SlideShare ist ein Scribd-Unternehmen logo
1 von 41
ESR Cardiff
                             April 2009

Extreme Rheology; beyond normal boundary conditions

                                    by
                            Malcolm Mackley,
                          With acknowledgement to
 Damien Vadillo, Tri Tuladhar* Dietmar Auhl **, Lino Scelci and Tim Lord

      Department of Chemical Engineering and Biotechnology, Cambridge
                                 *Xaar plc
                          ** University of Leeds

                             mrm5@cam.ac.uk



                                                       1
Areas of extremes!
• Linear Viscoelasticity
    Low viscosity, weakly viscoelastic fluids
    example; ink jet fluids.
• Non Linear viscoelasticity
     a) Low viscosity, weakly viscoelastic fluids
       example; ink jet fluids
     b) High viscosity, limiting large strain, extensional viscosities
       example; polymer melts



                                                         2
WLF; The frequency domain escape route




http://web.mst.edu/~wlf/Mechanical/timetemp.html

                                        3
Xaar DOD Printhead
Platform III : Side shooter
Multipulse grey scale printhead (1001 series)




                                            4
DOD drop formation




    1% PS70
    Eff: 1.08




  30 micron drops, ms timescale
  Photo, courtesy of Dr Steve Routh




                                      5
The Cambridge MultiPass Rheometer (MPR)




Pressure variation   Rheology flow   Cross-slot       Filament stretch
mode                 mode            flow mode        mode

                                                  6
The Cambridge Multipass Rheometer (MPR4)


                    Top
                    section


                   Test
                   section


                   Bottom
                   section




                              7
MPR as capillary rheometer
Diethyl phthalate (DEP)                                      Supplier: Sigma Aldrich
                                                             BP = 294-296°C; ρ = 1118 kg/m3 ;
                                                             σ 20°C = 36 mN/m; η25°C = 10 mPa.s
Polystyrene:                                                 Supplier: BASF – Polystyrol VPT granule
                                                             M.W ~ 195000


                                           100
                                                                     ARES data          MPR data
                                           90
           Apparent viscosity, η (mPa.s)




                                           80
                                           70         DEP
                                                      DEP + 1.0 wt% PS
                                           60
                                                      DEP + 2.5 wt% Ps
                                           50         DEP + 5.0 wt% PS

                                           40
                                           30
                                           20
                                           10
                                            0
                                                 1      10         100        1000          10000   100000   1000000
                                                                          Shear rate (/s)

                                                                                                         8
Measurement of Linear Viscoelasticity (LVE)
                         Piezo Axial Vibrator (PAV)
                     Developed by Prof Wolfgang Pechold
                         University of Ulm. Germany

                           Upper lid
Sample

Gap (steel ring foil)
Lower plate with
overflow ditch
Probe head
Piezoelectric (PZT)
elements stuck on a
square copper tube


                         Section of PAV



                                                       9
Mechanical equivalent model of PAV
                     2R                                 The lower plate oscillates with force F (∝
                     m1
                                                   x1
                                                        excitation volt Uref) for a given frequency.
       K*           Sample                     d
                                                        With blank test: Dynamic compliance of the
                     m0
                                                   x0   lower plate is measured.  ∆x  ~ U eiδ
K1                                            K1
                                                                                                     0


2                                             2
                                                                                       F 0   U ref
       K01                F
                                                        With sample: Modulated compliance of the
                                                   x2                                 *
       K02            m2                                sample is measured      ∆x    U iδ
                                                                                 ~       e
                                                                                F  U ref
 Mechanical equivalent
 model of the PAV.                                      Complex squeeze stiffness K* of the material can
                                                        be calculated from the ratio of ∆x0 and ∆x*.
     K02            K01             K*         K1
           m2                 m0         m1
                                                         For linear viscoelasticity
                                                               2 d3       ρω 2 d 2       
           F                                             G* =        K * 1 +
                                                                                   + ....
                                                                                          
               x2              x0             x1              3π R 4         10G *       
                                                                                                    G '2 +G"2
Mechanical representation                                G * (ω ) = G ' (ω ) + iG" (ω )        η* =
                                                                                   10                  ω
with springs.
High frequency linear viscoelastic data of DEP-10% PS210 at 25°C

                                                Parallel plate rheometer
                                   1000                                                             10000
                                                    η*
  Complex viscosity, η*, (mPa.s)




                                                                                                           Elastic (G') and Viscous (G")
                                                                                                    1000

                                    100




                                                                                                                   modulus, (Pa)
                                                                                                    100


                                                                                                    10
                                     10              G"
                                                                                                    1
                                                              G'
                                      1                                                             0.1
                                          0.1             1           10           100   1000   10000
                                                                       Frequency (Hz)


                                                                                          11
High frequency linear viscoelastic data of DEP-10% PS210 at 25°C

                                            Parallel plate rheometer                     PAV data
                                   1000                                                                 10000
                                                  η*
  Complex viscosity, η*, (mPa.s)




                                                                                                               Elastic (G') and Viscous (G")
                                                                                                        1000
                                                Open: ARES
                                   100          Close: PAV




                                                                                                                       modulus, (Pa)
                                                                                                        100


                                                                                                        10
                                     10                G"                         Mind the gap!
                                                                                                        1
                                                                G'
                                      1                                                                 0.1
                                          0.1               1        10            100      1000    10000
                                                                       Frequency (Hz)


                                                                                              12
Effect of Polymer on the Linear Viscoelastic response of ‘model’
            fluid containing different polymer concentration
      Polystyrene MW = 210k in Diethyl Phthalate (DEP) solvent

               1000                                                             1000
                                                                                          0.1%
                100                                                              100      0.2%
Loss Modulus
    G’’                                                0%          Elastic Modulus        0.4%          C%
                 10                                                     G’        10      1%
   Pa                                                  0.1%                               0%
                                                       0.2%             Pa
                  1                                                                1
                                                       0.4%
                                                       1%
                0.1                                                              0.1
                      1       10        100     1000       10000                    100               1000        10000
                                   Frequency (Hz)                                                Frequency (Hz)

