SlideShare ist ein Scribd-Unternehmen logo
1 von 57
BIODIVERSITY and Microbial biodiversity Majid Mohiuddin
The Origins of Life Our Planet was Lifeless. Based on radioisotopicdating associated with fossils (mainly Uranium to lead decay). The Oldest macrofossils of plants and animals are only 0.6-0.7 billion years old.  If these were the remains of the original living organisms, the planet would have been lifeless for almost 4 billion years.
Now evidence that microbial life existed more than 3.85 billion years ago (Mojzsis et al. 1996). 1 billion after the formation of earth and 3 billions years before the appearance of macroscopic plants and animals. (Nisbet 1980). Microscopic fossils of procaryotic cells (primitive microorganisms) have been identified in 3.5 billion year old rocks. Rocks that are 3.85 billion years old have been found to contain organic matter rich in 12C.
The geochemical evidence indicates that living organisms were assimilating carbon into organic molecules from atmospheric methane and carbondioxide. Data also suggest that this process was changing the chemical composition of Earth within 1 billion years of Earth’s formation.
Comparison of atmospheric and temperature conditions
Life exist on Earth  and  That Microorganisms had influence in shaping its currently prevailing Physicochemcial conditions.
Today Earth provides a favorable environment for the proliferation of life. It took millions of years after formation of Earth for conditions to develop that permitted life to evolve and survive. It is true that Earth was favored by a sufficient mass and gravitational pull to retain most atmospheric gases and by a distance from the sun that allowed most of its water to remain in the liquid state. All conditions will not favorable to predate life.
What is the role of Life? The role of life in forming the physicochemical environment of our planet and it is maintaining the environment in its current state  (Gaia Hypothesis) (by James Lovelock – 1979).
Chemical Evolution Prebiotic Earth   Chemical Evolution (by Russian Scientist Alexander IvanovichOparin and British Scientist John B.S. Haldane) between 1925 and 1930. Premitiveprebiotic Earth had an anaerobic atmosphere consisting largely of  Carbondioxide nitrogen,  hydrogen and  water vapor  with smaller amounts of ammonia, carbon monoxide, and hydrogen sulfide. In such chemical mixture, organic compounds would have formed with relatively small inputs of energy. Oxygen was absent or present only in trace amounts. Lack of an ozone. Temperature extremes (both geographical and seasonal) Large amount of abiotically  formed organic matter apparently present mainly in dissolved or suspended forms, from which Life could evolve.
Radiant, geothermal electric discharge and radioactive decay energy fueled the slow chemical evolution of this organic matter toward ever more complex and polymeric forms. The resulting macromolecules were endowed with an inherent tendency to aggregate and form membrane like interface toward the surrounding liquid, foreshadowing a cellular organization. In an environment free of oxygen and microbial decomposers, this chemical evolution could proceed uninterrupted for millions of years. (Stanley L. Miller and Harold C. Urey Experiments) Oparin Haldane theory of Chemical evolution is the best known and accepted one. This theory suggests that life began on Earth’s surface in areas where organic chemicals accumulated. An alternative hypothesis is that life on Earth began at deep ocean thermal vents. – mixture of chemicals and catalysts needed for formation of life.
First living organisms based on surface catalysis (German Scientist GuntherWachtershauser 1988). The first form of “Life” visualized by this theory is an acellular organic film, which is anionically attached to positively charged mineral surfaces and grows chemoautotraphically in an anaerobic thermal environment. Initially RNA formed.
Cellular Evolution Oparin and his coworkers performed studies on the properties of microspheres that form spontaneously in the colloidal solution of two different polymeric substances such as GUM ARABIC and HISTONE.
These microspheres, which Oparin called COACERVATES, develop spontaneously when the two polymers are added to water. Coacervates behaves as semipermeable membranes and vacuoles.
Physiological Diversity When Life evolved on Earth, Organic compounds (formed abiotically) served as initial substrates for growth. Cells degrade these compounds and derive energy. Cells growth and maintaned.
Methanogenicarchae used hydrogen and Co2. generate cellular energy. The central molecule of Biological Energy Transformation – ATP. Gradually, organized sequences for enzymatically catalyzed degradation reactions (catabolic pathways) evolved that permitted cells to use the chemical energy of organic substrates to generate ATP more efficiently. Archae – Entner-Doudoroffpathyway (halophilic and thermophilicarchae)
Bacterial and archaeal cells developed ability to utilize sulfur compounds.(early form of anaerobic respiration) Sulfate             hydrogen sulfide.  2.7 billion years Rocks. Most of the hyperthermophilicarchae and bacteria are obligate or facultative autotrophs that use molecular hydrogen and reduce elemental sulfur, carbondioxide, or oxygen. (reductive acetyl-CoA pathway or reductive citric acid cycle) not Calvin cycle for Co2 assimilation. Chemoautotrophy predated photoautotrophy.
It was limited pool of nutritional resources. There was selective pressure for more direct utilization of the radiant sun energy to fuel life processes – to generate ATP. They used hydrogen sulfide, which was present in the Oceans, as a source of electrons for the reduction of carbon dioxide.
Early photosynthesis was anoxygenic (non oxygen producing) type found      today in the Rhodospirillaceae,Chromatiaceae and Chlorobiaceae, the anaerobic photosynthetic bacteria. Lack Photosystem II and unable to use the Hydrogen in water for the reduction of carbon dioxide.
Early cyanobacteria did not posses Photosystem II. Under anoxic, H2S rich conditions, some contemporarycyanobacteria revert to anoxygenic photosynthesis and use only their photosystem I (Cohen et al. 1986). Important Evolutionary step – use of Chemiosmosis for ATP generation – it improved the efficiency of generating ATP.
The Evolution of Oxygenic (oxygen producing) photosynthesis in cyanobacteria is evidenced by the appearance of heterocyst like structures and banded iron formation approximately 2.0 – 2.5 billion years ago. Heterocysts – separating the oxygen sensitive nitrogen fixation system from oxygen evolving photosynthesis.
The dating of the development of oxygen producing metabolism is based upon the observation that about 2.5 billion years ago virtually all iron disappeared from the oceans. A few million years – oxidized iron was deposited in sediments. Prior to this period, all iron deposits were reduced.
This record indicates that about 2 billion years ago the originally reducing atmosphere of our planet changed to an oxidizing one. Oxygen accumulated in the atmosphere. And some cells developed the capacity of nitrogen fixation.
The geologic evidence – oxygenic photosynthetic microorganisms – 2 billion years ago. Some  fix atmospheric nitrogen. Oxygen accumulation in the atmosphere haled abiotic generation of organic compounds – (strictly anaerobic conditions).
Ozone formed from molecular oxygen reduced the influx of ultaviolet radiation – (perticularly less than 200 nm) was major energy.
The Evolution of photosystem II in cyanobacteria  - source of reducing power in the form of water. More  solar energy is required to split the Strong H-O-H than H-S-H. Oxygen evolved in this type of photsynthesis was toxic to most existing forms of anaerobic life. There became extinct or were restricted to specific environments that still live obligatory anaerobic. Nitrogen fixing cells develop adaptations to protect nitrogenase enzyme.
Great physiological diversification  - efficient modes of substrate utilization. Some cells developed chemoautotrophic metabolic capabilities in which inorganic molecules are used to generate ATP. Other generate ATP from Organic substrates.
BIODIVERSITY
MICROBIAL BIODIVERSITY New species of microorganisms evolved through the interactions of their genomes with the environment giving rise to great microbial diversity and altered ecosystem functions. (Allsopp et al. 1995). 3 billion years of microbial evolution involved very limited changes in size and morphology, compare to multicellular organisms. Gradual evolution of biochemical pathways and regulatory mechanisms.
