SlideShare ist ein Scribd-Unternehmen logo
1 von 42
Derivación
Ing. Mg. Luis Gabriel Lescano Paredes
Definición
• La derivada de una función es un concepto local, es decir, se
calcula como el limite de la rapidez de cambio media de la
función en cierto intervalo, cuando el intervalo considerado
para la variable independiente se torna cada vez más
pequeño.
Pendiente de la función
La recta 𝑥 = 𝑥1 si
𝑚(𝑥1) = lim
∆𝑥→0±
𝑓 𝑥1 + ∆𝑥 − 𝑓 𝑥1
∆𝑥
Es +∞ 𝑜 − ∞
Por lo tanto:
𝑚(𝑓 𝑥 ) = lim
∆𝑥→0
𝑓 𝑥+∆𝑥 −𝑓 𝑥
∆𝑥
𝑓′
𝑥 = lim
∆𝑥→0
𝑓 𝑥 + ∆𝑥 − 𝑓 𝑥
∆𝑥
P
𝑃 𝑥1, 𝑓 𝑥1
Q 𝑥2, 𝑓 𝑥2
∆𝑥 = 𝑥2 − 𝑥1
𝑓 𝑥2 − 𝑓 𝑥1
𝑥2
𝑥1
∆𝑥
Pendiente de la función
𝑓′ 𝑡 = lim
∆𝑡→0
𝑓 𝑡 + ∆𝑡 − 𝑓 𝑡
∆𝑡
𝑓 𝑡 = 𝑡3 − 2𝑡2; s 𝑡 = 𝑡3 − 2𝑡2
𝑣𝑠(𝑡) = 𝑠′(𝑡)
P
𝑃 𝑡1, 𝑓 𝑡1
Q 𝑡2, 𝑓 𝑡2
∆𝑡 = 𝑡2 − 𝑡1
𝑓 𝑡2 − 𝑓 𝑡1
𝑡2
𝑡1
∆𝑡
𝑓 𝑡 = 𝑠
Ejemplo velocidad:
𝑓 𝑡 = 𝑡3 − 2𝑡2; s 𝑡 = 𝑡3 − 2𝑡2
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• s 𝑡 = 𝑡3 − 2𝑡2
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
𝑠 𝑡+∆𝑡 −𝑠 𝑡
∆𝑡
• 𝑠 𝑡 + ∆𝑡 = ( 𝑡 + ∆𝑡 3−2 𝑡 + ∆𝑡 2)
• 𝑠 𝑡 = ( 𝑡 3−2 𝑡 2)
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
( 𝑡+∆𝑡 3−2 𝑡+∆𝑡 2) −( 𝑡 3−2 𝑡 2)
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
((𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3)−(2 𝑡2+2𝑡.∆𝑡+∆𝑡2 )) −( 𝑡 3−2 𝑡 2)
∆𝑡
Ejemplo:
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• s 𝑡 = 𝑡3 − 2𝑡2
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
𝑠 𝑡+∆𝑡 −𝑠 𝑡
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
((𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3)−(2 𝑡2+2𝑡.∆𝑡+∆𝑡2 )) −( 𝑡 3−2 𝑡 2)
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3−2𝑡2−4𝑡.∆𝑡−2∆𝑡2 −𝑡3+2𝑡2)
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3−4𝑡.∆𝑡−2∆𝑡2
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
∆𝑡(3𝑡2+3𝑡∆𝑡+∆𝑡2−4𝑡−2∆𝑡)
∆𝑡
Ejemplo:
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• s 𝑡 = 𝑡3 − 2𝑡2
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
𝑠 𝑡+∆𝑡 −𝑠 𝑡
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
1(3𝑡2+3𝑡∆𝑡+∆𝑡2−4𝑡−2∆𝑡)
1
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
3𝑡2 + 3𝑡∆𝑡 + ∆𝑡2 − 4𝑡 − 2∆𝑡
• 𝑚(𝑠 𝑡 ) = 3𝑡2 + 3𝑡(0) + 0 2 − 4𝑡 − 2(0)
• 𝑚(𝑠 𝑡 ) = 3𝑡2 − 4t
• 𝑠′ 𝑡 = 3𝑡2 − 4t
• 𝑣𝑠(𝑡) = 3𝑡2
− 4t
Ejemplo Aceleración
• 𝑓 𝑡 = 𝑡3
− 2𝑡2
; s 𝑡 = 𝑡3
− 2𝑡2
• 𝑣𝑠(𝑡) = 𝑠′(𝑡)
• 𝑎𝑠(𝑡) = 𝑠′′(𝑡)
• 𝑣𝑠(𝑡) = 𝑠′(𝑡)
• 𝑠′
𝑡 = 3𝑡2
− 4t
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
𝑠′ 𝑡+∆𝑡 −𝑠′ 𝑡
∆𝑡
• 𝑠′ 𝑡 + ∆𝑡 = 3(𝑡 + ∆𝑡)2
−4(𝑡 + ∆𝑡)
• 𝑠′ 𝑡 = 3𝑡2 − 4t
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
(3 𝑡+∆𝑡 2−4 𝑡+∆𝑡 )−(3𝑡2−4t)
∆𝑡
Ejemplo Aceleración
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• 𝑎𝑠(𝑡) = 𝑠′′(𝑡)
• 𝑠′ 𝑡 = 3𝑡2 − 4t
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
(3 𝑡+∆𝑡 2−4 𝑡+∆𝑡 )−(3𝑡2−4t)
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
3 𝑡2+2𝑡.∆𝑡+∆𝑡2 −4𝑡−4∆𝑡 −3𝑡2+4t
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
3𝑡2+6𝑡.∆𝑡+3∆𝑡2−4𝑡−4∆𝑡−3𝑡2+4t
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
6𝑡.∆𝑡+3∆𝑡2−4∆𝑡
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
∆𝑡(6𝑡+3∆𝑡−4)