               2.00E-02                                                           1
                                                           0%
                                                           0.1%                           0%
 Complex       1.75E-02                                    0.2%       Modulus ratio       0.1%
 viscosity                                                 0.4%
                                                           1%
                                                                       G’/ G*             0.2%
                                                                                          0.4%
                                                                                                             C%
     η∗        1.50E-02                                                         0.1
    Pa.s                                                                                  1%
               1.25E-02

               1.00E-02                                                        0.01
                          1        10     100       1000   10000                   100               1000         10000
                                    Frequency (Hz)                                               Frequency (Hz)


                                                                                                                          13
                                                                                                       13
The Torsion Resonator
                    (Prof Pechold (again!) ; University of Ulm)
                      linear viscoelastic behaviour (LVE)



                     Connector

                          cylinder
                                             2 shear piezo              2 shear piezo
                                             for detection              for excitation
                                                                       PT 100


Photograph of the                                 Tube shrunk on inner cylinder
Torsion resonator



                                                Schematic (side and top view) of the
                                                        Torsion resonator
                                                                                  14
                                                                14
The Torsion Resonator
                                  (Damien Vadillo)
                     The linear viscoelastic behaviour (LVE)

                                               Resonance curve of the mechanical response of the TR
                                                   4
The piezoelectric sensor oscillates at                                     fs              fe
resonance frequencies, 26kHz and                   3
                                                                                  De
                                          U (mV)
77kHz respectively.                                2
                                                                  Ds
                                                   1
With blank test: Determination of the
apparatus constant temperature                     0

correction coefficient for each                    25000       25020       25040       25060    25080    25100
                                                                       Frequency (Hz)
frequency
                                                                   K             ∆D  2         
                                                                                       − ( ∆f ) 
                                                                                                2
With sample: Measure the resonance                     G = '
                                                                                
                                                                 ρ sample        2 
                                                                                                 
                                                                                                  
frequency shift ∆f (=fs-fe) and the
damping shift ∆D (=Ds-De) at each                                      K
                                                       G '' =                   ∆D.∆f
resonance frequency.                                             ρ sample
                                                                                                    15
                                                                            15
The Torsion Resonator (TR)
                                      (Damien Vadillo)
                     Proof of concept (DEP + 2.5%wt PS110)
      10000
                                                            G’’(77 kHz)
G’ and G’’
   (Pa)
                                                           G’’(25 kHz)
                                                           G’(77 kHz)
       1000

                                                           G’(77 kHz)


         100
               10   20          30           40       50     0.1
                                                                               η1 (25 kHz)
                         Experiment number                                                        η1 (77 kHz)



                                                  η1 and η2 0.01
                                                                          η2 (25 kHz)             η2 (77 kHz)
                                                    (Pa.s)



                                                           0.001
                                                                   10        20              30          40     50

                                                                                  Experiment number
                                                                                                          16
                                                                              16
The Torsion Resonator
                                       (Damien Vadillo)
                       Proof of concept (DEP + 2.5%wt PS110)
                           PAV                   TR
      10000

        1000         G’’
G’ and G’’
         100
   (Pa)
           10

           1
                                         G’
         0.1                                                                    PAV                TR
                10   100       1000      10000        100000
                                                               0.1
                            Frequency (Hz)

                                                       η* (Pa.s)
          • PAV and TR match
          • “Shear thinning” at high                        0.01
          frequency                                                  10   100        1000       10000    100000
                                                                                 Frequency (Hz)
                                                                                                    17
                                                                            17
Extensional non linear
      measurements

a) Medium viscosity fluids




                       18
Filament thinning
A.V.Bazilevsky, V.M. Entov and A.N.Rozhkov
3rd European Rheology Conference 1990 Ed D.R.Oliver




                                    The “Russian Rheotester”



                                          C     A



                                           B
                                    E
                                                           15 cm
                                                       D

                                                 19
Liang and Mackley (1994)- Extensional Rheotester
                                                 Newtonian modelling
                                                                   •

                                τzz         τ zz = − p 0 + 2η γ zz = 0         (11)

                                                                   •
                                      τrr
  Top plate
                                            τ rr = − p 0 + 2η γ rr = −2σ / D (12)
                                             •1•
                                            D= εD                              (13)
Bottom plate
                                              2
                                                                        •
       Extensional rheotester               τ E = τ zz − τ rr = 3η ε = 2σ / D (14)
                                             •     2σ
                                            ε=                                 (15)
                                                  3ηD
                                                             •
                                            η E = τ E / ε = 3η                 (16)

                                                            σ
                                             D(t ) = D0 −      t               (17)
                                                            3η
                                                                   20
Liang and Mackley (1994)- Viscoelastic fluid
     S1 fluid          First approximation
                                      1              (18)
                      D (t ) = D0 exp −
                                      3λ     t
                                               
                                         R    


                       Viscoelastic modelling
                                •
                      τ E = 3η ε d = 2σ / D            (19)

                           •       •               •
                      τ E = g ε s = −2σ D/ D 2         (20)

                           •   •
      PIB solutions
                      εd = εs                          (21)
                       •
                      D/ D = − g / 3η                  (22)

                                      g 
                      D (t ) = D0 exp − t 
                                      3η             (23)
                                          
                                              21
Extensional non linear
    measurements

b) Low viscosity fluids




                     22
The Cambridge MultiPass Rheometer (MPR)




Pressure variation   Rheology flow   Cross-slot        Filament stretch
mode                 mode            flow mode         mode

                                                  23
MPR Filament stretch Rheometer
                                                Vp




                 D
                                                                               R(z,t)
              Top Piston


                                      Lf                                       Rmid(t)
      L0

           Bottom Piston




                                                Vp

(a) Test fluid positioned   (b) Test fluid stretched uniaxially (c) Filament thinning and break up
between two pistons.        at a uniform velocity.              occurrence after pistons has stopped.
                            t<0                                 t≥0




