 V22 D3 V13 V31 D4 V14 V41 Date Individu Variable1 Variable2 D1 1 V111 V211 D2 1 V112 V212 D3 1 V113 V311 D1 2 V121 V221 D2 2 V122 V222 D3 2 V123 V223 D1 3 V131 V231 D2 3 V132 V232 D3 3 V133 V233 Data for estimate Pool Data Data for estimate Time series NASREDDINE DRIDI : TRAINING 2021 3
  4. 4. I. Preparing and processing the required data NASREDDINE DRIDI : TRAINING 2021 4
  5. 5. I. Preparing and processing the required data NASREDDINE DRIDI : TRAINING 2021 5
  6. 6. I. Preparing and processing the required data  For Annual Data : 1983 : 2021  For semestriel Data : 1983S1 : 2021S2  For trimestriel Data : 1983T1 : 2021T2  For mensuel Data : start date 1983:1 End date 2021:12  For weekly Data : nombre of month : nombre of day : year exp: 08:10:1983 NASREDDINE DRIDI : TRAINING 2021 6
  7. 7. I. Preparing and processing the required data  Exemple NASREDDINE DRIDI : TRAINING 2021 7
  8. 8. I. Preparing and processing the required data  Import Data : Proc/Import/Read text-lotus-Excel NASREDDINE DRIDI : TRAINING 2021 8
  9. 9. I. Preparing and processing the required data  Import Data : Proc/Import/Read text-lotus-Excel NASREDDINE DRIDI : TRAINING 2021 9
  10. 10. I. Preparing and processing the required data  Convert data from annual to quarterly : TMM Money market rate NASREDDINE DRIDI : TRAINING 2021 10
  11. 11. I. Preparing and processing the required data  Convert data from annual to quarterly NASREDDINE DRIDI : TRAINING 2021 11
  12. 12. I. Preparing and processing the required data  Convert data from ammual to quarterly NASREDDINE DRIDI : TRAINING 2021 12
  13. 13. I. Preparing and processing the required data  Convert data from ammual to quarterly NASREDDINE DRIDI : TRAINING 2021 13 ‫البيانات‬ ‫تحويل‬ ‫إلى‬ ‫السنوية‬ ‫أي‬ ‫ربعية‬ ‫من‬ ‫تحويل‬ ‫األقل‬ ‫التكرار‬ ‫التكرار‬ ‫إلى‬ ‫األعلى‬
  14. 14. I. Preparing and processing the required data  Convert data from ammual to quarterly NASREDDINE DRIDI : TRAINING 2021 14
  15. 15. I. Preparing and processing the required data  Generate a new variable NASREDDINE DRIDI : TRAINING 2021 15
  16. 16. II. Estmation of linear equations  Estimate Equation: Quick/Estimate Equation NASREDDINE DRIDI : TRAINING 2021 16
  17. 17. II. Estmation of linear equations : Multiple regression  Estimate Equation: Resids NASREDDINE DRIDI : TRAINING 2021 17
  18. 18. II. Estmation of linear equations : Multiple regression  Residual Test: Pas d’autocorrelation des résidus NASREDDINE DRIDI : TRAINING 2021 18
  19. 19. II. Estmation of linear equations : Multiple regression  white Test: Pas d’autocorrelation des résidus P-value>5% we accepte the homoscedasticity hypothesis H0 NASREDDINE DRIDI : TRAINING 2021 19
  20. 20. II. Estmation of linear equations : Multiple regression  Breush-Godfrey Test: Pas d’autocorrelation des résidus P-value>5% we don’t reject the no correlation hypothesis H0 NASREDDINE DRIDI : TRAINING 2021 20
  21. 21. II. Estmation of linear equations : Multiple regression  Test of Multicollinearity : NASREDDINE DRIDI : TRAINING 2021 21
  22. 22. II. Estmation of linear equations : Multiple regression  Test of Multicollinearity : NASREDDINE DRIDI : TRAINING 2021 22
  23. 23. II. Estmation of linear equations : Multiple regression  Test of Multicollinearity : No multicolinearity ‫منخفض‬ ‫المتعدد‬ ‫الخطي‬ ‫التداخل‬ NASREDDINE DRIDI : TRAINING 2021 23
  24. 24. II. Estmation of linear equations : Multiple regression  Reset test of Ramsey: H0 :the model is well specified vs H1 : the model is incorrectly specified P-value>5% we don’t reject the H0 hypothesis NASREDDINE DRIDI : TRAINING 2021 24
  25. 25. II. Estmation of linear equations : Multiple regression  Stability test of Chow: H0 :the model is stable vs H1 : the model is not stable P-value<5% 2001 is a brekpoint NASREDDINE DRIDI : TRAINING 2021 25
  26. 26. II. Estmation of linear equations : Multiple regression  Forecast quality: NASREDDINE DRIDI : TRAINING 2021 26
  27. 27. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Create a pool data project NASREDDINE DRIDI : TRAINING 2021 27
  28. 28. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Create a pool data project we must introduce the individual codes NASREDDINE DRIDI : TRAINING 2021 28