∆𝑡
Ejemplo Aceleración
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• 𝑎𝑠(𝑡) = 𝑠′′(𝑡)
• 𝑠′ 𝑡 = 3𝑡2 − 4t
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
∆𝑡(6𝑡+3∆𝑡−4)
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
6𝑡 + 3∆𝑡 − 4
• 𝑚(𝑠′ 𝑡 ) = 6𝑡 + 3(0) − 4
• 𝑚(𝑠′ 𝑡 ) = 6𝑡 − 4
• 𝑠′′ 𝑡 = 6𝑡 − 4
• 𝑎𝑠(𝑡) = 6𝑡 − 4
• 𝑎𝑠(𝑡) = 𝑣′𝑠(𝑡)
Formulas
Formulas
Formulas
Formulas
Funciones Transcendentes
Formulas
Formulas
Ejemplos:
• 𝑦 = 𝑥2 + 3𝑥 − 1 𝑓 𝑥 = 𝑥2 + 3𝑥 − 1
• 𝑦 = 𝑓 𝑥 ;𝑦 = 𝑉. 𝐷. ; 𝑥 = 𝑉. 𝐼.
• 𝑠 = 𝑡3 − 2𝑡2 𝑠 𝑡 = 𝑡3 − 2𝑡2
• 𝑠 = 𝑠 𝑡 ; 𝑠 = 𝑉. 𝐷. ; 𝑡 = 𝑉. 𝐼.
• 𝑦 = 𝑥2 + 3𝑥 − 1 𝑓 𝑥 = 𝑥2 + 3𝑥 − 1
•
𝑑
𝑑𝑥
𝑦 =
𝑑
𝑑𝑥
𝑥2 +
𝑑
𝑑𝑥
3𝑥 −
𝑑
𝑑𝑥
1
𝑑
𝑑𝑥
𝑓 𝑥 =
𝑑
𝑑𝑥
𝑥2 +
𝑑
𝑑𝑥
3𝑥 −
𝑑
𝑑𝑥
1
• 𝑠 = 𝑡3 − 2𝑡2 𝑠 𝑡 = 𝑡3 − 2𝑡2
•
𝑑
𝑑𝑡
𝑠 =
𝑑
𝑑𝑡
𝑡3 −
𝑑
𝑑𝑡
2𝑡2 𝑑
𝑑𝑡
𝑠 𝑡 =
𝑑
𝑑𝑡
𝑡3 −
𝑑
𝑑𝑡
2𝑡2
Ejemplos:
•
𝑑
𝑑𝑥
𝑐 = 0 ;
𝑑𝑐
𝑑𝑥
= 0; 𝑓′ 𝑐 = 0
• 𝑦 = 5 ; 𝑧 = 3 ; 𝑓 𝑡 = 7
•
𝑑
𝑑𝑥
𝑦 =
𝑑
𝑑𝑥
5 ;
𝑑
𝑑𝑥
𝑧 =
𝑑
𝑑𝑥
3 ;
𝑑
𝑑𝑡
𝑓 𝑡 =
𝑑
𝑑𝑡
7
•
𝑑𝑦
𝑑𝑥
= 0 ;
𝑑𝑧
𝑑𝑥
= 0 ;
𝑑𝑓(𝑡)
𝑑𝑡
= 0 ; f′ t = 0
Ejemplos:
•
𝑑
𝑑𝑥
𝑥 = 1 ;
𝑑𝑥
𝑑𝑥
= 1 ; 𝑓 𝑥 = 𝑥
• 𝑓′ 𝑥 = 1
• 𝑦 = 𝑥 + 1 ; 𝑧 = 3𝑥 − 2 ; 𝑓 𝑡 = 2𝑡 + 7
•
𝑑
𝑑𝑥
𝑦 =
𝑑
𝑑𝑥
𝑥 +
𝑑
𝑑𝑥
1 ;
𝑑
𝑑𝑥
𝑧 =
𝑑
𝑑𝑥
3𝑥 −
𝑑
𝑑𝑥
2 ;
𝑑
𝑑𝑡
𝑓 𝑡 =
𝑑
𝑑𝑡
2𝑡 +
𝑑
𝑑𝑡
7
•
𝑑𝑦
𝑑𝑥
= 1 + 0 ;
𝑑𝑧
𝑑𝑥
= 3.
𝑑
𝑑𝑥
𝑥 − 0 ; 𝑓′ 𝑡 = 2.
𝑑
𝑑𝑡
𝑡 + 0
•
𝑑𝑦
𝑑𝑥
= 1 ;
𝑑𝑧
𝑑𝑥
= 3. (1) ; 𝑓′
𝑡 = 2. (1)
•
𝑑𝑦
𝑑𝑥
= 1 ;
𝑑𝑧
𝑑𝑥
= 3 ; 𝑓′
𝑡 = 2
Ejemplo
•
𝑑
𝑑𝑥
𝑥 + 𝑦 + 𝑧 =
𝑑
𝑑𝑥
𝑥 +
𝑑
𝑑𝑦
𝑦 +
𝑑
𝑑𝑧
𝑧
•
𝑑
𝑑𝑥
𝑓 𝑥 + 𝑔 𝑥 + ℎ 𝑥 = 𝑓′ 𝑥 + 𝑔′ 𝑥 + ℎ′ 𝑥
• 𝑓 𝑥 = 3𝑥 + 1 ; 𝑔 𝑥 = 9 ; ℎ 𝑥 = −2𝑥
•
𝑑
𝑑𝑥
3𝑥 + 1 + 9 + −2𝑥 =
𝑑
𝑑𝑥
𝑥 + 10 =
𝑑
𝑑𝑥
𝑥 +
𝑑
𝑑𝑥
10 = 1 + 0
•
𝑑
𝑑𝑥
3𝑥 + 1 + 9 + −2𝑥 = 1
Ejemplo
•
𝑑
𝑑𝑥
𝑐𝑥𝑛 = 𝑐.
𝑑
𝑑𝑥
𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1
•
𝑑
𝑑𝑥
𝑐. (𝑓 𝑥 )𝑛 = 𝑐.
𝑑
𝑑𝑥
(𝑓 𝑥 )𝑛= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1. 𝑓′(𝑥)
• 𝑦 = 𝑥4 + 2𝑥2 + 3𝑥 + 1
•
𝑑
𝑑𝑥
𝑦 =
𝑑
𝑑𝑥
𝑥4 +
𝑑
𝑑𝑥
2𝑥2 +
𝑑
𝑑𝑥
3𝑥 +
𝑑
𝑑𝑥
1
•
𝑑𝑦
𝑑𝑥
= 4. 𝑥4−1
+ 2.
𝑑
𝑑𝑥
𝑥2
+ 3.
𝑑
𝑑𝑥
𝑥 + 0
•
𝑑𝑦
𝑑𝑥
= 4. 𝑥3
+ 2. 2𝑥2−1
+ 3. 1 + 0
•
𝑑𝑦
𝑑𝑥
= 4. 𝑥3 + 4𝑥 + 3
Ejemplo
•
𝑑
𝑑𝑥
𝑐𝑥𝑛
= 𝑐.
𝑑
𝑑𝑥
𝑥𝑛
= 𝑐. 𝑛. 𝑥𝑛−1
•
𝑑
𝑑𝑥
𝑐. (𝑓 𝑥 )𝑛
= 𝑐.
𝑑
𝑑𝑥
(𝑓 𝑥 )𝑛
= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1
. 𝑓′
(𝑥)
• 𝑓 𝑥 =
3
𝑥3 − 2 𝑥 + 3𝑥−2 + 5𝑥1/7
•
𝑑
𝑑𝑥
𝑓 𝑥 =
𝑑
𝑑𝑥
3
𝑥3 −
𝑑
𝑑𝑥
2 𝑥 +
𝑑
𝑑𝑥
3𝑥−2 +
𝑑
𝑑𝑥
5𝑥1/7
• 𝑓′ 𝑥 = 3
𝑑
𝑑𝑥
1
𝑥3 − 2
𝑑
𝑑𝑥
𝑥 + 3
𝑑
𝑑𝑥
𝑥−2
+ 5
𝑑
𝑑𝑥
𝑥1/7
• 𝑓′ 𝑥
= 3
𝑑
𝑑𝑥
𝑥−3
− 2
𝑑
𝑑𝑥
𝑥
1
2 + 3
𝑑
𝑑𝑥
𝑥−2
+ 5
𝑑
𝑑𝑥
𝑥
1
7
• 𝑓′(𝑥) = 3 −3 𝑥(−3−1) − 2 (
1
2
)𝑥(
1
2
−1)
+ (3)(−2)𝑥(−2−1) + (5)(
1
7
)𝑥(
1
7
−1)
• 𝑓′
𝑥 = −9𝑥 −4
− 1𝑥
−
1
2 − 6𝑥(−3)
+
5
7
𝑥(−
6
7
)
• 𝑓′ 𝑥 = −
9
𝑥4 −
1
2
−
6
𝑥3 +
5
7
7
𝑥6
Ejemplo
•
𝑑
𝑑𝑥
𝑐𝑥𝑛 = 𝑐.
𝑑
𝑑𝑥
𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1
•
𝑑
𝑑𝑥
𝑐. (𝑓 𝑥 )𝑛 = 𝑐.
𝑑
𝑑𝑥
(𝑓 𝑥 )𝑛= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1. 𝑓′(𝑥)
• ℎ 𝑥 = 3(𝑓 𝑥 )6 ; 𝑓 𝑥 = 𝑥3 + 𝑥2 + 1
• 𝑓′ 𝑥 = 3𝑥3−1 + 2𝑥2−1
• 𝑓′ 𝑥 = 3𝑥2 + 2𝑥
• ℎ′
𝑥 = 3.6 𝑓 𝑥
6−1
. (𝑓′
𝑥 )
• ℎ′ 𝑥 = 18 𝑥3 + 𝑥2 + 1 5. (3𝑥2 + 2𝑥)
• ℎ 𝑥 = 𝑔(𝑓 𝑥 ); 𝑔 𝑥 = 3𝑥6
; 𝑓 𝑥 = 𝑥3
+ 𝑥2
+ 1
• ℎ 𝑥 = 3(𝑥3 + 𝑥2 + 1)6
•
𝑑
𝑑𝑥
ℎ 𝑥 =
𝑑
𝑑𝑥
((3(𝑥3 + 𝑥2 + 1 )6))
Ejemplo
•
𝑑
𝑑𝑥
𝑐. (𝑓 𝑥 )𝑛
= 𝑐.
𝑑
𝑑𝑥
(𝑓 𝑥 )𝑛
= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1
. 𝑓′
(𝑥)
• ℎ 𝑥 = 𝑔(𝑓 𝑥 ); 𝑔 𝑥 = 3𝑥6
; 𝑓 𝑥 = 𝑥3
+ 𝑥2