                                                                                                        24
MPR Filament stretching and thinning of DEP solution
           DEP




                                                DEP + 5.0 wt% PS
             1.2 mm




Piston diameter = 1.2 mm
Initial stretch velocity = 200 mm/s
Initial sample height = 0.35 mm
Final sample height = 1.35 mm
 (piston displaced by 0.5 mm each side)
                                                    25
The CambridgeTrimaster
       A dream turning into a reality



  Toothed belt                    Linear guide rail
  timing pulley
                                  Carrier
    Timing belt
                                  Replaceable top and
                                  bottom plate




Stepper motor
attached to a pulley


                                                    26
                                            Graphics courtesy of James Waldmeyer
Drive
                                  belt




                                 Piston




                                  Linear
                                 traverse
Motor
drive
                      a                                               b


                                                  High speed camera

        Fibre optic light




                            Cambridge Trimaster
                                                                          27
Piston response

             5000


             4000                                        10 mm/s
                                                         100 mm/s
 Top piston                                              500 mm/s
position (µm) 3000



             2000


             1000

                                                                          c
                0
                     0   100   200      300      400   500          600
                                     Time (ms)




                                                                     28
The ‘TriMaster’ Filament stretch and break up apparatus




piston
sample
belt



pulley
                          Initial gap ≈ 0.2 mm, Final gap ≈ 1.2 mm
                                                             29
                          Piston diameter ≈ 1.2 mm, Piston velocity ≈ 1 m/s
Filament thinning
                              a


                                  5.3ms    5.8                                6.3
                                                    6.8         7
                                          7.2                         7.7
(a) DEP,
                              b
(b) DEP + 0.2% PS110,
(c) DEP + 0.5% PS110,
(d) DEP + 1% PS110,               5.3ms         6                             6.7
                                                    7                             7.15
(e) DEP + 2.5% PS110.                                     7.3                         7.6

                              c
Initial gap size: 0.6mm,

Stretching distance:0.8mm,        5.3ms    6.15                               7
                                                    7.5         7.65
                                           7.8                         8
Stretching velocity:150mm/s
                              d



                                  5.3ms         7                             7.85
                                                    8.7         9.6
                                          10.4                        10.6

                              e


                                  5.3ms     8.2                        10.2          13.5
                                             15.2
                                                     17
                                                                              16.8          30
Mid filament diameter time evolution

     1200

     1000                                0%
                                         0.50%
      800                                1%
                                         2.50%
 D                                       5%
       600
(µ m )
      400

      200

        0
             0    10      20        30           40
                       Time (ms )



                                                  31
250
                                      DEP-0%PS
                                      DEP-0.5%PS
                            200
                                      DEP-1%PS
            Trouton ratio             DEP-2.5%PS
                            150       DEP-5%PS
                 ηE
                 η0         100

                             50

                             0
                                  0      2           4          6             8   10
                                                                      D 
                                                   Hencky strain, 2 ln 0 
                                                                      D 
                                                                       t



The transient extensional rheology of DEP solutions as a function of relaxation Hencky strain
for different PS concentrations.
Initial distance 0.6mm, final distance: 1.4mm.
The line represent are obtained from the exponential fitting of the evolution of the thinning of the diameter.
The geometrical factor “X” is fitted using the experimental data at low Hencky strain.




                                                                                   32
Breakup                 a

                                0ms          4                          5.5
                                6.2              6.35                    6.5
                                 7



 DEP,                       b
 DEP + 0.5% PS110,
                                0ms          5                          6.5
DEP + 1% PS110,                 7.7              8.2                     8.35
DEP + 2.5% PS110,                8.5
DEP + 5% PS110.

tial gap size: 0.6mm,       c
etching distance: 1.6mm,
etching velocity: 150mm/s
                                0ms          6.7                        8
                                9.35             9.85                   10.15
                                10.35


                            d


                                0ms          7.5                10.65           14.15     17
                                                        17.15                     17.35




                            e


                                0ms
                                        38
                                             10.7
                                                        39.15
                                                                22.35            31
                                                                                  39.35
                                                                                               33
Extensional non linear
    measurements

c) High viscosity fluids




                      34
The Cambridge MultiPass Rheometer (MPR)




Pressure variation   Rheology flow   Cross-slot        Filament stretch
mode                 mode            flow mode         mode

                                                  35
The Cross-Slot

• Generates a hyperbolic
•    pure shear flow
  pattern
•    as shown.
• Near centre.
•    Essentially uniform
  extensional
•    flow with residence
  time, which is
  equivalent to strain,        36
Typical Result
-Dow PS680E
-Piston velocity of 0.5
mm/s (maximum
extension rate =4.3/s).


-Inlet slit
width=1.5mm
-Section depth=10mm
- T=180°C.

                                     37
Stagnation Point flows as rheometers
                                         Dr Dietmar Auhl et al,
                                         Leeds University 2008


                                        6
elongational viscosityµ(t), Pas    10
                                                                             0.3
                                                 . -1               1              0.1        0.03   0.01
                                                 ε0 [s ]
   shear viscosity η(t), Pas


                                                             3                                         0.003

                                                    10                                                 0.001
                                        5
                                   10                                                                       .       -1
                                                                                                            γ0 [s ]

                                                                                                           0.001
                                                                                                           0.01
                                                                                                            0.1

                                        4                                                                   0.5
                                   10                                                                        1
                                                                                                                2
                                                                                                                5
                                                   LDPE
                                                 T = 150°C                                                  10
                                        3
                                   10
                                            -1                  0        1                2            3
                                        10                 10           10           10              10
                                                                        time t, s

                                                                                                          38
η E ,st (ε) = (σ xx − σ yy ) st / εst      steady-state elongational viscosity
                                             at the stagnation point


                                                                                            0




   ε
      =




                                                                                       principle
                    ε
                    

                                                                                            0




                                          ∆ n = SOC (σX xx − σ yy ) + 4σ xy
       •                                                               2           2
       ε st = A x V piston                    -4    -2     0     2      4



                                                           39
Dr Dietmar Auhl et al , Leeds University




                                    40
Conclusions

Piezo Axial Vibrator (PAV) and Torsion Resonator (TR)
     Can quantify LVE high frequency response of low
               viscosity viscoelastic fluids

                   Cambridge Trimaster
        Can follow transient extensional viscosity and
      filament break up process of low viscosity fluids

                      MPR Cross slot
Can measure limiting extensional viscosities of polymer melts

                             Acknowledgments
     EPSRC and industrial partners in Next Generation Ink Jet Consortium
                                                           41

Weitere ähnliche Inhalte

Was ist angesagt?