Darwinian Principles: Mutations, genetic recombination and natural selection all played roles in the evolution of new microbial species. As evolution proceeded, new kinds of microorganisms appeared so that the diversity of the microbial world increased. New and diverse microorganisms represent new species (Latin Spec = look or behold the kind, appearance, or form of something)
The biodiversification of microorganisms has been occurring for over 3.85 billions years compared to only 600 million years for macroorganisms. Great biodiversity of Microbial world has yet to be discovered. Bacterial Biodiversity Archaeal Biodiversity Eucaryal Biodiversity
Bacterial Biodiversity Aquificales (Aquifex and Hydrogenobacter lineage) – oldest evolutionary branch within the Bacterial domain. – show about early bacterial ecology and physiology.  Use H2, S2O32- (thiosulfate) and S0 (sulfur) as electron donors to reduce oxygen to water. Aquifex = water maker Water was metabolic waste product. Aquifex pyrophilus – extreme thermophile – from hydrothermal vent in Iceland – 85o C and also 950C.
These physiological properties suggest that ancestral bacterial progenitor was thermophilic and fix carbon chemoautotrophically (Achenbac-Richter et al. 1987).
Thermotogales are another deeply rooted evolutionary branch within the Bacterial domain. The Thermotogales are extremely thermophilic microorganisms, which supports that hypothesis that the earliest microorganisms. (Many Thermotoga and Thermosipho spp. Isolated from sulfur hot springs). As the Earth cooled, bacteria evolved that grow at low temperatures, including the low temperatures that characterize most of the oceans and the near freezing temperatures of many soils. Photosynthesis Chemolithotrophs Photosynthetic purple bacteria
The Evolution of Bacteria (eubacteria) – at least 12 lineages (Kingdoms) 0.1  Change per nucleotide (nt) BACTERIA Proteobacteria Deinococci Cyanobacteria Gram Positives Green Nonsulfur Bacteria Chlamydiae Planctomyces Bacteroides and relatives Thermotogales Aquificales Green sulfur bacteria ARCHAEA  AND  EUCARYA Spirochetes
Chlamydia Planctomyces Flavobacterium Flexibacter Synechococcus Leptonema Gloeobacter Chlorobium Agrobacterium Rhodocyclus Escherichia coli Desulfovibrio Cloastridium Heliobacterium Arthrobacter Bacillus ARCHAEA Thermus EUCARYA Thermomicrobium Thermotoga Hydrogenobacter Aquifex Numerous species evolved within the 12 kingdoms 0.1 Change per nucleotide (nt)
Archael Biodiversity Distinct physiological properties Since Earth was hot and anaerobic Cytoplasmic membranes – branched hydrocarbons and ether linkages compared to the straight chain fatty acids and ester linkages found in the membranes of all other organisms. Some form tetraethers and have monolayer membranes instead of the typical bilipids. Instead of peptidoglycan, their cell walls consist of proteins and glycoproteins, some contain pseudomurein.
The metabolic cofactors of the Archaea also differ from those of Bacteria and Eucarya:  Coenzymes M (involved in C1 metabolism) Factor F 420 ( involved in electron transport ) 7-mercaptoheptanoylthreonine phosphate (involved in methanogenesis) Tetrahydromethanopterin (instead of folate) Methanofuran Retinal
The Evolution of the Archaea (based upon rRNA analyses) – 3 kingdoms. Haloferax EURYARCHAEOTA Methanospirillum Thermoplasma Methanobacterium CRENARCHAEOTA Desulfurococcus Sulfolobus Methanothermus Pyrodictium Archaeoglobus Thermoproteus Methanococcus vannielii Thermofilum Methanococcus jannaschii pSL50 Thermococcus pJP96 Methanopyrus pSL12 BACTERIA pSL4 pSL 17 pSL 22 Marine SBAR5 pJP27 KORARCHAEOTA pJP78 EUCARYA 0.1 Change per nucleotide (nt)
Eucaryal Biodiversity Fossils of eukaryotes appear coincides with a decline in stromatolites deposited by bacterial mats. Green algae and fungi. ( 1 billion year old) Nucleated eukaryotic  cell, sexual reproduction. (Pace of evolution). PALEOZOIC GEOLOGICAL AGE : Macrofossils of plants and animals appeared.
rRNA analyses reveal that eukaryotes evolved much earlier, shortly after the evolution of the Archaea. Unicellular, anaerobic mesophilic organisms domain. Great diversification – acquisition of mitochondria and chloroplasts through endosymbiosis. Independent analyses of cytochromes, ferredoxins, and rRNA molecules indicate that mitochondria originated from the Proteobacteria (purple bacteria) and the chloroplast came from cyanobacteria. Sexual reproduction within eucaryotes – rapid evolution of new organisms.
The Archeozoa – primitive protozoa. ( represent the descendants of early eucaryotes that evolved prior to the endosymbiotic acquisition of mitochondria.  They had nucleus, endoplasmic reticulum, rudimentary cytoskeleton, and the 9 + 2 organization of flagella – lack Mitochondria. Metamonada, Microsporidiaand Parabasilia have 70S ribosomes – like those of bacterial and archaeal cells. Metamonanda and Microsporidia also lack hydrogenosomes ( organelles of anaerobic protozoa – involved with energy transformation) and Golgi apparatus (involved in export of materials by exocytosis).
Metamonada – Giardia and Hexamita. Microsporidia - Enterocytozoon and Vairimorpha. Parabasilia - Trichomonas. Giardialamblia – human parasite  - attaches to mucosa of the intestine and reproduces there  - causing giardiasis. – carries out anaerobic metabolism. ( have 2 nuclei and 8 flagella,70S ribosomes with 16S rRNA containing only 1453 nucleotides in the small 30S subunit, rudimentary cytoskeleton. BUT  LACK -  mitochondria, endoplasmic reticulum, and Golgi apparatus, sexual reproduction.) Deeply rooted animal parasites.
Protozoa ofnext evolution  - within  Eucaryal domain after Archeozoa– have 80S ribosomes and organelles (mitochondria and in some cases chloroplasts) – Cavalier-Smith 1993. These eucaryotes demonstrate primarily phagotrophic mode of nutrient acquisition. Kinetoplastid protozoa (Trypanosomabrucei) and Euglenoid protozoa ( Euglena gracilis) – 9+2 microtubule arrangement flagella, organelles, tubular mitochondrial cristae (others lamellar cristae). The Entamoebidaeappear to have developed at about the same time as the slime molds through the loss of their mitochondria.
They developed more elaborate genetic organizations. Ciliate protozoa emerged a an evolutionary group more than one billion years ago. By that time, meiosis and fertilization had been established in eucaryotes. Late Protozoa evolution  - same time Ciliates evolved, there was nearly simultaneous branching of the animals, fungi, chlorophyte algae, plants and chromophyte algae.
Algae originally considered along with protozoa to compose the protists. Chloroplasts in diatoms and brown algae occur in the lumen of the rough endoplasmic reticulum and are surrounded by a unique periplastic membrane.  As such diatoms and brown algae classified as CHROMISTA. The unique membrane surrounding the chloroplasts of Chromista arose from the cytoplasmic membrane of the Photosyntheticprotozoan that was engulfed.
Analyses of 18S rRNAs indicate that the water molds (oomycetes) and net slime molds (Labyrinthula) are closely related to the photosynthetic diatoms and brown algae. Oomycetes – true fungi – tubular mitochondrial cristae  - cellulosic cell walls. Kingdom Plantae – Evolution 2 lineages –  Green algae (Charophyta and Chlorophyta) along with higher green plants  - embryonic developmental stages. Red algae (Rhodophyta).
The Green Algae, Red Algae and plants evolved from a phagotrophic protozoan by the symbiotic acquisition of chloroplasts from photosynthetic bacteria, almost certainly cyanobacteria. Fungi Evolution from protozoa – 400 million years ago – acquisition of rigid chitinous cell walls that eliminated phagotrophic mode of nutrition. Fungi – nutrients by absorption. Fungi evolved diverse reproductive strategies. Early fungi were unicellular yeasts that reproduced by binary fission – later developed budding Ascomycete and basidiomycete fungi evolved – sexual reproduction  (major evolutionary lineages of the fungi). Ascomycetes – major group of fungi that form sexual spores (ascospores) with in a specialized sac (ascus). Earliest ascus producing fungi were yeasts that reproduced by fission. Basidiomycetes form sexual spores (basidiospores) on specialized cells (basidia)  on fruiting bodies (basidiocarps) that are usually macroscopic structures such as mushrooms. Basidia have complex structures that approach levels of organizational complexity comparable to some plants and animals. These fungi represent the pinnacle of evolution among microorganisms.
CHROMISTA The Evolution of the Eucarya FUNGI Cryptomonas Costaria Coprinus Achlya ANIMALS Porphyra Babesia Homo Zea Paramecium Trypanosoma BACTERIA Euglena EUCARYA Dictyostelium PROTOZOA Entamoeba Naegleria Physarum ARCHAEA Encephalitozoon Vairimorpha Tritrichomonas Giardia Hexamita ARCHEOZOA 0.1 Change per nucleotide (nt)
BIODIVERSITY
Good bye Majid Mohiuddin