+ 1
• 𝑔′ 𝑥 = 18𝑥5
; 𝑓 𝑥 = 3𝑥2
+ 2𝑥
• ℎ 𝑥 = 3(𝑥3
+ 𝑥2
+ 1)6
; ℎ 𝑥 = 𝑐(𝑓 𝑥 )𝑛
• ℎ′ 𝑥
= c. 𝑛. (𝑓 𝑥 )𝑛−1
. 𝑓′
(𝑥)
• ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛
• ℎ′ 𝑥
= 𝑔′
𝑓 𝑥 . 𝑓′
(𝑥)
•
𝑑
𝑑𝑥
ℎ 𝑥 =
𝑑
𝑑𝑥
( 3 𝑥3
+ 𝑥2
+ 1 6
)
• ℎ′ 𝑥 = 3.6 𝑥3 + 𝑥2 + 1 6−1. (3𝑥2 + 2𝑥)
• ℎ′
𝑥 = 18 𝑥3
+ 𝑥2
+ 1 5
. (3𝑥2
+ 2𝑥)
Ejemplo
• ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛
• ℎ′(𝑥) = 𝑔′ 𝑓 𝑥 . 𝑓′(𝑥)
• ℎ 𝑥 =
4
(2𝑥3 + 3𝑥4 − 𝑥2)3
• f 𝑥 = 2𝑥3 + 3𝑥4 − 𝑥2 ; g x =
4
𝑥3 = 𝑥
3
4
• 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 =
3
4
. 𝑥(
3
4
−1)
• 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 =
3
4
. 𝑥(−
1
4
)
• 𝑔′
𝑥 =
3
4𝑥
1
4
=
3
44
𝑥
Ejemplo
• ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛
• ℎ′(𝑥) = 𝑔′ 𝑓 𝑥 . 𝑓′(𝑥)
• ℎ 𝑥 =
4
(2𝑥3 + 3𝑥4 − 𝑥2)3
• f 𝑥 = 2𝑥3 + 3𝑥4 − 𝑥2 ; g x =
4
𝑥3 = 𝑥
3
4
•
• 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 =
3
44
𝑥
• ℎ′ 𝑥 =
3
4
4
2𝑥3+3𝑥4−𝑥2
. 6𝑥2 + 12𝑥3 − 2𝑥
• ℎ 𝑥 = 𝑓 𝑔 𝑥 = (𝑓𝑜𝑔)(𝑥) Regla de la cadena
• ℎ′(𝑥) = 𝑓′ 𝑔 𝑥 . 𝑓′(𝑥)
Ejemplo:
•
𝑑
𝑑𝑥
𝑣. 𝑢 =
𝑑𝑣
𝑑𝑥
. 𝑢 +
𝑑𝑢
𝑑𝑥
. 𝑣
• ℎ 𝑥 = 𝑓 𝑥 . [𝑔 𝑥 ]
• ℎ′ 𝑥 = 𝑓′ 𝑥 . 𝑔 𝑥 + [𝑔′ 𝑥 . 𝑓 𝑥 ]
• ℎ 𝑥 = [ 𝑥2 − 1 . 𝑥4 + 𝑥3 − 3𝑥2 ]
• 𝑓 𝑥 = 𝑥2 − 1 𝑔 𝑥 = 𝑥4 + 𝑥3 − 3𝑥2
• 𝑓′ 𝑥 =
𝑑
𝑑𝑥
𝑥2 −
𝑑
𝑑𝑥
1 𝑔′ 𝑥 =
𝑑
𝑑𝑥
𝑥4 +
𝑑
𝑑𝑥
𝑥3 − 3.
𝑑
𝑑𝑥
𝑥2
• 𝑓′ 𝑥 = 2x − 0 𝑔′ 𝑥 = 4𝑥3 + 3𝑥2 − 6𝑥
• ℎ′ 𝑥 = 2x . 𝑥4 + 𝑥3 − 3𝑥2 + [ 4𝑥3 + 3𝑥2 − 6𝑥 . 𝑥2 − 1 ]
• ℎ′ 𝑥 = 2𝑥5 + 2𝑥4 − 6𝑥3 + [4𝑥5 + 3𝑥4 − 6𝑥3 − 4𝑥3 − 3𝑥2 + 6𝑥]
• ℎ′ 𝑥 = 2𝑥5 + 2𝑥4 − 6𝑥3 + 4𝑥5 + 3𝑥4 − 6𝑥3 − 4𝑥3 − 3𝑥2 + 6𝑥
• ℎ′ 𝑥 = 6𝑥5 + 5𝑥4 − 16𝑥3 − 3𝑥3 + 6𝑥
Ejemplo:
•
𝑑
𝑑𝑥
𝑣/𝑢 =
[ 𝑢.
𝑑𝑣
𝑑𝑥
−𝑣.
𝑑𝑢
𝑑𝑥
]
𝑢2
• ℎ 𝑥 =
𝑓 𝑥
𝑔 𝑥
; 𝑔 𝑥 ≠ 0
• ℎ′ 𝑥 =
[𝑓′ 𝑥 .𝑔 𝑥 −𝑔′ 𝑥 .𝑓 𝑥 ]
[𝑔(𝑥)]2
• ℎ 𝑥 = [
𝑥2−1
𝑥4+𝑥3−3𝑥2]
• 𝑓 𝑥 = 𝑥2
− 1 𝑔 𝑥 = 𝑥4
+ 𝑥3
− 3𝑥2
• 𝑓′
𝑥 =
𝑑
𝑑𝑥
𝑥2
−
𝑑
𝑑𝑥
1 𝑔′
𝑥 =
𝑑
𝑑𝑥
𝑥4
+
𝑑
𝑑𝑥
𝑥3
− 3.
𝑑
𝑑𝑥
𝑥2
• 𝑓′ 𝑥 = 2x − 0 𝑔′ 𝑥 = 4𝑥3 + 3𝑥2 − 6𝑥
• ℎ′
𝑥 =
[ 2x . 𝑥4+𝑥3−3𝑥2 − 4𝑥3+3𝑥2−6𝑥 .(𝑥2−1)]
[𝑥4+𝑥3−3𝑥2]2
• ℎ′
𝑥 =
[ 2𝑥5+2𝑥4−6𝑥3 − 4𝑥5+3𝑥4−6𝑥3−4𝑥3−3𝑥2+6𝑥 ]
[𝑥4+𝑥3−3𝑥2]2
Ejemplo:
•
𝑑
𝑑𝑥
𝑣/𝑢 =
[ 𝑢.
𝑑𝑣
𝑑𝑥
−𝑣.
𝑑𝑢
𝑑𝑥
]
𝑢2
• ℎ 𝑥 =
𝑓 𝑥
𝑔 𝑥
; 𝑔 𝑥 ≠ 0
• ℎ′ 𝑥 =
[𝑓′ 𝑥 .𝑔 𝑥 −𝑔′ 𝑥 .𝑓 𝑥 ]
[𝑔(𝑥)]2
• ℎ′ 𝑥 =
[ 2𝑥5+2𝑥4−6𝑥3 − 4𝑥5+3𝑥4−6𝑥3−4𝑥3−3𝑥2+6𝑥 ]
[𝑥4+𝑥3−3𝑥2]2
• ℎ′ 𝑥 =
[2𝑥5+2𝑥4−6𝑥3−4𝑥5−3𝑥4+6𝑥3+4𝑥3+3𝑥2−6𝑥]
[𝑥4+𝑥3−3𝑥2]2
• ℎ′
𝑥 =
[−2𝑥5−𝑥4+4𝑥3+3𝑥2−6𝑥]
[𝑥4+𝑥3−3𝑥2]2
Aplicaciones:
• En un circuito eléctrico, Si V volts es la fuerza electromotriz, I amperes es la corriente y R ohms
es la resistencia, entonces de la ley de Ohms IR = V. Si se supone que V es una constante
positiva ¿Cuál es la tasa instantánea de variación de I con respecto a R en un circuito eléctrico
de 90 volts cuando la resistencia es de 15 ohms? :
• 𝐼𝑅 = 𝑉; 𝐼 =
𝑉
𝑅
• V.I.=R (x)
𝑑
𝑑𝑥
;
𝑑
𝑑𝑅
; V.D.=I (y)
•
𝑑𝐼
𝑑𝑅
=
𝑑
𝑑𝑅
.
𝑉
𝑅
•
𝑑𝐼
𝑑𝑅
=
𝑑
𝑑𝑅
.
90
𝑅
•
𝑑𝐼
𝑑𝑅
= 90.
𝑑
𝑑𝑅
. 𝑅−1
•
𝑑𝐼
𝑑𝑅
= −1(90). 𝑅−1−1
•
𝑑𝐼
𝑑𝑅
= −1(90). 𝑅−2
I
R
Aplicaciones:
• En un circuito eléctrico, Si V volts es la fuerza electromotriz, I amperes es la corriente y R ohms
es la resistencia, entonces de la ley de Ohms IR = V. Si se supone que V es una constante
positiva ¿Cuál es la tasa instantánea de variación de I con respecto a R en un circuito eléctrico