  29. 29. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Create a pool data project NASREDDINE DRIDI : TRAINING 2021 29
  30. 30. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Import pool data NASREDDINE DRIDI : TRAINING 2021 30
  31. 31. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Import pool data NASREDDINE DRIDI : TRAINING 2021 31
  32. 32. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Import pool data NASREDDINE DRIDI : TRAINING 2021 32
  33. 33. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Data representation NASREDDINE DRIDI : TRAINING 2021 33
  34. 34. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Unit Root Test NASREDDINE DRIDI : TRAINING 2021 34
  35. 35. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Descriptive Statistics NASREDDINE DRIDI : TRAINING 2021 35
  36. 36. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  𝑦𝑖𝑡 = ∁ + 𝛼𝑖 + 𝛽𝑖𝑡𝑋𝑖𝑡 + 𝜀𝑖𝑡 cte Indivual effect Vector of estimators Vector of variables residue  Random individual effect: 𝑦𝑖𝑡 = ∁ + 𝛽𝑖𝑡𝑋𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡 𝑈𝑖𝑡 = 𝛼𝑖 + 𝜀𝑖𝑡  Fixe individual effect: 𝑦𝑖𝑡 = ∁ + 𝛼𝑖 + 𝛽𝑖𝑡𝑋𝑖𝑡 + 𝜀𝑖𝑡 NASREDDINE DRIDI : TRAINING 2021 36
  37. 37. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Pool Estimation Estimation Pool Random Individual effect NASREDDINE DRIDI : TRAINING 2021 37
  38. 38. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Pool Estimation : Random Individual Effect NASREDDINE DRIDI : TRAINING 2021 38
  39. 39. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Pool Estimation : Fixed Individual Effect NASREDDINE DRIDI : TRAINING 2021 39
  40. 40. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Hausman Test: Random Individual Effect NASREDDINE DRIDI : TRAINING 2021 40 We accept H0: Random individuel effect
  41. 41. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Random Individual Effect NASREDDINE DRIDI : TRAINING 2021 41
  42. 42. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Make system : Fixed Individual Effect NASREDDINE DRIDI : TRAINING 2021 42
  43. 43. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  Pool Estimation : Fixe Individual Effect NASREDDINE DRIDI : TRAINING 2021 43
  44. 44. III. Estimate the pool data equations (IPI idustrual sectoriel production indicator)  IPI forecasting NASREDDINE DRIDI : TRAINING 2021 44
  45. 45. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  View/Correlogram Existance of Unit root NASREDDINE DRIDI : TRAINING 2021 45
  46. 46. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  View/Correlogram NASREDDINE DRIDI : TRAINING 2021 46
  47. 47. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  View/Correlogram Unit Root NASREDDINE DRIDI : TRAINING 2021 47
  48. 48. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  View/Correlogram NASREDDINE DRIDI : TRAINING 2021 48
  49. 49. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  Process is identified from the functions of autocorrelation and partial autocorrelation  AR(p) process : the partial autocorrélation of ordre p+1 is null  MA(q) process : The partial autocorrélation of ordre q+1 is null  The possible process are AR(1), MA(1), ARMA(1,1) NASREDDINE DRIDI : TRAINING 2021 49
  50. 50. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  Estimation of ARMA(1,1) process the component is not significant NASREDDINE DRIDI : TRAINING 2021 50
  51. 51. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  Estimation of AR(1) process NASREDDINE DRIDI : TRAINING 2021 51
  52. 52. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  Make Risidual Test : unit Root Test NASREDDINE DRIDI : TRAINING 2021 52
  53. 53. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  Make Risidual Test : unit Root Test NASREDDINE DRIDI : TRAINING 2021 53 We rejet H0 hypothesis: Resid are stationnary
  54. 54. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  Forecast : Box-jenkins NASREDDINE DRIDI : TRAINING 2021 54
  55. 55. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  Forecast NASREDDINE DRIDI : TRAINING 2021 55
  56. 56. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  Forecast : Non parametric method :Lissage expononciel Double: Holt –winters non saisonnière NASREDDINE DRIDI : TRAINING 2021 56