Weitere ähnliche Inhalte

Was ist angesagt?

Distribution of microbes in aquatic environment
Distribution of microbes in aquatic environmentDistribution of microbes in aquatic environment
Distribution of microbes in aquatic environmentRinaldo John
 
Archaea Bacteria (Methanogens, Halophiles, Thermophiles)
Archaea Bacteria (Methanogens, Halophiles, Thermophiles)Archaea Bacteria (Methanogens, Halophiles, Thermophiles)
Archaea Bacteria (Methanogens, Halophiles, Thermophiles)Dr. Mohammedazim Bagban
 
bioaugmentation as remediation technology
bioaugmentation as remediation technologybioaugmentation as remediation technology
bioaugmentation as remediation technologyNeelimaKdhanam
 
Microorganisms in air
Microorganisms in airMicroorganisms in air
Microorganisms in airSaad Farooqi
 
Extremopilic microorganisms
Extremopilic microorganismsExtremopilic microorganisms
Extremopilic microorganismsjithinveng
 
Microbial habitats
Microbial habitatsMicrobial habitats
Microbial habitatsMicrobiology
 
Archeabacteria presentation
Archeabacteria presentationArcheabacteria presentation
Archeabacteria presentationHina Zamir Noori
 
Biodegradation of xenobiotics
Biodegradation of xenobioticsBiodegradation of xenobiotics
Biodegradation of xenobioticsgaurav raja
 
bioluminscence of microorganisms
bioluminscence of microorganismsbioluminscence of microorganisms
bioluminscence of microorganismsaishudiva
 
Microbial interactions
Microbial interactionsMicrobial interactions
Microbial interactionsLani Manahan
 
Biodegradation of xenobiotics
Biodegradation of xenobioticsBiodegradation of xenobiotics
Biodegradation of xenobioticsSushmita Pradhan
 
Microbial flora of soil
Microbial flora of soilMicrobial flora of soil
Microbial flora of soilSuganyaPaulraj
 
Aquatic microbiology
Aquatic microbiologyAquatic microbiology
Aquatic microbiologyHalala Rahman
 
Microorganisms in Marine Environments
Microorganisms in Marine EnvironmentsMicroorganisms in Marine Environments
Microorganisms in Marine EnvironmentsNagat Abd Elrahim
 

Was ist angesagt? (20)

Thermophile
ThermophileThermophile
Thermophile
 
Introduction to Microbial Diversity
Introduction to Microbial DiversityIntroduction to Microbial Diversity
Introduction to Microbial Diversity
 