de 90 volts cuando la resistencia es de 15 ohms? :
• 𝐼𝑅 = 𝐸; 𝐼 =
𝐸
𝑅
•
𝑑𝐼
𝑑𝑅
= −1(90). 𝑅−2
•
𝑑𝐼
𝑑𝑅
=
−90 𝑉𝑜𝑙𝑡
𝑅2𝑜ℎ𝑚2
•
𝑑𝐼
𝑑𝑅
=
−90
15 2
•
𝑑𝐼
𝑑𝑅
= −0.4
I
R
Aplicaciones:
• f(x)=x^(3)+3 x^(2)-x
• 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥
• 𝑓′ 𝑥 =
𝑑
𝑑𝑥
𝑥3 + 3
𝑑
𝑑𝑥
𝑥2 −
𝑑
𝑑𝑥
𝑥
• 𝑓′ 𝑥 = 3𝑥2 + 6𝑥 − 1
• 3𝑥2 + 6𝑥 − 1 = 0
• 𝑥 =
−𝑏± 𝑏2−43𝑐
23
• 𝑥 =
−6± 62−4(2)(−1)
2(2)
• 𝑥1 = 0.1547
• 𝑥2 = −2.154
Aplicaciones:
• f(x)=x^(3)+3 x^(2)-x
• 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥
• 𝑥1 = 0.1547
• 𝑥2 = −2.154
• 𝑓 𝑥1 = 𝑥1
3 + 3𝑥1
2 − 𝑥1
• 𝑓 0.1547 = 0.1547 3
+ (3)0.1547 2
− 0.1547
• 𝑓 0.1547 = −0.08
• 𝑓 𝑥2 = 𝑥2
3 + 3𝑥2
2 − 𝑥2
• 𝑓 −2.154 = −2.154 3
+ (3)(−2.154 )2
−(−2.154)
• 𝑓 −2.154 = 6.08
Aplicaciones:
• f(x)=x^(3)+3 x^(2)-x
• 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥
• 𝑥1 = 0.1547
• 𝑥2 = −2.154
• 𝑓 0.1547 = −0.08
• 𝑓 −2.154 = 6.08
x F(x)=y Max o Min
0.1547 −0.08 Min
−2.154 6.08 Max
Ejercicios
• 𝑦 = 𝑠𝑒𝑛𝑥 ;
𝑑𝑦
𝑑𝑥
= 𝑐𝑜𝑠𝑥; ℎ 𝑥 = 𝑠𝑒𝑛 𝑓 𝑥 ; ℎ′ 𝑥 = cos 𝑓 𝑥 . (𝑓′(𝑥))
•
𝑑𝑦
𝑑𝑥
=
𝑑
𝑑𝑥
𝑠𝑒𝑛𝑥
•
𝑑𝑦
𝑑𝑥
= cosx
• ℎ 𝑥 = 𝑔(𝑓 𝑥 ) ; 𝑔 𝑓 𝑥 = 𝑠𝑒𝑛(𝑥3 − 1)
• ℎ 𝑥 = 𝑠𝑒𝑛(𝑥3
− 1) ;𝑔 𝑥 = 𝑠𝑒𝑛 𝑥 ; 𝑓 𝑥 = 𝑥3
− 1
• ;𝑔′ 𝑥 = cos(𝑥) ; 𝑓′ 𝑥 = 3𝑥2
• ℎ′ 𝑥 = cos 𝑥3 − 1 . (3𝑥2)
Ejercicios
• 𝑦 = 𝑐𝑜𝑠𝑥 ;
𝑑𝑦
𝑑𝑥
= −𝑠𝑒𝑛𝑥; ℎ 𝑥 = 𝑐𝑜𝑠 𝑓 𝑥 ; ℎ′
𝑥 = −𝑠𝑒𝑛(𝑓 𝑥 ). (𝑓′(𝑥))
• 𝑦 = cos(2𝑥5 + 𝑥)
•
𝑑𝑦
𝑑𝑥
=
𝑑
𝑑𝑥
𝑐𝑜𝑠 2𝑥5 + 𝑥
• 𝑔 𝑥 = 𝑐𝑜𝑠𝑥 ; 𝑓 𝑥 = 2𝑥5 + 𝑥
• 𝑔′ 𝑥 = −𝑠𝑒𝑛𝑥 ; f′(x) = 10𝑥4 + 1
•
𝑑𝑦
𝑑𝑥
= −𝑠𝑒𝑛 2𝑥5 + 𝑥 . (10𝑥4 + 1)
•
𝑑𝑦
𝑑𝑥
= − 10𝑥4 + 1 . 𝑠𝑒𝑛 2𝑥5 + 𝑥
Ejercicios
• 𝑦 = 𝑡𝑎𝑛𝑥 ;
𝑑𝑦
𝑑𝑥
= 𝑠𝑒𝑐2𝑥; ℎ 𝑥 = 𝑡𝑎𝑛 𝑓 𝑥 ; ℎ′ 𝑥 = 𝑠𝑒𝑐2(𝑓 𝑥 ). (𝑓′(𝑥))
• ℎ 𝑥 = tan 𝑥 − 1
• 𝑔 𝑥 = 𝑡𝑎𝑛𝑥 ; 𝑓 𝑥 = 𝑥 − 1
• 𝑔′
𝑥 = 𝑠𝑒𝑐2
𝑥 ; f 𝑥 = 𝑥
1
2 − 1
• 𝑓′(𝑥) =
1
2
𝑥
1
2
−1
− 0
• 𝑓′(𝑥) =
1
2
𝑥−
1
2
• ℎ′
𝑥 = 𝑠𝑒𝑐2
𝑥 − 1 . (
1
2
𝑥−
1
2)
• ℎ′ 𝑥 = (
1
2𝑥
1
2
). 𝑠𝑒𝑐2 𝑥 − 1
• ℎ′ 𝑥 = (
1
2 𝑥
). 𝑠𝑒𝑐2 𝑥 − 1
Ejercicios
• 𝑦 = 𝑐𝑜𝑡𝑥 ;
𝑑𝑦
𝑑𝑥
= −𝑐𝑠𝑐2
𝑥; ℎ 𝑥 = 𝑐𝑜𝑡 𝑓 𝑥 ; ℎ′
𝑥 = −𝑐𝑠𝑐2
(𝑓 𝑥 ). (𝑓′(𝑥))
• 𝑦 = cot(𝑥
1
4 − 𝑥)
•
𝑑𝑦
𝑑𝑥
=
𝑑
𝑑𝑥
(cot 𝑥
1
4 − 𝑥 )
• 𝑔 𝑥 = 𝑐𝑜𝑡𝑥 ; 𝑓 𝑥 = 𝑥
1
4 − 𝑥
• 𝑔′ 𝑥 = −𝑐𝑠𝑐2(𝑥) ; 𝑓′ 𝑥 =
1
4
𝑥−
3
4 − 1
•
𝑑𝑦
𝑑𝑥
= −𝑐𝑠𝑐2
𝑥
1
4 − 𝑥 . (
1
4
𝑥−
3
4 − 1)
•
𝑑𝑦
𝑑𝑥
= −
1
4𝑥
3
4
− 1 . 𝑐𝑠𝑐2 𝑥
1
4 − 𝑥
Ejercicios
• 𝑦 = 𝑠𝑒𝑐𝑥 ;
𝑑𝑦
𝑑𝑥
= 𝑠𝑒𝑐𝑥. 𝑡𝑎𝑛𝑥;
• ℎ 𝑥 = 𝑠𝑒𝑐 𝑓 𝑥 ; ℎ′ 𝑥 = 𝑠𝑒𝑐 𝑓 𝑥 . tan(𝑓 𝑥 ). (𝑓′(𝑥))
• ℎ(𝑥) = sec(1 − 𝑥3)
• 𝑔 𝑥 = 𝑠𝑒𝑐𝑥 ; 𝑓 𝑥 = 1 − 𝑥3
• 𝑔′ 𝑥 = 𝑠𝑒𝑐𝑥. 𝑡𝑎𝑛𝑥 ; 𝑓′ 𝑥 = −3𝑥2
• ℎ′ 𝑥 = sec 1 − 𝑥3 . tan 1 − 𝑥3 . (−3𝑥2)
• ℎ′
𝑥 =. −3𝑥2
. sec 1 − 𝑥3
. tan 1 − 𝑥3
Ejercicios
• 𝑦 = 𝑐𝑠𝑐𝑥 ;
𝑑𝑦
𝑑𝑥
= −𝑐𝑠𝑐𝑥. 𝑐𝑜𝑡𝑥;
• ℎ 𝑥 = 𝑐𝑠𝑐 𝑓 𝑥 ; ℎ′ 𝑥 = −𝑐𝑠𝑐 𝑓 𝑥 . 𝑐𝑜𝑡(𝑓 𝑥 ). (𝑓′(𝑥))
• ℎ(𝑥) = csc(𝑥7 − 𝑥3)
• 𝑔 𝑥 = 𝑐𝑠𝑐𝑥 ; 𝑓 𝑥 = 𝑥7
− 𝑥3
• 𝑔′ 𝑥 = −𝑐𝑠𝑐𝑥. 𝑐𝑜𝑡𝑥 ; 𝑓′ 𝑥 = 7𝑥6 − 3𝑥2
• ℎ′ 𝑥 = − csc 𝑥7 − 𝑥3 . cot 𝑥7 − 𝑥3 . (7𝑥6 − 3𝑥2)
• ℎ′
𝑥 = − 7𝑥6
− 3𝑥2
. csc 𝑥7
− 𝑥3
. cot 𝑥7
− 𝑥3
Ejercicios
• 𝑦 = 𝑙𝑛𝑥;
𝑑𝑦
𝑑𝑥
=
1
𝑥
; ℎ 𝑥 = ln(𝑓 𝑥 ) ; ℎ′ 𝑥 =
1
𝑓 𝑥
. (𝑓′ 𝑥 )
• ℎ 𝑥 = ln(𝑥2 − 1) ; ℎ 𝑥 = 𝑔(𝑓 𝑥 )
• 𝑔 𝑥 = 𝑙𝑛𝑥 ; 𝑓 𝑥 = 𝑥2
− 1
• 𝑔′ 𝑥 =
1
𝑥
; 𝑓′ 𝑥 = 2𝑥
• ℎ′ 𝑥 =
1
𝑥2−1
. (2𝑥)
• ℎ′
𝑥 =
2𝑥
𝑥2−1
Ejercicios
• 𝑦 = 𝑒𝑥 ;
𝑑𝑦
𝑑𝑥
= 𝑒𝑥 ; ℎ 𝑥 = 𝑒(𝑓(𝑥)); ℎ′ 𝑥 = 𝑒 𝑓 𝑥 . 𝑓′(𝑥)
• ℎ 𝑥 = 𝑒(𝑥2−2𝑥+1)
• 𝑔 𝑥 = 𝑒𝑥 ; 𝑓 𝑥 = 𝑥2 − 2𝑥 + 1
• 𝑔′ 𝑥 = 𝑒𝑥 ; 𝑓′ 𝑥 = 2𝑥 − 2
• ℎ′
𝑥 = 𝑒 𝑥2−2𝑥+1
. (2𝑥 − 2)