  57. 57. IV. Time Series: Univariate Modeling (CPI) and Forecasting  Exemple : Consumption price Index (CPI)  Forecast : Non parametric method :Lissage expononciel Double: Holt –winters non saisonnière IPC 2020 ECModel 6,5 Box-Jenkis 4,48 Holt-winters 6,68 NASREDDINE DRIDI : TRAINING 2021 57
  58. 58. V. Time series: multivariate study  Causality Test : CPI-M3-NEER NASREDDINE DRIDI : TRAINING 2021 58
  59. 59. V. Time series: multivariate study  Causality Test : View/Granger Causality NASREDDINE DRIDI : TRAINING 2021 59 We accept the hypothesis of causality from M3 to IPC
  60. 60. V. Time series: multivariate study  Model VAR: Objects/New Objecs/VAR NASREDDINE DRIDI : TRAINING 2021 60
  61. 61. V. Time series: multivariate study  Vector Autoregression Estimate NASREDDINE DRIDI : TRAINING 2021 61
  62. 62. V. Time series: multivariate study  View/Lag Structure/Block Exogeneity Tests NASREDDINE DRIDI : TRAINING 2021 62 NEER Exogenous variable
  63. 63. V. Time series: multivariate study  Model VAR: VAR Specification NASREDDINE DRIDI : TRAINING 2021 63
  64. 64. VI. Targeting ECModels for long-term and short-term prediction  Data Base NASREDDINE DRIDI : TRAINING 2021 64
  65. 65. VI. Targeting ECModels for long-term and short-term prediction  Modeling 3 equations with ECModels : 1.producer price index 2.PCI 3.private consumption NASREDDINE DRIDI : TRAINING 2021 65
  66. 66. VI. Targeting ECModels for long-term and short-term prediction  Cointegration Test : Test de johanson NASREDDINE DRIDI : TRAINING 2021 66
  67. 67. VI. Targeting ECModels for long-term and short-term prediction  Cointegration Test : Test de johanson Existence of at least two cointegration relations NASREDDINE DRIDI : TRAINING 2021 67
  68. 68. VI. Targeting ECModels for long-term and short-term prediction  Cointegration Test : Estimation of VECM(1) Model NASREDDINE DRIDI : TRAINING 2021 68 𝐷 𝑌𝑡 = 𝐷 𝑋𝑡 + σ(𝑌𝑡−1 − 𝑋𝑡−1) 𝜎 < 0 𝐷 𝑌𝑡 = 𝐷 𝑋𝑡 + σ𝜀𝑡−1
  69. 69. VI. Targeting ECModels for long-term and short-term prediction  Cointegration Test : Estimation of VECM(1) Model NASREDDINE DRIDI : TRAINING 2021 69 the long- term relation the Short-term relation the return to long-term equilibrium takes 14 month
  70. 70. VI. Targeting ECModels for long-term and short-term prediction  Cointegration Test : Test of Ljung-Box NASREDDINE DRIDI : TRAINING 2021 70
  71. 71. VI. Targeting ECModels for long-term and short-term prediction  Cointegration Test : Test of Ljung-Box NASREDDINE DRIDI : TRAINING 2021 71
  72. 72. VI. Targeting ECModels for long-term and short-term prediction  Estimate ECModel : Cointegration Price Idex equation Force de rappelle NASREDDINE DRIDI : TRAINING 2021 72
  73. 73. VI. Targeting ECModels for long-term and short-term prediction  Estimate ECModel : Cointegration real wage equation Force de rappelle NASREDDINE DRIDI : TRAINING 2021 73
  74. 74. VI. Targeting ECModels for long-term and short-term prediction  simultaneous equation system NASREDDINE DRIDI : TRAINING 2021 74
  75. 75. VI. Targeting ECModels for long-term and short-term prediction  simultaneous equation system NASREDDINE DRIDI : TRAINING 2021 75
  76. 76. VI. Targeting ECModels for long-term and short-term prediction  simultaneous equation system : exp Production Function CES NASREDDINE DRIDI : TRAINING 2021 76 Bloc à estimer pour chaque secteur. Stock de capital du secteur i: ki t = yi t ― s (cki t ― pyi t) + (s―1) gki.t + k0 Emploi total dans le secteur i: li t = yi t + s (wi t ― pyi t) + (s ― 1)gli.t + l0 Prix de la valeur ajoutée du secteur i: pyi t = π0 (cki t ― gki.t) + (1― π0) (wi t ― gli.t) + py0
  77. 77. VI. Targeting ECModels for long-term and short-term prediction  simultaneous equation system : The estimators NASREDDINE DRIDI : TRAINING 2021 77
  78. 78. VI. Targeting ECModels for long-term and short-term prediction  simultaneous equation system : All variables of Model NASREDDINE DRIDI : TRAINING 2021 78 Inflation Forecast
  79. 79. VI. Targeting ECModels for long-term and short-term prediction  choice of hypothesis NASREDDINE DRIDI : TRAINING 2021 79
  80. 80. Thanks For Attention nasreddine.dridi@yahoo.fr NASREDDINE DRIDI : TRAINING 2021 80

×