Distribution of microbes in aquatic environment
Distribution of microbes in aquatic environmentDistribution of microbes in aquatic environment
Distribution of microbes in aquatic environment
 
Archaea Bacteria (Methanogens, Halophiles, Thermophiles)
Archaea Bacteria (Methanogens, Halophiles, Thermophiles)Archaea Bacteria (Methanogens, Halophiles, Thermophiles)
Archaea Bacteria (Methanogens, Halophiles, Thermophiles)
 
bioaugmentation as remediation technology
bioaugmentation as remediation technologybioaugmentation as remediation technology
bioaugmentation as remediation technology
 
Air microbiology
Air microbiologyAir microbiology
Air microbiology
 
Microorganisms in air
Microorganisms in airMicroorganisms in air
Microorganisms in air
 
Biodegradation of hydrocarbon
Biodegradation of hydrocarbonBiodegradation of hydrocarbon
Biodegradation of hydrocarbon
 
Microbial metabolism
Microbial metabolismMicrobial metabolism
Microbial metabolism
 
Extremopilic microorganisms
Extremopilic microorganismsExtremopilic microorganisms
Extremopilic microorganisms
 
Microbial habitats
Microbial habitatsMicrobial habitats
Microbial habitats
 
Archeabacteria presentation
Archeabacteria presentationArcheabacteria presentation
Archeabacteria presentation
 
Biodegradation of xenobiotics
Biodegradation of xenobioticsBiodegradation of xenobiotics
Biodegradation of xenobiotics
 
Aquatic microbiology
Aquatic microbiologyAquatic microbiology
Aquatic microbiology
 
bioluminscence of microorganisms
bioluminscence of microorganismsbioluminscence of microorganisms
bioluminscence of microorganisms
 
Microbial interactions
Microbial interactionsMicrobial interactions
Microbial interactions
 
Biodegradation of xenobiotics
Biodegradation of xenobioticsBiodegradation of xenobiotics
Biodegradation of xenobiotics
 
Microbial flora of soil
Microbial flora of soilMicrobial flora of soil
Microbial flora of soil
 
Aquatic microbiology
Aquatic microbiologyAquatic microbiology
Aquatic microbiology
 
Microorganisms in Marine Environments
Microorganisms in Marine EnvironmentsMicroorganisms in Marine Environments
Microorganisms in Marine Environments
 

Andere mochten auch

Ecological niche
Ecological nicheEcological niche
Ecological nicheDavid Rowel
 
Astronomymarssection2studentcopy 131104151841-phpapp02-1
Astronomymarssection2studentcopy 131104151841-phpapp02-1Astronomymarssection2studentcopy 131104151841-phpapp02-1
Astronomymarssection2studentcopy 131104151841-phpapp02-1Dr Robert Craig PhD
 
Lesson 24 ecological niche
Lesson 24 ecological nicheLesson 24 ecological niche
Lesson 24 ecological nichebeaduro
 
Protein memory
Protein memory Protein memory
Protein memory ajay2604
 
Methane production by bacteria
Methane production by bacteria Methane production by bacteria
Methane production by bacteria research
 
The Viking labelled release experiment: life on Mars?
The Viking labelled release experiment:  life on Mars?The Viking labelled release experiment:  life on Mars?
The Viking labelled release experiment: life on Mars?Neil Saunders
 
Archaebacteria
ArchaebacteriaArchaebacteria
Archaebacteriaashu_yende
 
Extremophiles imp. 1
Extremophiles imp. 1Extremophiles imp. 1
Extremophiles imp. 1Anjali Malik
 
Evolution of prokaryotic and eukaryotic cells
Evolution of prokaryotic and eukaryotic cellsEvolution of prokaryotic and eukaryotic cells
Evolution of prokaryotic and eukaryotic cellsE Jei Torres
 
Life On Mars
Life On MarsLife On Mars
Life On MarsFIS
 

Andere mochten auch (20)

Extremophiles
ExtremophilesExtremophiles
Extremophiles
 
Archaea methanogens
Archaea methanogensArchaea methanogens
Archaea methanogens
 
Ecological niche
Ecological nicheEcological niche
Ecological niche
 
Astronomymarssection2studentcopy 131104151841-phpapp02-1
Astronomymarssection2studentcopy 131104151841-phpapp02-1Astronomymarssection2studentcopy 131104151841-phpapp02-1
Astronomymarssection2studentcopy 131104151841-phpapp02-1
 
Lesson 24 ecological niche
Lesson 24 ecological nicheLesson 24 ecological niche
Lesson 24 ecological niche
 
Metanogenesis
MetanogenesisMetanogenesis
Metanogenesis
 
Protein memory
Protein memory Protein memory
Protein memory
 
Ecology and niche
Ecology and nicheEcology and niche
Ecology and niche
 
Methane production by bacteria
Methane production by bacteria Methane production by bacteria
Methane production by bacteria
 
The Viking labelled release experiment: life on Mars?
The Viking labelled release experiment:  life on Mars?The Viking labelled release experiment:  life on Mars?
The Viking labelled release experiment: life on Mars?
 
Archaebacteria
ArchaebacteriaArchaebacteria
Archaebacteria
 
Extremophiles imp. 1
Extremophiles imp. 1Extremophiles imp. 1
Extremophiles imp. 1
 
Evolution of prokaryotic and eukaryotic cells
Evolution of prokaryotic and eukaryotic cellsEvolution of prokaryotic and eukaryotic cells
Evolution of prokaryotic and eukaryotic cells
 
Soil Microbiology
Soil MicrobiologySoil Microbiology
Soil Microbiology
 
Gc ms ppt
Gc ms pptGc ms ppt
Gc ms ppt
 
Methanogenesis
MethanogenesisMethanogenesis
Methanogenesis
 
life on mars
life on marslife on mars
life on mars
 
Viking mission
Viking missionViking mission
Viking mission
 
Life On Mars
Life On MarsLife On Mars
Life On Mars
 
Gc Ms
Gc MsGc Ms
Gc Ms
 

Ähnlich wie Biodiversity and Microbial Biodiversity

introductiontolifescience-161104052948.pdf
introductiontolifescience-161104052948.pdfintroductiontolifescience-161104052948.pdf
introductiontolifescience-161104052948.pdfMarichellAbande
 
The Historical Development of the Concept of Life
The Historical Development of the Concept of LifeThe Historical Development of the Concept of Life
The Historical Development of the Concept of LifeRuwyne Akkean Obediente
 
Key events and evidence in the evolution of.pptx
Key events and evidence in the evolution of.pptxKey events and evidence in the evolution of.pptx
Key events and evidence in the evolution of.pptxKiren10
 