Weitere ähnliche Inhalte

Ähnlich wie Derivación 1.

Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones linealesJHANDRYALCIVARGUAJAL
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORsumanmathews
 
06.scd_muestreo_de_senales_continuas
06.scd_muestreo_de_senales_continuas06.scd_muestreo_de_senales_continuas
06.scd_muestreo_de_senales_continuasHipólito Aguilar
 
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)tungwc
 
Factoring common monomial
Factoring common monomialFactoring common monomial
Factoring common monomialAjayQuines
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxjyotidighole2
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptxSoyaMathew1
 
Ta 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra linealTa 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra linealjhonatanVsquezArriag
 
SUEC 高中 Adv Maths (Locus) (Part 2).pptx
SUEC 高中 Adv Maths (Locus) (Part 2).pptxSUEC 高中 Adv Maths (Locus) (Part 2).pptx
SUEC 高中 Adv Maths (Locus) (Part 2).pptxtungwc
 
Semana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacionSemana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacionandres cuellar
 
07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuasHipólito Aguilar
 
SUEC 高中 Adv Maths (Locus) (Part 1).pptx
SUEC 高中 Adv Maths (Locus) (Part 1).pptxSUEC 高中 Adv Maths (Locus) (Part 1).pptx
SUEC 高中 Adv Maths (Locus) (Part 1).pptxtungwc
 

Ähnlich wie Derivación 1. (20)

Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
 
06.scd_muestreo_de_senales_continuas
06.scd_muestreo_de_senales_continuas06.scd_muestreo_de_senales_continuas
06.scd_muestreo_de_senales_continuas
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
 
Factoring common monomial
Factoring common monomialFactoring common monomial
Factoring common monomial
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 
Ta 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra linealTa 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra lineal
 
SUEC 高中 Adv Maths (Locus) (Part 2).pptx
SUEC 高中 Adv Maths (Locus) (Part 2).pptxSUEC 高中 Adv Maths (Locus) (Part 2).pptx
SUEC 高中 Adv Maths (Locus) (Part 2).pptx
 
Semana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacionSemana 3 reglas basicas de derivacion
Semana 3 reglas basicas de derivacion
 
07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas
 
Z transforms
Z transformsZ transforms
Z transforms
 
SUEC 高中 Adv Maths (Locus) (Part 1).pptx
SUEC 高中 Adv Maths (Locus) (Part 1).pptxSUEC 高中 Adv Maths (Locus) (Part 1).pptx
SUEC 高中 Adv Maths (Locus) (Part 1).pptx
 

Kürzlich hochgeladen

UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 

Kürzlich hochgeladen (20)

DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 

Derivación 1.

  • 1. Derivación Ing. Mg. Luis Gabriel Lescano Paredes
  • 2. Definición • La derivada de una función es un concepto local, es decir, se calcula como el limite de la rapidez de cambio media de la función en cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño.
  • 3. Pendiente de la función La recta 𝑥 = 𝑥1 si 𝑚(𝑥1) = lim ∆𝑥→0± 𝑓 𝑥1 + ∆𝑥 − 𝑓 𝑥1 ∆𝑥 Es +∞ 𝑜 − ∞ Por lo tanto: 𝑚(𝑓 𝑥 ) = lim ∆𝑥→0 𝑓 𝑥+∆𝑥 −𝑓 𝑥 ∆𝑥 𝑓′ 𝑥 = lim ∆𝑥→0 𝑓 𝑥 + ∆𝑥 − 𝑓 𝑥 ∆𝑥 P 𝑃 𝑥1, 𝑓 𝑥1 Q 𝑥2, 𝑓 𝑥2 ∆𝑥 = 𝑥2 − 𝑥1 𝑓 𝑥2 − 𝑓 𝑥1 𝑥2 𝑥1 ∆𝑥
  • 4. Pendiente de la función 𝑓′ 𝑡 = lim ∆𝑡→0 𝑓 𝑡 + ∆𝑡 − 𝑓 𝑡 ∆𝑡 𝑓 𝑡 = 𝑡3 − 2𝑡2; s 𝑡 = 𝑡3 − 2𝑡2 𝑣𝑠(𝑡) = 𝑠′(𝑡) P 𝑃 𝑡1, 𝑓 𝑡1 Q 𝑡2, 𝑓 𝑡2 ∆𝑡 = 𝑡2 − 𝑡1 𝑓 𝑡2 − 𝑓 𝑡1 𝑡2 𝑡1 ∆𝑡 𝑓 𝑡 = 𝑠
  • 5. Ejemplo velocidad: 𝑓 𝑡 = 𝑡3 − 2𝑡2; s 𝑡 = 𝑡3 − 2𝑡2 𝑣𝑠(𝑡) = 𝑠′(𝑡) • s 𝑡 = 𝑡3 − 2𝑡2 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 𝑠 𝑡+∆𝑡 −𝑠 𝑡 ∆𝑡 • 𝑠 𝑡 + ∆𝑡 = ( 𝑡 + ∆𝑡 3−2 𝑡 + ∆𝑡 2) • 𝑠 𝑡 = ( 𝑡 3−2 𝑡 2) • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 ( 𝑡+∆𝑡 3−2 𝑡+∆𝑡 2) −( 𝑡 3−2 𝑡 2) ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 ((𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3)−(2 𝑡2+2𝑡.∆𝑡+∆𝑡2 )) −( 𝑡 3−2 𝑡 2) ∆𝑡
  • 6. Ejemplo: 𝑣𝑠(𝑡) = 𝑠′(𝑡) • s 𝑡 = 𝑡3 − 2𝑡2 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 𝑠 𝑡+∆𝑡 −𝑠 𝑡 ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 ((𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3)−(2 𝑡2+2𝑡.∆𝑡+∆𝑡2 )) −( 𝑡 3−2 𝑡 2) ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3−2𝑡2−4𝑡.∆𝑡−2∆𝑡2 −𝑡3+2𝑡2) ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 +3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3−4𝑡.∆𝑡−2∆𝑡2 ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 ∆𝑡(3𝑡2+3𝑡∆𝑡+∆𝑡2−4𝑡−2∆𝑡) ∆𝑡