Nantes brilliant sci-2011 (v2)
Nantes brilliant sci-2011 (v2)Nantes brilliant sci-2011 (v2)
Nantes brilliant sci-2011 (v2)malcolmmackley
 
EUCASS 2009 presentation
EUCASS 2009 presentationEUCASS 2009 presentation
EUCASS 2009 presentationruizanthony
 
mrm Chamonix-stretching chains-(2009)
mrm Chamonix-stretching chains-(2009)mrm Chamonix-stretching chains-(2009)
mrm Chamonix-stretching chains-(2009)malcolmmackley
 
Euro Corr2010
Euro Corr2010Euro Corr2010
Euro Corr2010Vigdisol
 
A computational (DEM) study of fluidized beds with particle size distribution...
A computational (DEM) study of fluidized beds with particle size distribution...A computational (DEM) study of fluidized beds with particle size distribution...
A computational (DEM) study of fluidized beds with particle size distribution...Masayuki Horio
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ FilmsAlokmay Datta
 
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...disorderedmatter
 
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONSA NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONSIJSIT Editor
 
05 the new game changing lc triple quad from bruker bradley duruttya - bruker...
05 the new game changing lc triple quad from bruker bradley duruttya - bruker...05 the new game changing lc triple quad from bruker bradley duruttya - bruker...
05 the new game changing lc triple quad from bruker bradley duruttya - bruker...CPSA-2012_5-Minutes-Fame
 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...Alexander Decker
 
Research Background
Research BackgroundResearch Background
Research BackgroundBrian Wisner
 
Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012
Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012
Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012sahril afandi sitompul
 
Separation of Macromolecules by Their Size: The Mean Span Dimension
Separation of Macromolecules by Their Size: The Mean Span DimensionSeparation of Macromolecules by Their Size: The Mean Span Dimension
Separation of Macromolecules by Their Size: The Mean Span Dimensioncypztm
 

Was ist angesagt? (19)

Nantes brilliant sci-2011 (v2)
Nantes brilliant sci-2011 (v2)Nantes brilliant sci-2011 (v2)
Nantes brilliant sci-2011 (v2)
 
About byFlow R&D
About byFlow R&DAbout byFlow R&D
About byFlow R&D
 
Aem Lect14
Aem Lect14Aem Lect14
Aem Lect14
 
EUCASS 2009 presentation
EUCASS 2009 presentationEUCASS 2009 presentation
EUCASS 2009 presentation
 
mrm Chamonix-stretching chains-(2009)
mrm Chamonix-stretching chains-(2009)mrm Chamonix-stretching chains-(2009)
mrm Chamonix-stretching chains-(2009)
 
Prez Baljaa09
Prez Baljaa09Prez Baljaa09
Prez Baljaa09
 
Euro Corr2010
Euro Corr2010Euro Corr2010
Euro Corr2010
 
Slurry conveying
Slurry conveyingSlurry conveying
Slurry conveying
 
Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...
Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...
Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...
 
A computational (DEM) study of fluidized beds with particle size distribution...
A computational (DEM) study of fluidized beds with particle size distribution...A computational (DEM) study of fluidized beds with particle size distribution...
A computational (DEM) study of fluidized beds with particle size distribution...
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ Films
 
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
Influence of Trapping on the Recombination Dynamics in Disordered Organic Sem...
 
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONSA NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
A NOVEL RP-HPLC METHOD FOR THE QUANTIFICATION OF ICATIBANT IN FORMULATIONS
 
05 the new game changing lc triple quad from bruker bradley duruttya - bruker...
05 the new game changing lc triple quad from bruker bradley duruttya - bruker...05 the new game changing lc triple quad from bruker bradley duruttya - bruker...
05 the new game changing lc triple quad from bruker bradley duruttya - bruker...
 
The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...The optical constants of highly absorbing films using the spectral reflectanc...
The optical constants of highly absorbing films using the spectral reflectanc...
 
Research Background
Research BackgroundResearch Background
Research Background
 
Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012
Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012
Presentasi RCMEAE 2012 & Sokendai Asian Winter School 2012
 
Separation of Macromolecules by Their Size: The Mean Span Dimension
Separation of Macromolecules by Their Size: The Mean Span DimensionSeparation of Macromolecules by Their Size: The Mean Span Dimension
Separation of Macromolecules by Their Size: The Mean Span Dimension
 
Trimaster v2-bsr-2013
Trimaster v2-bsr-2013Trimaster v2-bsr-2013
Trimaster v2-bsr-2013
 

Andere mochten auch

Dysphaghia rheology Nottingham-2010
Dysphaghia rheology Nottingham-2010Dysphaghia rheology Nottingham-2010
Dysphaghia rheology Nottingham-2010malcolmmackley
 
Shear thinning of complex fluids-2005
Shear thinning of complex fluids-2005Shear thinning of complex fluids-2005
Shear thinning of complex fluids-2005malcolmmackley
 
Web- Liquid Crytals and Liquid Crystal Polymers-2015
Web- Liquid Crytals and Liquid Crystal Polymers-2015Web- Liquid Crytals and Liquid Crystal Polymers-2015
Web- Liquid Crytals and Liquid Crystal Polymers-2015malcolmmackley
 
Web crystallisation-2015.3
Web crystallisation-2015.3Web crystallisation-2015.3
Web crystallisation-2015.3malcolmmackley
 