Microbial contributions and global environmental change
Microbial contributions and global environmental changeMicrobial contributions and global environmental change
Microbial contributions and global environmental changeDr. sreeremya S
 
A historical Sketch of Biogeochemical Cycle
A historical Sketch of Biogeochemical CycleA historical Sketch of Biogeochemical Cycle
A historical Sketch of Biogeochemical CycleMdIbrahim461538
 
Biological cycles
Biological cyclesBiological cycles
Biological cyclesAliVirk17
 
Ap Chap 25 The History Of Life On Earth
Ap Chap 25 The History Of Life On EarthAp Chap 25 The History Of Life On Earth
Ap Chap 25 The History Of Life On Earthsmithbio
 
Bio17 The History of Life
Bio17 The History of LifeBio17 The History of Life
Bio17 The History of LifeMary Beth Smith
 
History Of Life On Earth
History Of Life On EarthHistory Of Life On Earth
History Of Life On Earthteachingmike
 
Chapter 25
Chapter 25Chapter 25
Chapter 25ktanaka2
 
Biosphere origin ,structure & development
Biosphere origin ,structure & developmentBiosphere origin ,structure & development
Biosphere origin ,structure & developmentstanmarshsp
 
The first cells
The first cellsThe first cells
The first cellszqc
 
Evolutionary Biology: Based on CBCS (2019 Credit Pattern); Savitribai Phule P...
Evolutionary Biology: Based on CBCS (2019 Credit Pattern); Savitribai Phule P...Evolutionary Biology: Based on CBCS (2019 Credit Pattern); Savitribai Phule P...
Evolutionary Biology: Based on CBCS (2019 Credit Pattern); Savitribai Phule P...Shoeb Ahmad
 
Earth's early history
Earth's early historyEarth's early history
Earth's early historySSpencer53
 

Ähnlich wie Biodiversity and Microbial Biodiversity (20)

introductiontolifescience-161104052948.pdf
introductiontolifescience-161104052948.pdfintroductiontolifescience-161104052948.pdf
introductiontolifescience-161104052948.pdf
 
The Historical Development of the Concept of Life
The Historical Development of the Concept of LifeThe Historical Development of the Concept of Life
The Historical Development of the Concept of Life
 
Key events and evidence in the evolution of.pptx
Key events and evidence in the evolution of.pptxKey events and evidence in the evolution of.pptx
Key events and evidence in the evolution of.pptx
 
Microbial contributions and global environmental change
Microbial contributions and global environmental changeMicrobial contributions and global environmental change
Microbial contributions and global environmental change
 
A historical Sketch of Biogeochemical Cycle
A historical Sketch of Biogeochemical CycleA historical Sketch of Biogeochemical Cycle
A historical Sketch of Biogeochemical Cycle
 
EVOLUTION
EVOLUTION EVOLUTION
EVOLUTION
 
Origin of Life
Origin of Life Origin of Life
Origin of Life
 
Biological cycles
Biological cyclesBiological cycles
Biological cycles
 
Chapter ten
Chapter tenChapter ten
Chapter ten
 
Ap Chap 25 The History Of Life On Earth
Ap Chap 25 The History Of Life On EarthAp Chap 25 The History Of Life On Earth
Ap Chap 25 The History Of Life On Earth
 
Bio17 The History of Life
Bio17 The History of LifeBio17 The History of Life
Bio17 The History of Life
 
History Of Life On Earth
History Of Life On EarthHistory Of Life On Earth
History Of Life On Earth
 
Chapter 25
Chapter 25Chapter 25
Chapter 25
 
An ecological perspective on global climate change
An ecological perspective on global climate changeAn ecological perspective on global climate change
An ecological perspective on global climate change
 
Earth part 2
Earth part 2Earth part 2
Earth part 2
 
Biosphere origin ,structure & development
Biosphere origin ,structure & developmentBiosphere origin ,structure & development
Biosphere origin ,structure & development
 
Biogeo cycles
Biogeo cyclesBiogeo cycles
Biogeo cycles
 
The first cells
The first cellsThe first cells
The first cells
 
Evolutionary Biology: Based on CBCS (2019 Credit Pattern); Savitribai Phule P...
Evolutionary Biology: Based on CBCS (2019 Credit Pattern); Savitribai Phule P...Evolutionary Biology: Based on CBCS (2019 Credit Pattern); Savitribai Phule P...
Evolutionary Biology: Based on CBCS (2019 Credit Pattern); Savitribai Phule P...
 
Earth's early history
Earth's early historyEarth's early history
Earth's early history
 

Mehr von Dr. Majid Mohiuddin (Hashmi)

Infectious diseases of resp,gas,nervs & sexually transmitted Diseases, circul...
Infectious diseases of resp,gas,nervs & sexually transmitted Diseases, circul...Infectious diseases of resp,gas,nervs & sexually transmitted Diseases, circul...
Infectious diseases of resp,gas,nervs & sexually transmitted Diseases, circul...Dr. Majid Mohiuddin (Hashmi)
 

Mehr von Dr. Majid Mohiuddin (Hashmi) (20)

Water microbiology
Water microbiologyWater microbiology
Water microbiology
 
Infectious diseases of the eyes
Infectious diseases of the eyesInfectious diseases of the eyes
Infectious diseases of the eyes
 
Infectious diseases of the ears
Infectious diseases of the earsInfectious diseases of the ears
Infectious diseases of the ears
 
Mycology
MycologyMycology
Mycology
 
Infectious diseases of resp,gas,nervs & sexually transmitted Diseases, circul...
Infectious diseases of resp,gas,nervs & sexually transmitted Diseases, circul...Infectious diseases of resp,gas,nervs & sexually transmitted Diseases, circul...
Infectious diseases of resp,gas,nervs & sexually transmitted Diseases, circul...
 