  • 7. Ejemplo: 𝑣𝑠(𝑡) = 𝑠′(𝑡) • s 𝑡 = 𝑡3 − 2𝑡2 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 𝑠 𝑡+∆𝑡 −𝑠 𝑡 ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 1(3𝑡2+3𝑡∆𝑡+∆𝑡2−4𝑡−2∆𝑡) 1 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 3𝑡2 + 3𝑡∆𝑡 + ∆𝑡2 − 4𝑡 − 2∆𝑡 • 𝑚(𝑠 𝑡 ) = 3𝑡2 + 3𝑡(0) + 0 2 − 4𝑡 − 2(0) • 𝑚(𝑠 𝑡 ) = 3𝑡2 − 4t • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑣𝑠(𝑡) = 3𝑡2 − 4t
  • 8. Ejemplo Aceleración • 𝑓 𝑡 = 𝑡3 − 2𝑡2 ; s 𝑡 = 𝑡3 − 2𝑡2 • 𝑣𝑠(𝑡) = 𝑠′(𝑡) • 𝑎𝑠(𝑡) = 𝑠′′(𝑡) • 𝑣𝑠(𝑡) = 𝑠′(𝑡) • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 𝑠′ 𝑡+∆𝑡 −𝑠′ 𝑡 ∆𝑡 • 𝑠′ 𝑡 + ∆𝑡 = 3(𝑡 + ∆𝑡)2 −4(𝑡 + ∆𝑡) • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 (3 𝑡+∆𝑡 2−4 𝑡+∆𝑡 )−(3𝑡2−4t) ∆𝑡
  • 9. Ejemplo Aceleración 𝑣𝑠(𝑡) = 𝑠′(𝑡) • 𝑎𝑠(𝑡) = 𝑠′′(𝑡) • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 (3 𝑡+∆𝑡 2−4 𝑡+∆𝑡 )−(3𝑡2−4t) ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 3 𝑡2+2𝑡.∆𝑡+∆𝑡2 −4𝑡−4∆𝑡 −3𝑡2+4t ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 3𝑡2+6𝑡.∆𝑡+3∆𝑡2−4𝑡−4∆𝑡−3𝑡2+4t ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 6𝑡.∆𝑡+3∆𝑡2−4∆𝑡 ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 ∆𝑡(6𝑡+3∆𝑡−4) ∆𝑡
  • 10. Ejemplo Aceleración 𝑣𝑠(𝑡) = 𝑠′(𝑡) • 𝑎𝑠(𝑡) = 𝑠′′(𝑡) • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 ∆𝑡(6𝑡+3∆𝑡−4) ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 6𝑡 + 3∆𝑡 − 4 • 𝑚(𝑠′ 𝑡 ) = 6𝑡 + 3(0) − 4 • 𝑚(𝑠′ 𝑡 ) = 6𝑡 − 4 • 𝑠′′ 𝑡 = 6𝑡 − 4 • 𝑎𝑠(𝑡) = 6𝑡 − 4 • 𝑎𝑠(𝑡) = 𝑣′𝑠(𝑡)
  • 17. Ejemplos: • 𝑦 = 𝑥2 + 3𝑥 − 1 𝑓 𝑥 = 𝑥2 + 3𝑥 − 1 • 𝑦 = 𝑓 𝑥 ;𝑦 = 𝑉. 𝐷. ; 𝑥 = 𝑉. 𝐼. • 𝑠 = 𝑡3 − 2𝑡2 𝑠 𝑡 = 𝑡3 − 2𝑡2 • 𝑠 = 𝑠 𝑡 ; 𝑠 = 𝑉. 𝐷. ; 𝑡 = 𝑉. 𝐼. • 𝑦 = 𝑥2 + 3𝑥 − 1 𝑓 𝑥 = 𝑥2 + 3𝑥 − 1 • 𝑑 𝑑𝑥 𝑦 = 𝑑 𝑑𝑥 𝑥2 + 𝑑 𝑑𝑥 3𝑥 − 𝑑 𝑑𝑥 1 𝑑 𝑑𝑥 𝑓 𝑥 = 𝑑 𝑑𝑥 𝑥2 + 𝑑 𝑑𝑥 3𝑥 − 𝑑 𝑑𝑥 1 • 𝑠 = 𝑡3 − 2𝑡2 𝑠 𝑡 = 𝑡3 − 2𝑡2 • 𝑑 𝑑𝑡 𝑠 = 𝑑 𝑑𝑡 𝑡3 − 𝑑 𝑑𝑡 2𝑡2 𝑑 𝑑𝑡 𝑠 𝑡 = 𝑑 𝑑𝑡 𝑡3 − 𝑑 𝑑𝑡 2𝑡2
  • 18. Ejemplos: • 𝑑 𝑑𝑥 𝑐 = 0 ; 𝑑𝑐 𝑑𝑥 = 0; 𝑓′ 𝑐 = 0 • 𝑦 = 5 ; 𝑧 = 3 ; 𝑓 𝑡 = 7 • 𝑑 𝑑𝑥 𝑦 = 𝑑 𝑑𝑥 5 ; 𝑑 𝑑𝑥 𝑧 = 𝑑 𝑑𝑥 3 ; 𝑑 𝑑𝑡 𝑓 𝑡 = 𝑑 𝑑𝑡 7 • 𝑑𝑦 𝑑𝑥 = 0 ; 𝑑𝑧 𝑑𝑥 = 0 ; 𝑑𝑓(𝑡) 𝑑𝑡 = 0 ; f′ t = 0
  • 19. Ejemplos: • 𝑑 𝑑𝑥 𝑥 = 1 ; 𝑑𝑥 𝑑𝑥 = 1 ; 𝑓 𝑥 = 𝑥 • 𝑓′ 𝑥 = 1 • 𝑦 = 𝑥 + 1 ; 𝑧 = 3𝑥 − 2 ; 𝑓 𝑡 = 2𝑡 + 7 • 𝑑 𝑑𝑥 𝑦 = 𝑑 𝑑𝑥 𝑥 + 𝑑 𝑑𝑥 1 ; 𝑑 𝑑𝑥 𝑧 = 𝑑 𝑑𝑥 3𝑥 − 𝑑 𝑑𝑥 2 ; 𝑑 𝑑𝑡 𝑓 𝑡 = 𝑑 𝑑𝑡 2𝑡 + 𝑑 𝑑𝑡 7 • 𝑑𝑦 𝑑𝑥 = 1 + 0 ; 𝑑𝑧 𝑑𝑥 = 3. 𝑑 𝑑𝑥 𝑥 − 0 ; 𝑓′ 𝑡 = 2. 𝑑 𝑑𝑡 𝑡 + 0 • 𝑑𝑦 𝑑𝑥 = 1 ; 𝑑𝑧 𝑑𝑥 = 3. (1) ; 𝑓′ 𝑡 = 2. (1) • 𝑑𝑦 𝑑𝑥 = 1 ; 𝑑𝑧 𝑑𝑥 = 3 ; 𝑓′ 𝑡 = 2
  • 20. Ejemplo • 𝑑 𝑑𝑥 𝑥 + 𝑦 + 𝑧 = 𝑑 𝑑𝑥 𝑥 + 𝑑 𝑑𝑦 𝑦 + 𝑑 𝑑𝑧 𝑧 • 𝑑 𝑑𝑥 𝑓 𝑥 + 𝑔 𝑥 + ℎ 𝑥 = 𝑓′ 𝑥 + 𝑔′ 𝑥 + ℎ′ 𝑥 • 𝑓 𝑥 = 3𝑥 + 1 ; 𝑔 𝑥 = 9 ; ℎ 𝑥 = −2𝑥 • 𝑑 𝑑𝑥 3𝑥 + 1 + 9 + −2𝑥 = 𝑑 𝑑𝑥 𝑥 + 10 = 𝑑 𝑑𝑥 𝑥 + 𝑑 𝑑𝑥 10 = 1 + 0 • 𝑑 𝑑𝑥 3𝑥 + 1 + 9 + −2𝑥 = 1
  • 21. Ejemplo • 𝑑 𝑑𝑥 𝑐𝑥𝑛 = 𝑐. 𝑑 𝑑𝑥 𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1 • 𝑑 𝑑𝑥 𝑐. (𝑓 𝑥 )𝑛 = 𝑐. 𝑑 𝑑𝑥 (𝑓 𝑥 )𝑛= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1. 𝑓′(𝑥) • 𝑦 = 𝑥4 + 2𝑥2 + 3𝑥 + 1 • 𝑑 𝑑𝑥 𝑦 = 𝑑 𝑑𝑥 𝑥4 + 𝑑 𝑑𝑥 2𝑥2 + 𝑑 𝑑𝑥 3𝑥 + 𝑑 𝑑𝑥 1 • 𝑑𝑦 𝑑𝑥 = 4. 𝑥4−1 + 2. 𝑑 𝑑𝑥 𝑥2 + 3. 𝑑 𝑑𝑥 𝑥 + 0 • 𝑑𝑦 𝑑𝑥 = 4. 𝑥3 + 2. 2𝑥2−1 + 3. 1 + 0 • 𝑑𝑦 𝑑𝑥 = 4. 𝑥3 + 4𝑥 + 3