Flow, Crystallisation and Continuous Processing
Flow, Crystallisation and Continuous ProcessingFlow, Crystallisation and Continuous Processing
Flow, Crystallisation and Continuous Processingmalcolmmackley
 
Plastic is fantastic mrm-2016
Plastic is fantastic mrm-2016Plastic is fantastic mrm-2016
Plastic is fantastic mrm-2016malcolmmackley
 
Introduction to rheology
Introduction to rheologyIntroduction to rheology
Introduction to rheologyRajveer Bhaskar
 
The Fundamentals of Rheology
The Fundamentals of RheologyThe Fundamentals of Rheology
The Fundamentals of RheologyInstron
 
Titration - principle, working and application
Titration - principle, working and applicationTitration - principle, working and application
Titration - principle, working and applicationSaloni Shroff
 

Andere mochten auch (15)

Dysphaghia rheology Nottingham-2010
Dysphaghia rheology Nottingham-2010Dysphaghia rheology Nottingham-2010
Dysphaghia rheology Nottingham-2010
 
Shear thinning of complex fluids-2005
Shear thinning of complex fluids-2005Shear thinning of complex fluids-2005
Shear thinning of complex fluids-2005
 
Web- Liquid Crytals and Liquid Crystal Polymers-2015
Web- Liquid Crytals and Liquid Crystal Polymers-2015Web- Liquid Crytals and Liquid Crystal Polymers-2015
Web- Liquid Crytals and Liquid Crystal Polymers-2015
 
Web crystallisation-2015.3
Web crystallisation-2015.3Web crystallisation-2015.3
Web crystallisation-2015.3
 
Flow, Crystallisation and Continuous Processing
Flow, Crystallisation and Continuous ProcessingFlow, Crystallisation and Continuous Processing
Flow, Crystallisation and Continuous Processing
 
MCF Korea-2012
MCF Korea-2012MCF Korea-2012
MCF Korea-2012
 
Plastic is fantastic mrm-2016
Plastic is fantastic mrm-2016Plastic is fantastic mrm-2016
Plastic is fantastic mrm-2016
 
Introduction to rheology
Introduction to rheologyIntroduction to rheology
Introduction to rheology
 
The Fundamentals of Rheology
The Fundamentals of RheologyThe Fundamentals of Rheology
The Fundamentals of Rheology
 
Rheology methods
Rheology methodsRheology methods
Rheology methods
 
Rheology
RheologyRheology
Rheology
 
Rheology
RheologyRheology
Rheology
 
Rheology pdf
Rheology pdfRheology pdf
Rheology pdf
 
Titration - principle, working and application
Titration - principle, working and applicationTitration - principle, working and application
Titration - principle, working and application
 
Rheology
RheologyRheology
Rheology
 

Ähnlich wie Extreme Rheology- Cardiff- 2009

2012 fallmrs encasedlevers_dominikziegler_summary
2012 fallmrs encasedlevers_dominikziegler_summary2012 fallmrs encasedlevers_dominikziegler_summary
2012 fallmrs encasedlevers_dominikziegler_summaryDominik Ziegler
 
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...Christophe Palermo
 
Development Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma DisplaysDevelopment Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma DisplaysSanjay Ram
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Bostonbmazumder
 
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.ESS BILBAO
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...Sanjay Ram
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopynirupam12
 
AVS 2007: selective biomolecular ion soft landing
AVS 2007: selective biomolecular ion soft landingAVS 2007: selective biomolecular ion soft landing
AVS 2007: selective biomolecular ion soft landingohadjar
 
12.45 o15 m bartle
12.45 o15 m bartle12.45 o15 m bartle
12.45 o15 m bartleNZIP
 
Light sources based on optical-scale accelerators
Light sources based on optical-scale acceleratorsLight sources based on optical-scale accelerators
Light sources based on optical-scale acceleratorsGil Travish
 
Wafer-Level RF MEMS Devices Characterization in Cryogenic Environment
Wafer-Level RF MEMS Devices Characterization in Cryogenic EnvironmentWafer-Level RF MEMS Devices Characterization in Cryogenic Environment
Wafer-Level RF MEMS Devices Characterization in Cryogenic EnvironmentCascade Microtech, Inc.
 
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Sanjay Ram
 
Jay amrit kapitza resistance at niobiumsuperfluid he interfaces
Jay amrit   kapitza resistance at niobiumsuperfluid he interfacesJay amrit   kapitza resistance at niobiumsuperfluid he interfaces
Jay amrit kapitza resistance at niobiumsuperfluid he interfacesthinfilmsworkshop
 
Laser based Spectrometer for VOCs Monitoring
Laser based Spectrometer for VOCs MonitoringLaser based Spectrometer for VOCs Monitoring
Laser based Spectrometer for VOCs MonitoringSteve Williams
 
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptxUnit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptxAnonyMessiah
 
Long-term stability of an SiGeHBT-based active cold load.pdf
Long-term stability of an SiGeHBT-based active cold load.pdfLong-term stability of an SiGeHBT-based active cold load.pdf
Long-term stability of an SiGeHBT-based active cold load.pdfgrssieee
 
Mark Woods Career Excerpts
Mark Woods Career ExcerptsMark Woods Career Excerpts
Mark Woods Career Excerptsmarkwoodsmsme
 

Ähnlich wie Extreme Rheology- Cardiff- 2009 (20)

2012 fallmrs encasedlevers_dominikziegler_summary
2012 fallmrs encasedlevers_dominikziegler_summary2012 fallmrs encasedlevers_dominikziegler_summary
2012 fallmrs encasedlevers_dominikziegler_summary
 
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynami...
 