Infectious diseases of the ears,eyes,mouth
Infectious diseases of the ears,eyes,mouthInfectious diseases of the ears,eyes,mouth
Infectious diseases of the ears,eyes,mouth
 
Mycoses
MycosesMycoses
Mycoses
 
Infectious diseases of the skin and wound
Infectious diseases of the skin and woundInfectious diseases of the skin and wound
Infectious diseases of the skin and wound
 
Introduction to infectious diseases
Introduction to infectious diseasesIntroduction to infectious diseases
Introduction to infectious diseases
 
Waste Water Treatment
Waste Water TreatmentWaste Water Treatment
Waste Water Treatment
 
Analysis Of Water Pollutions
Analysis Of Water PollutionsAnalysis Of Water Pollutions
Analysis Of Water Pollutions
 
Waterpollution1
Waterpollution1Waterpollution1
Waterpollution1
 
7 ChemotherapySYNTHETIC MEDICINAL AGENTS (DRUGS)
7 ChemotherapySYNTHETIC MEDICINAL AGENTS (DRUGS)7 ChemotherapySYNTHETIC MEDICINAL AGENTS (DRUGS)
7 ChemotherapySYNTHETIC MEDICINAL AGENTS (DRUGS)
 
ANTISEPTIC
ANTISEPTICANTISEPTIC
ANTISEPTIC
 
CHEMICAL NON-MEDICINAL ANTIMICROBIALS
CHEMICAL NON-MEDICINAL ANTIMICROBIALSCHEMICAL NON-MEDICINAL ANTIMICROBIALS
CHEMICAL NON-MEDICINAL ANTIMICROBIALS
 
Antimicrobials
AntimicrobialsAntimicrobials
Antimicrobials
 
PLANTS AND ARSENICALS AS THERAPEUTIC AGENTS
PLANTS AND ARSENICALS AS THERAPEUTIC AGENTSPLANTS AND ARSENICALS AS THERAPEUTIC AGENTS
PLANTS AND ARSENICALS AS THERAPEUTIC AGENTS
 
ANTIMICROBIALS
ANTIMICROBIALSANTIMICROBIALS
ANTIMICROBIALS
 
ANTIMICROBIAL CHEMOTHERAPY
ANTIMICROBIAL CHEMOTHERAPYANTIMICROBIAL CHEMOTHERAPY
ANTIMICROBIAL CHEMOTHERAPY
 
HISTORY OF CANCER CHEMOTHERAPY
HISTORY OF CANCER CHEMOTHERAPYHISTORY OF CANCER CHEMOTHERAPY
HISTORY OF CANCER CHEMOTHERAPY
 

Kürzlich hochgeladen

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 

Kürzlich hochgeladen (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 

Biodiversity and Microbial Biodiversity

  • 1. BIODIVERSITY and Microbial biodiversity Majid Mohiuddin
  • 2. The Origins of Life Our Planet was Lifeless. Based on radioisotopicdating associated with fossils (mainly Uranium to lead decay). The Oldest macrofossils of plants and animals are only 0.6-0.7 billion years old. If these were the remains of the original living organisms, the planet would have been lifeless for almost 4 billion years.
  • 3. Now evidence that microbial life existed more than 3.85 billion years ago (Mojzsis et al. 1996). 1 billion after the formation of earth and 3 billions years before the appearance of macroscopic plants and animals. (Nisbet 1980). Microscopic fossils of procaryotic cells (primitive microorganisms) have been identified in 3.5 billion year old rocks. Rocks that are 3.85 billion years old have been found to contain organic matter rich in 12C.
  • 4. The geochemical evidence indicates that living organisms were assimilating carbon into organic molecules from atmospheric methane and carbondioxide. Data also suggest that this process was changing the chemical composition of Earth within 1 billion years of Earth’s formation.
  • 5. Comparison of atmospheric and temperature conditions
  • 6. Life exist on Earth and That Microorganisms had influence in shaping its currently prevailing Physicochemcial conditions.
  • 7.
  • 8. Today Earth provides a favorable environment for the proliferation of life. It took millions of years after formation of Earth for conditions to develop that permitted life to evolve and survive. It is true that Earth was favored by a sufficient mass and gravitational pull to retain most atmospheric gases and by a distance from the sun that allowed most of its water to remain in the liquid state. All conditions will not favorable to predate life.
  • 9. What is the role of Life? The role of life in forming the physicochemical environment of our planet and it is maintaining the environment in its current state (Gaia Hypothesis) (by James Lovelock – 1979).
  • 10. Chemical Evolution Prebiotic Earth Chemical Evolution (by Russian Scientist Alexander IvanovichOparin and British Scientist John B.S. Haldane) between 1925 and 1930. Premitiveprebiotic Earth had an anaerobic atmosphere consisting largely of Carbondioxide nitrogen, hydrogen and water vapor with smaller amounts of ammonia, carbon monoxide, and hydrogen sulfide. In such chemical mixture, organic compounds would have formed with relatively small inputs of energy. Oxygen was absent or present only in trace amounts. Lack of an ozone. Temperature extremes (both geographical and seasonal) Large amount of abiotically formed organic matter apparently present mainly in dissolved or suspended forms, from which Life could evolve.
  • 11. Radiant, geothermal electric discharge and radioactive decay energy fueled the slow chemical evolution of this organic matter toward ever more complex and polymeric forms. The resulting macromolecules were endowed with an inherent tendency to aggregate and form membrane like interface toward the surrounding liquid, foreshadowing a cellular organization. In an environment free of oxygen and microbial decomposers, this chemical evolution could proceed uninterrupted for millions of years. (Stanley L. Miller and Harold C. Urey Experiments) Oparin Haldane theory of Chemical evolution is the best known and accepted one. This theory suggests that life began on Earth’s surface in areas where organic chemicals accumulated. An alternative hypothesis is that life on Earth began at deep ocean thermal vents. – mixture of chemicals and catalysts needed for formation of life.
  • 12. First living organisms based on surface catalysis (German Scientist GuntherWachtershauser 1988). The first form of “Life” visualized by this theory is an acellular organic film, which is anionically attached to positively charged mineral surfaces and grows chemoautotraphically in an anaerobic thermal environment. Initially RNA formed.
  • 13. Cellular Evolution Oparin and his coworkers performed studies on the properties of microspheres that form spontaneously in the colloidal solution of two different polymeric substances such as GUM ARABIC and HISTONE.
  • 14. These microspheres, which Oparin called COACERVATES, develop spontaneously when the two polymers are added to water. Coacervates behaves as semipermeable membranes and vacuoles.
  • 15. Physiological Diversity When Life evolved on Earth, Organic compounds (formed abiotically) served as initial substrates for growth. Cells degrade these compounds and derive energy. Cells growth and maintaned.
  • 16. Methanogenicarchae used hydrogen and Co2. generate cellular energy. The central molecule of Biological Energy Transformation – ATP. Gradually, organized sequences for enzymatically catalyzed degradation reactions (catabolic pathways) evolved that permitted cells to use the chemical energy of organic substrates to generate ATP more efficiently. Archae – Entner-Doudoroffpathyway (halophilic and thermophilicarchae)
  • 17. Bacterial and archaeal cells developed ability to utilize sulfur compounds.(early form of anaerobic respiration) Sulfate hydrogen sulfide. 2.7 billion years Rocks. Most of the hyperthermophilicarchae and bacteria are obligate or facultative autotrophs that use molecular hydrogen and reduce elemental sulfur, carbondioxide, or oxygen. (reductive acetyl-CoA pathway or reductive citric acid cycle) not Calvin cycle for Co2 assimilation. Chemoautotrophy predated photoautotrophy.
  • 18. It was limited pool of nutritional resources. There was selective pressure for more direct utilization of the radiant sun energy to fuel life processes – to generate ATP. They used hydrogen sulfide, which was present in the Oceans, as a source of electrons for the reduction of carbon dioxide.
  • 19. Early photosynthesis was anoxygenic (non oxygen producing) type found today in the Rhodospirillaceae,Chromatiaceae and Chlorobiaceae, the anaerobic photosynthetic bacteria. Lack Photosystem II and unable to use the Hydrogen in water for the reduction of carbon dioxide.
  • 20. Early cyanobacteria did not posses Photosystem II. Under anoxic, H2S rich conditions, some contemporarycyanobacteria revert to anoxygenic photosynthesis and use only their photosystem I (Cohen et al. 1986). Important Evolutionary step – use of Chemiosmosis for ATP generation – it improved the efficiency of generating ATP.
  • 21. The Evolution of Oxygenic (oxygen producing) photosynthesis in cyanobacteria is evidenced by the appearance of heterocyst like structures and banded iron formation approximately 2.0 – 2.5 billion years ago. Heterocysts – separating the oxygen sensitive nitrogen fixation system from oxygen evolving photosynthesis.
  • 22. The dating of the development of oxygen producing metabolism is based upon the observation that about 2.5 billion years ago virtually all iron disappeared from the oceans. A few million years – oxidized iron was deposited in sediments. Prior to this period, all iron deposits were reduced.
  • 23. This record indicates that about 2 billion years ago the originally reducing atmosphere of our planet changed to an oxidizing one. Oxygen accumulated in the atmosphere. And some cells developed the capacity of nitrogen fixation.
  • 24. The geologic evidence – oxygenic photosynthetic microorganisms – 2 billion years ago. Some fix atmospheric nitrogen. Oxygen accumulation in the atmosphere haled abiotic generation of organic compounds – (strictly anaerobic conditions).
  • 25. Ozone formed from molecular oxygen reduced the influx of ultaviolet radiation – (perticularly less than 200 nm) was major energy.
  • 26. The Evolution of photosystem II in cyanobacteria - source of reducing power in the form of water. More solar energy is required to split the Strong H-O-H than H-S-H. Oxygen evolved in this type of photsynthesis was toxic to most existing forms of anaerobic life. There became extinct or were restricted to specific environments that still live obligatory anaerobic. Nitrogen fixing cells develop adaptations to protect nitrogenase enzyme.
  • 27. Great physiological diversification - efficient modes of substrate utilization. Some cells developed chemoautotrophic metabolic capabilities in which inorganic molecules are used to generate ATP. Other generate ATP from Organic substrates.
  • 29.
  • 30.
  • 31. MICROBIAL BIODIVERSITY New species of microorganisms evolved through the interactions of their genomes with the environment giving rise to great microbial diversity and altered ecosystem functions. (Allsopp et al. 1995). 3 billion years of microbial evolution involved very limited changes in size and morphology, compare to multicellular organisms. Gradual evolution of biochemical pathways and regulatory mechanisms.