Development Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma DisplaysDevelopment Of Emissive Layers For High Definition Plasma Displays
Development Of Emissive Layers For High Definition Plasma Displays
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Boston
 
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
AVS 2007: selective biomolecular ion soft landing
AVS 2007: selective biomolecular ion soft landingAVS 2007: selective biomolecular ion soft landing
AVS 2007: selective biomolecular ion soft landing
 
12.45 o15 m bartle
12.45 o15 m bartle12.45 o15 m bartle
12.45 o15 m bartle
 
Light sources based on optical-scale accelerators
Light sources based on optical-scale acceleratorsLight sources based on optical-scale accelerators
Light sources based on optical-scale accelerators
 
Wafer-Level RF MEMS Devices Characterization in Cryogenic Environment
Wafer-Level RF MEMS Devices Characterization in Cryogenic EnvironmentWafer-Level RF MEMS Devices Characterization in Cryogenic Environment
Wafer-Level RF MEMS Devices Characterization in Cryogenic Environment
 
Surface analysisversion3
Surface analysisversion3Surface analysisversion3
Surface analysisversion3
 
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
 
Microstrip antennas
Microstrip antennasMicrostrip antennas
Microstrip antennas
 
Jay amrit kapitza resistance at niobiumsuperfluid he interfaces
Jay amrit   kapitza resistance at niobiumsuperfluid he interfacesJay amrit   kapitza resistance at niobiumsuperfluid he interfaces
Jay amrit kapitza resistance at niobiumsuperfluid he interfaces
 
Laser based Spectrometer for VOCs Monitoring
Laser based Spectrometer for VOCs MonitoringLaser based Spectrometer for VOCs Monitoring
Laser based Spectrometer for VOCs Monitoring
 
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptxUnit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
Unit 1B_Planar Microstrip Line, Slot Line & CPW_MWE_BEC-34.pptx
 
Long-term stability of an SiGeHBT-based active cold load.pdf
Long-term stability of an SiGeHBT-based active cold load.pdfLong-term stability of an SiGeHBT-based active cold load.pdf
Long-term stability of an SiGeHBT-based active cold load.pdf
 
Mark Woods Career Excerpts
Mark Woods Career ExcerptsMark Woods Career Excerpts
Mark Woods Career Excerpts
 

Mehr von malcolmmackley

Web crystallisation-2015.2
Web crystallisation-2015.2Web crystallisation-2015.2
Web crystallisation-2015.2malcolmmackley
 
High Modulus Polyethylene 2013
High Modulus Polyethylene 2013High Modulus Polyethylene 2013
High Modulus Polyethylene 2013malcolmmackley
 
Process Intensification Korea-2012
Process Intensification Korea-2012Process Intensification Korea-2012
Process Intensification Korea-2012malcolmmackley
 
Inventing Apparatus and Processes 2011
Inventing Apparatus and Processes 2011Inventing Apparatus and Processes 2011
Inventing Apparatus and Processes 2011malcolmmackley
 
Chocolate lecture abingdon school-2010
Chocolate lecture abingdon school-2010Chocolate lecture abingdon school-2010
Chocolate lecture abingdon school-2010malcolmmackley
 
mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)malcolmmackley
 

Mehr von malcolmmackley (6)

Web crystallisation-2015.2
Web crystallisation-2015.2Web crystallisation-2015.2
Web crystallisation-2015.2
 
High Modulus Polyethylene 2013
High Modulus Polyethylene 2013High Modulus Polyethylene 2013
High Modulus Polyethylene 2013
 
Process Intensification Korea-2012
Process Intensification Korea-2012Process Intensification Korea-2012
Process Intensification Korea-2012
 
Inventing Apparatus and Processes 2011
Inventing Apparatus and Processes 2011Inventing Apparatus and Processes 2011
Inventing Apparatus and Processes 2011
 
Chocolate lecture abingdon school-2010
Chocolate lecture abingdon school-2010Chocolate lecture abingdon school-2010
Chocolate lecture abingdon school-2010
 
mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)
 

Kürzlich hochgeladen

FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKJago de Vreede
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 

Kürzlich hochgeladen (20)

FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 

Extreme Rheology- Cardiff- 2009

  • 1. ESR Cardiff April 2009 Extreme Rheology; beyond normal boundary conditions by Malcolm Mackley, With acknowledgement to Damien Vadillo, Tri Tuladhar* Dietmar Auhl **, Lino Scelci and Tim Lord Department of Chemical Engineering and Biotechnology, Cambridge *Xaar plc ** University of Leeds mrm5@cam.ac.uk 1
  • 2. Areas of extremes! • Linear Viscoelasticity Low viscosity, weakly viscoelastic fluids example; ink jet fluids. • Non Linear viscoelasticity a) Low viscosity, weakly viscoelastic fluids example; ink jet fluids b) High viscosity, limiting large strain, extensional viscosities example; polymer melts 2
  • 3. WLF; The frequency domain escape route http://web.mst.edu/~wlf/Mechanical/timetemp.html 3
  • 4. Xaar DOD Printhead Platform III : Side shooter Multipulse grey scale printhead (1001 series) 4
  • 5. DOD drop formation 1% PS70 Eff: 1.08 30 micron drops, ms timescale Photo, courtesy of Dr Steve Routh 5
  • 6. The Cambridge MultiPass Rheometer (MPR) Pressure variation Rheology flow Cross-slot Filament stretch mode mode flow mode mode 6
  • 7. The Cambridge Multipass Rheometer (MPR4) Top section Test section Bottom section 7
  • 8. MPR as capillary rheometer Diethyl phthalate (DEP) Supplier: Sigma Aldrich BP = 294-296°C; ρ = 1118 kg/m3 ; σ 20°C = 36 mN/m; η25°C = 10 mPa.s Polystyrene: Supplier: BASF – Polystyrol VPT granule M.W ~ 195000 100 ARES data MPR data 90 Apparent viscosity, η (mPa.s) 80 70 DEP DEP + 1.0 wt% PS 60 DEP + 2.5 wt% Ps 50 DEP + 5.0 wt% PS 40 30 20 10 0 1 10 100 1000 10000 100000 1000000 Shear rate (/s) 8
  • 9. Measurement of Linear Viscoelasticity (LVE) Piezo Axial Vibrator (PAV) Developed by Prof Wolfgang Pechold University of Ulm. Germany Upper lid Sample Gap (steel ring foil) Lower plate with overflow ditch Probe head Piezoelectric (PZT) elements stuck on a square copper tube Section of PAV 9
  • 10. Mechanical equivalent model of PAV 2R The lower plate oscillates with force F (∝ m1 x1 excitation volt Uref) for a given frequency. K* Sample d With blank test: Dynamic compliance of the m0 x0 lower plate is measured.  ∆x  ~ U eiδ K1 K1   0 2 2  F 0 U ref K01 F With sample: Modulated compliance of the x2 * K02 m2 sample is measured  ∆x  U iδ   ~ e  F  U ref Mechanical equivalent model of the PAV. Complex squeeze stiffness K* of the material can be calculated from the ratio of ∆x0 and ∆x*. K02 K01 K* K1 m2 m0 m1 For linear viscoelasticity 2 d3  ρω 2 d 2  F G* = K * 1 +  + ....  x2 x0 x1 3π R 4  10G *  G '2 +G"2 Mechanical representation G * (ω ) = G ' (ω ) + iG" (ω ) η* = 10 ω with springs.
  • 11. High frequency linear viscoelastic data of DEP-10% PS210 at 25°C Parallel plate rheometer 1000 10000 η* Complex viscosity, η*, (mPa.s) Elastic (G') and Viscous (G") 1000 100 modulus, (Pa) 100 10 10 G" 1 G' 1 0.1 0.1 1 10 100 1000 10000 Frequency (Hz) 11
  • 12. High frequency linear viscoelastic data of DEP-10% PS210 at 25°C Parallel plate rheometer PAV data 1000 10000 η* Complex viscosity, η*, (mPa.s) Elastic (G') and Viscous (G") 1000 Open: ARES 100 Close: PAV modulus, (Pa) 100 10 10 G" Mind the gap! 1 G' 1 0.1 0.1 1 10 100 1000 10000 Frequency (Hz) 12
  • 13. Effect of Polymer on the Linear Viscoelastic response of ‘model’ fluid containing different polymer concentration Polystyrene MW = 210k in Diethyl Phthalate (DEP) solvent 1000 1000 0.1% 100 100 0.2% Loss Modulus G’’ 0% Elastic Modulus 0.4% C% 10 G’ 10 1% Pa 0.1% 0% 0.2% Pa 1 1 0.4% 1% 0.1 0.1 1 10 100 1000 10000 100 1000 10000 Frequency (Hz) Frequency (Hz) 2.00E-02 1 0% 0.1% 0% Complex 1.75E-02 0.2% Modulus ratio 0.1% viscosity 0.4% 1% G’/ G* 0.2% 0.4% C% η∗ 1.50E-02 0.1 Pa.s 1% 1.25E-02 1.00E-02 0.01 1 10 100 1000 10000 100 1000 10000 Frequency (Hz) Frequency (Hz) 13 13
  • 14. The Torsion Resonator (Prof Pechold (again!) ; University of Ulm) linear viscoelastic behaviour (LVE) Connector cylinder 2 shear piezo 2 shear piezo for detection for excitation PT 100 Photograph of the Tube shrunk on inner cylinder Torsion resonator Schematic (side and top view) of the Torsion resonator 14 14
  • 15. The Torsion Resonator (Damien Vadillo) The linear viscoelastic behaviour (LVE) Resonance curve of the mechanical response of the TR 4 The piezoelectric sensor oscillates at fs fe resonance frequencies, 26kHz and 3 De U (mV) 77kHz respectively. 2 Ds 1 With blank test: Determination of the apparatus constant temperature 0 correction coefficient for each 25000 25020 25040 25060 25080 25100 Frequency (Hz) frequency K  ∆D  2   − ( ∆f )  2 With sample: Measure the resonance G = '  ρ sample  2     frequency shift ∆f (=fs-fe) and the damping shift ∆D (=Ds-De) at each K G '' = ∆D.∆f resonance frequency. ρ sample 15 15
  • 16. The Torsion Resonator (TR) (Damien Vadillo) Proof of concept (DEP + 2.5%wt PS110) 10000 G’’(77 kHz) G’ and G’’ (Pa) G’’(25 kHz) G’(77 kHz) 1000 G’(77 kHz) 100 10 20 30 40 50 0.1 η1 (25 kHz) Experiment number η1 (77 kHz) η1 and η2 0.01 η2 (25 kHz) η2 (77 kHz) (Pa.s) 0.001 10 20 30 40 50 Experiment number 16 16
  • 17. The Torsion Resonator (Damien Vadillo) Proof of concept (DEP + 2.5%wt PS110) PAV TR 10000 1000 G’’ G’ and G’’ 100 (Pa) 10 1 G’ 0.1 PAV TR 10 100 1000 10000 100000 0.1 Frequency (Hz) η* (Pa.s) • PAV and TR match • “Shear thinning” at high 0.01 frequency 10 100 1000 10000 100000 Frequency (Hz) 17 17