  • 32. Darwinian Principles: Mutations, genetic recombination and natural selection all played roles in the evolution of new microbial species. As evolution proceeded, new kinds of microorganisms appeared so that the diversity of the microbial world increased. New and diverse microorganisms represent new species (Latin Spec = look or behold the kind, appearance, or form of something)
  • 33. The biodiversification of microorganisms has been occurring for over 3.85 billions years compared to only 600 million years for macroorganisms. Great biodiversity of Microbial world has yet to be discovered. Bacterial Biodiversity Archaeal Biodiversity Eucaryal Biodiversity
  • 34.
  • 35.
  • 36.
  • 37. Bacterial Biodiversity Aquificales (Aquifex and Hydrogenobacter lineage) – oldest evolutionary branch within the Bacterial domain. – show about early bacterial ecology and physiology. Use H2, S2O32- (thiosulfate) and S0 (sulfur) as electron donors to reduce oxygen to water. Aquifex = water maker Water was metabolic waste product. Aquifex pyrophilus – extreme thermophile – from hydrothermal vent in Iceland – 85o C and also 950C.
  • 38. These physiological properties suggest that ancestral bacterial progenitor was thermophilic and fix carbon chemoautotrophically (Achenbac-Richter et al. 1987).
  • 39. Thermotogales are another deeply rooted evolutionary branch within the Bacterial domain. The Thermotogales are extremely thermophilic microorganisms, which supports that hypothesis that the earliest microorganisms. (Many Thermotoga and Thermosipho spp. Isolated from sulfur hot springs). As the Earth cooled, bacteria evolved that grow at low temperatures, including the low temperatures that characterize most of the oceans and the near freezing temperatures of many soils. Photosynthesis Chemolithotrophs Photosynthetic purple bacteria
  • 40. The Evolution of Bacteria (eubacteria) – at least 12 lineages (Kingdoms) 0.1 Change per nucleotide (nt) BACTERIA Proteobacteria Deinococci Cyanobacteria Gram Positives Green Nonsulfur Bacteria Chlamydiae Planctomyces Bacteroides and relatives Thermotogales Aquificales Green sulfur bacteria ARCHAEA AND EUCARYA Spirochetes
  • 41. Chlamydia Planctomyces Flavobacterium Flexibacter Synechococcus Leptonema Gloeobacter Chlorobium Agrobacterium Rhodocyclus Escherichia coli Desulfovibrio Cloastridium Heliobacterium Arthrobacter Bacillus ARCHAEA Thermus EUCARYA Thermomicrobium Thermotoga Hydrogenobacter Aquifex Numerous species evolved within the 12 kingdoms 0.1 Change per nucleotide (nt)
  • 42. Archael Biodiversity Distinct physiological properties Since Earth was hot and anaerobic Cytoplasmic membranes – branched hydrocarbons and ether linkages compared to the straight chain fatty acids and ester linkages found in the membranes of all other organisms. Some form tetraethers and have monolayer membranes instead of the typical bilipids. Instead of peptidoglycan, their cell walls consist of proteins and glycoproteins, some contain pseudomurein.
  • 43. The metabolic cofactors of the Archaea also differ from those of Bacteria and Eucarya: Coenzymes M (involved in C1 metabolism) Factor F 420 ( involved in electron transport ) 7-mercaptoheptanoylthreonine phosphate (involved in methanogenesis) Tetrahydromethanopterin (instead of folate) Methanofuran Retinal
  • 44. The Evolution of the Archaea (based upon rRNA analyses) – 3 kingdoms. Haloferax EURYARCHAEOTA Methanospirillum Thermoplasma Methanobacterium CRENARCHAEOTA Desulfurococcus Sulfolobus Methanothermus Pyrodictium Archaeoglobus Thermoproteus Methanococcus vannielii Thermofilum Methanococcus jannaschii pSL50 Thermococcus pJP96 Methanopyrus pSL12 BACTERIA pSL4 pSL 17 pSL 22 Marine SBAR5 pJP27 KORARCHAEOTA pJP78 EUCARYA 0.1 Change per nucleotide (nt)
  • 45. Eucaryal Biodiversity Fossils of eukaryotes appear coincides with a decline in stromatolites deposited by bacterial mats. Green algae and fungi. ( 1 billion year old) Nucleated eukaryotic cell, sexual reproduction. (Pace of evolution). PALEOZOIC GEOLOGICAL AGE : Macrofossils of plants and animals appeared.
  • 46. rRNA analyses reveal that eukaryotes evolved much earlier, shortly after the evolution of the Archaea. Unicellular, anaerobic mesophilic organisms domain. Great diversification – acquisition of mitochondria and chloroplasts through endosymbiosis. Independent analyses of cytochromes, ferredoxins, and rRNA molecules indicate that mitochondria originated from the Proteobacteria (purple bacteria) and the chloroplast came from cyanobacteria. Sexual reproduction within eucaryotes – rapid evolution of new organisms.
  • 47. The Archeozoa – primitive protozoa. ( represent the descendants of early eucaryotes that evolved prior to the endosymbiotic acquisition of mitochondria. They had nucleus, endoplasmic reticulum, rudimentary cytoskeleton, and the 9 + 2 organization of flagella – lack Mitochondria. Metamonada, Microsporidiaand Parabasilia have 70S ribosomes – like those of bacterial and archaeal cells. Metamonanda and Microsporidia also lack hydrogenosomes ( organelles of anaerobic protozoa – involved with energy transformation) and Golgi apparatus (involved in export of materials by exocytosis).
  • 48. Metamonada – Giardia and Hexamita. Microsporidia - Enterocytozoon and Vairimorpha. Parabasilia - Trichomonas. Giardialamblia – human parasite - attaches to mucosa of the intestine and reproduces there - causing giardiasis. – carries out anaerobic metabolism. ( have 2 nuclei and 8 flagella,70S ribosomes with 16S rRNA containing only 1453 nucleotides in the small 30S subunit, rudimentary cytoskeleton. BUT LACK - mitochondria, endoplasmic reticulum, and Golgi apparatus, sexual reproduction.) Deeply rooted animal parasites.
  • 49. Protozoa ofnext evolution - within Eucaryal domain after Archeozoa– have 80S ribosomes and organelles (mitochondria and in some cases chloroplasts) – Cavalier-Smith 1993. These eucaryotes demonstrate primarily phagotrophic mode of nutrient acquisition. Kinetoplastid protozoa (Trypanosomabrucei) and Euglenoid protozoa ( Euglena gracilis) – 9+2 microtubule arrangement flagella, organelles, tubular mitochondrial cristae (others lamellar cristae). The Entamoebidaeappear to have developed at about the same time as the slime molds through the loss of their mitochondria.
  • 50. They developed more elaborate genetic organizations. Ciliate protozoa emerged a an evolutionary group more than one billion years ago. By that time, meiosis and fertilization had been established in eucaryotes. Late Protozoa evolution - same time Ciliates evolved, there was nearly simultaneous branching of the animals, fungi, chlorophyte algae, plants and chromophyte algae.
  • 51. Algae originally considered along with protozoa to compose the protists. Chloroplasts in diatoms and brown algae occur in the lumen of the rough endoplasmic reticulum and are surrounded by a unique periplastic membrane. As such diatoms and brown algae classified as CHROMISTA. The unique membrane surrounding the chloroplasts of Chromista arose from the cytoplasmic membrane of the Photosyntheticprotozoan that was engulfed.
  • 52. Analyses of 18S rRNAs indicate that the water molds (oomycetes) and net slime molds (Labyrinthula) are closely related to the photosynthetic diatoms and brown algae. Oomycetes – true fungi – tubular mitochondrial cristae - cellulosic cell walls. Kingdom Plantae – Evolution 2 lineages – Green algae (Charophyta and Chlorophyta) along with higher green plants - embryonic developmental stages. Red algae (Rhodophyta).
  • 53. The Green Algae, Red Algae and plants evolved from a phagotrophic protozoan by the symbiotic acquisition of chloroplasts from photosynthetic bacteria, almost certainly cyanobacteria. Fungi Evolution from protozoa – 400 million years ago – acquisition of rigid chitinous cell walls that eliminated phagotrophic mode of nutrition. Fungi – nutrients by absorption. Fungi evolved diverse reproductive strategies. Early fungi were unicellular yeasts that reproduced by binary fission – later developed budding Ascomycete and basidiomycete fungi evolved – sexual reproduction (major evolutionary lineages of the fungi). Ascomycetes – major group of fungi that form sexual spores (ascospores) with in a specialized sac (ascus). Earliest ascus producing fungi were yeasts that reproduced by fission. Basidiomycetes form sexual spores (basidiospores) on specialized cells (basidia) on fruiting bodies (basidiocarps) that are usually macroscopic structures such as mushrooms. Basidia have complex structures that approach levels of organizational complexity comparable to some plants and animals. These fungi represent the pinnacle of evolution among microorganisms.
  • 54. CHROMISTA The Evolution of the Eucarya FUNGI Cryptomonas Costaria Coprinus Achlya ANIMALS Porphyra Babesia Homo Zea Paramecium Trypanosoma BACTERIA Euglena EUCARYA Dictyostelium PROTOZOA Entamoeba Naegleria Physarum ARCHAEA Encephalitozoon Vairimorpha Tritrichomonas Giardia Hexamita ARCHEOZOA 0.1 Change per nucleotide (nt)
  • 56.
  • 57. Good bye Majid Mohiuddin