  • 18. Extensional non linear measurements a) Medium viscosity fluids 18
  • 19. Filament thinning A.V.Bazilevsky, V.M. Entov and A.N.Rozhkov 3rd European Rheology Conference 1990 Ed D.R.Oliver The “Russian Rheotester” C A B E 15 cm D 19
  • 20. Liang and Mackley (1994)- Extensional Rheotester Newtonian modelling • τzz τ zz = − p 0 + 2η γ zz = 0 (11) • τrr Top plate τ rr = − p 0 + 2η γ rr = −2σ / D (12) •1• D= εD (13) Bottom plate 2 • Extensional rheotester τ E = τ zz − τ rr = 3η ε = 2σ / D (14) • 2σ ε= (15) 3ηD • η E = τ E / ε = 3η (16) σ D(t ) = D0 − t (17) 3η 20
  • 21. Liang and Mackley (1994)- Viscoelastic fluid S1 fluid First approximation  1  (18) D (t ) = D0 exp −  3λ t   R  Viscoelastic modelling • τ E = 3η ε d = 2σ / D (19) • • • τ E = g ε s = −2σ D/ D 2 (20) • • PIB solutions εd = εs (21) • D/ D = − g / 3η (22)  g  D (t ) = D0 exp − t   3η  (23)   21
  • 22. Extensional non linear measurements b) Low viscosity fluids 22
  • 23. The Cambridge MultiPass Rheometer (MPR) Pressure variation Rheology flow Cross-slot Filament stretch mode mode flow mode mode 23
  • 24. MPR Filament stretch Rheometer Vp D R(z,t) Top Piston Lf Rmid(t) L0 Bottom Piston Vp (a) Test fluid positioned (b) Test fluid stretched uniaxially (c) Filament thinning and break up between two pistons. at a uniform velocity. occurrence after pistons has stopped. t<0 t≥0 24
  • 25. MPR Filament stretching and thinning of DEP solution DEP DEP + 5.0 wt% PS 1.2 mm Piston diameter = 1.2 mm Initial stretch velocity = 200 mm/s Initial sample height = 0.35 mm Final sample height = 1.35 mm (piston displaced by 0.5 mm each side) 25
  • 26. The CambridgeTrimaster A dream turning into a reality Toothed belt Linear guide rail timing pulley Carrier Timing belt Replaceable top and bottom plate Stepper motor attached to a pulley 26 Graphics courtesy of James Waldmeyer
  • 27. Drive belt Piston Linear traverse Motor drive a b High speed camera Fibre optic light Cambridge Trimaster 27
  • 28. Piston response 5000 4000 10 mm/s 100 mm/s Top piston 500 mm/s position (µm) 3000 2000 1000 c 0 0 100 200 300 400 500 600 Time (ms) 28
  • 29. The ‘TriMaster’ Filament stretch and break up apparatus piston sample belt pulley Initial gap ≈ 0.2 mm, Final gap ≈ 1.2 mm 29 Piston diameter ≈ 1.2 mm, Piston velocity ≈ 1 m/s
  • 30. Filament thinning a 5.3ms 5.8 6.3 6.8 7 7.2 7.7 (a) DEP, b (b) DEP + 0.2% PS110, (c) DEP + 0.5% PS110, (d) DEP + 1% PS110, 5.3ms 6 6.7 7 7.15 (e) DEP + 2.5% PS110. 7.3 7.6 c Initial gap size: 0.6mm, Stretching distance:0.8mm, 5.3ms 6.15 7 7.5 7.65 7.8 8 Stretching velocity:150mm/s d 5.3ms 7 7.85 8.7 9.6 10.4 10.6 e 5.3ms 8.2 10.2 13.5 15.2 17 16.8 30
  • 31. Mid filament diameter time evolution 1200 1000 0% 0.50% 800 1% 2.50% D 5% 600 (µ m ) 400 200 0 0 10 20 30 40 Time (ms ) 31
  • 32. 250 DEP-0%PS DEP-0.5%PS 200 DEP-1%PS Trouton ratio DEP-2.5%PS 150 DEP-5%PS ηE η0 100 50 0 0 2 4 6 8 10 D  Hencky strain, 2 ln 0  D   t The transient extensional rheology of DEP solutions as a function of relaxation Hencky strain for different PS concentrations. Initial distance 0.6mm, final distance: 1.4mm. The line represent are obtained from the exponential fitting of the evolution of the thinning of the diameter. The geometrical factor “X” is fitted using the experimental data at low Hencky strain. 32
  • 33. Breakup a 0ms 4 5.5 6.2 6.35 6.5 7 DEP, b DEP + 0.5% PS110, 0ms 5 6.5 DEP + 1% PS110, 7.7 8.2 8.35 DEP + 2.5% PS110, 8.5 DEP + 5% PS110. tial gap size: 0.6mm, c etching distance: 1.6mm, etching velocity: 150mm/s 0ms 6.7 8 9.35 9.85 10.15 10.35 d 0ms 7.5 10.65 14.15 17 17.15 17.35 e 0ms 38 10.7 39.15 22.35 31 39.35 33
  • 34. Extensional non linear measurements c) High viscosity fluids 34
  • 35. The Cambridge MultiPass Rheometer (MPR) Pressure variation Rheology flow Cross-slot Filament stretch mode mode flow mode mode 35
  • 36. The Cross-Slot • Generates a hyperbolic • pure shear flow pattern • as shown. • Near centre. • Essentially uniform extensional • flow with residence time, which is equivalent to strain, 36
  • 37. Typical Result -Dow PS680E -Piston velocity of 0.5 mm/s (maximum extension rate =4.3/s). -Inlet slit width=1.5mm -Section depth=10mm - T=180°C. 37
  • 38. Stagnation Point flows as rheometers Dr Dietmar Auhl et al, Leeds University 2008 6 elongational viscosityµ(t), Pas 10 0.3 . -1 1 0.1 0.03 0.01 ε0 [s ] shear viscosity η(t), Pas 3 0.003 10 0.001 5 10 . -1 γ0 [s ] 0.001 0.01 0.1 4 0.5 10 1 2 5 LDPE T = 150°C 10 3 10 -1 0 1 2 3 10 10 10 10 10 time t, s 38
  • 39. η E ,st (ε) = (σ xx − σ yy ) st / εst steady-state elongational viscosity at the stagnation point 0 ε  = principle ε  0 ∆ n = SOC (σX xx − σ yy ) + 4σ xy • 2 2 ε st = A x V piston -4 -2 0 2 4 39
  • 40. Dr Dietmar Auhl et al , Leeds University 40
  • 41. Conclusions Piezo Axial Vibrator (PAV) and Torsion Resonator (TR) Can quantify LVE high frequency response of low viscosity viscoelastic fluids Cambridge Trimaster Can follow transient extensional viscosity and filament break up process of low viscosity fluids MPR Cross slot Can measure limiting extensional viscosities of polymer melts Acknowledgments EPSRC and industrial partners in Next Generation Ink Jet Consortium 41