  • 22. Ejemplo • 𝑑 𝑑𝑥 𝑐𝑥𝑛 = 𝑐. 𝑑 𝑑𝑥 𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1 • 𝑑 𝑑𝑥 𝑐. (𝑓 𝑥 )𝑛 = 𝑐. 𝑑 𝑑𝑥 (𝑓 𝑥 )𝑛 = 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1 . 𝑓′ (𝑥) • 𝑓 𝑥 = 3 𝑥3 − 2 𝑥 + 3𝑥−2 + 5𝑥1/7 • 𝑑 𝑑𝑥 𝑓 𝑥 = 𝑑 𝑑𝑥 3 𝑥3 − 𝑑 𝑑𝑥 2 𝑥 + 𝑑 𝑑𝑥 3𝑥−2 + 𝑑 𝑑𝑥 5𝑥1/7 • 𝑓′ 𝑥 = 3 𝑑 𝑑𝑥 1 𝑥3 − 2 𝑑 𝑑𝑥 𝑥 + 3 𝑑 𝑑𝑥 𝑥−2 + 5 𝑑 𝑑𝑥 𝑥1/7 • 𝑓′ 𝑥 = 3 𝑑 𝑑𝑥 𝑥−3 − 2 𝑑 𝑑𝑥 𝑥 1 2 + 3 𝑑 𝑑𝑥 𝑥−2 + 5 𝑑 𝑑𝑥 𝑥 1 7 • 𝑓′(𝑥) = 3 −3 𝑥(−3−1) − 2 ( 1 2 )𝑥( 1 2 −1) + (3)(−2)𝑥(−2−1) + (5)( 1 7 )𝑥( 1 7 −1) • 𝑓′ 𝑥 = −9𝑥 −4 − 1𝑥 − 1 2 − 6𝑥(−3) + 5 7 𝑥(− 6 7 ) • 𝑓′ 𝑥 = − 9 𝑥4 − 1 2 − 6 𝑥3 + 5 7 7 𝑥6
  • 23. Ejemplo • 𝑑 𝑑𝑥 𝑐𝑥𝑛 = 𝑐. 𝑑 𝑑𝑥 𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1 • 𝑑 𝑑𝑥 𝑐. (𝑓 𝑥 )𝑛 = 𝑐. 𝑑 𝑑𝑥 (𝑓 𝑥 )𝑛= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1. 𝑓′(𝑥) • ℎ 𝑥 = 3(𝑓 𝑥 )6 ; 𝑓 𝑥 = 𝑥3 + 𝑥2 + 1 • 𝑓′ 𝑥 = 3𝑥3−1 + 2𝑥2−1 • 𝑓′ 𝑥 = 3𝑥2 + 2𝑥 • ℎ′ 𝑥 = 3.6 𝑓 𝑥 6−1 . (𝑓′ 𝑥 ) • ℎ′ 𝑥 = 18 𝑥3 + 𝑥2 + 1 5. (3𝑥2 + 2𝑥) • ℎ 𝑥 = 𝑔(𝑓 𝑥 ); 𝑔 𝑥 = 3𝑥6 ; 𝑓 𝑥 = 𝑥3 + 𝑥2 + 1 • ℎ 𝑥 = 3(𝑥3 + 𝑥2 + 1)6 • 𝑑 𝑑𝑥 ℎ 𝑥 = 𝑑 𝑑𝑥 ((3(𝑥3 + 𝑥2 + 1 )6))
  • 24. Ejemplo • 𝑑 𝑑𝑥 𝑐. (𝑓 𝑥 )𝑛 = 𝑐. 𝑑 𝑑𝑥 (𝑓 𝑥 )𝑛 = 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1 . 𝑓′ (𝑥) • ℎ 𝑥 = 𝑔(𝑓 𝑥 ); 𝑔 𝑥 = 3𝑥6 ; 𝑓 𝑥 = 𝑥3 + 𝑥2 + 1 • 𝑔′ 𝑥 = 18𝑥5 ; 𝑓 𝑥 = 3𝑥2 + 2𝑥 • ℎ 𝑥 = 3(𝑥3 + 𝑥2 + 1)6 ; ℎ 𝑥 = 𝑐(𝑓 𝑥 )𝑛 • ℎ′ 𝑥 = c. 𝑛. (𝑓 𝑥 )𝑛−1 . 𝑓′ (𝑥) • ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛 • ℎ′ 𝑥 = 𝑔′ 𝑓 𝑥 . 𝑓′ (𝑥) • 𝑑 𝑑𝑥 ℎ 𝑥 = 𝑑 𝑑𝑥 ( 3 𝑥3 + 𝑥2 + 1 6 ) • ℎ′ 𝑥 = 3.6 𝑥3 + 𝑥2 + 1 6−1. (3𝑥2 + 2𝑥) • ℎ′ 𝑥 = 18 𝑥3 + 𝑥2 + 1 5 . (3𝑥2 + 2𝑥)
  • 25. Ejemplo • ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛 • ℎ′(𝑥) = 𝑔′ 𝑓 𝑥 . 𝑓′(𝑥) • ℎ 𝑥 = 4 (2𝑥3 + 3𝑥4 − 𝑥2)3 • f 𝑥 = 2𝑥3 + 3𝑥4 − 𝑥2 ; g x = 4 𝑥3 = 𝑥 3 4 • 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 = 3 4 . 𝑥( 3 4 −1) • 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 = 3 4 . 𝑥(− 1 4 ) • 𝑔′ 𝑥 = 3 4𝑥 1 4 = 3 44 𝑥
  • 26. Ejemplo • ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛 • ℎ′(𝑥) = 𝑔′ 𝑓 𝑥 . 𝑓′(𝑥) • ℎ 𝑥 = 4 (2𝑥3 + 3𝑥4 − 𝑥2)3 • f 𝑥 = 2𝑥3 + 3𝑥4 − 𝑥2 ; g x = 4 𝑥3 = 𝑥 3 4 • • 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 = 3 44 𝑥 • ℎ′ 𝑥 = 3 4 4 2𝑥3+3𝑥4−𝑥2 . 6𝑥2 + 12𝑥3 − 2𝑥 • ℎ 𝑥 = 𝑓 𝑔 𝑥 = (𝑓𝑜𝑔)(𝑥) Regla de la cadena • ℎ′(𝑥) = 𝑓′ 𝑔 𝑥 . 𝑓′(𝑥)
  • 27. Ejemplo: • 𝑑 𝑑𝑥 𝑣. 𝑢 = 𝑑𝑣 𝑑𝑥 . 𝑢 + 𝑑𝑢 𝑑𝑥 . 𝑣 • ℎ 𝑥 = 𝑓 𝑥 . [𝑔 𝑥 ] • ℎ′ 𝑥 = 𝑓′ 𝑥 . 𝑔 𝑥 + [𝑔′ 𝑥 . 𝑓 𝑥 ] • ℎ 𝑥 = [ 𝑥2 − 1 . 𝑥4 + 𝑥3 − 3𝑥2 ] • 𝑓 𝑥 = 𝑥2 − 1 𝑔 𝑥 = 𝑥4 + 𝑥3 − 3𝑥2 • 𝑓′ 𝑥 = 𝑑 𝑑𝑥 𝑥2 − 𝑑 𝑑𝑥 1 𝑔′ 𝑥 = 𝑑 𝑑𝑥 𝑥4 + 𝑑 𝑑𝑥 𝑥3 − 3. 𝑑 𝑑𝑥 𝑥2 • 𝑓′ 𝑥 = 2x − 0 𝑔′ 𝑥 = 4𝑥3 + 3𝑥2 − 6𝑥 • ℎ′ 𝑥 = 2x . 𝑥4 + 𝑥3 − 3𝑥2 + [ 4𝑥3 + 3𝑥2 − 6𝑥 . 𝑥2 − 1 ] • ℎ′ 𝑥 = 2𝑥5 + 2𝑥4 − 6𝑥3 + [4𝑥5 + 3𝑥4 − 6𝑥3 − 4𝑥3 − 3𝑥2 + 6𝑥] • ℎ′ 𝑥 = 2𝑥5 + 2𝑥4 − 6𝑥3 + 4𝑥5 + 3𝑥4 − 6𝑥3 − 4𝑥3 − 3𝑥2 + 6𝑥 • ℎ′ 𝑥 = 6𝑥5 + 5𝑥4 − 16𝑥3 − 3𝑥3 + 6𝑥
  • 28. Ejemplo: • 𝑑 𝑑𝑥 𝑣/𝑢 = [ 𝑢. 𝑑𝑣 𝑑𝑥 −𝑣. 𝑑𝑢 𝑑𝑥 ] 𝑢2 • ℎ 𝑥 = 𝑓 𝑥 𝑔 𝑥 ; 𝑔 𝑥 ≠ 0 • ℎ′ 𝑥 = [𝑓′ 𝑥 .𝑔 𝑥 −𝑔′ 𝑥 .𝑓 𝑥 ] [𝑔(𝑥)]2 • ℎ 𝑥 = [ 𝑥2−1 𝑥4+𝑥3−3𝑥2] • 𝑓 𝑥 = 𝑥2 − 1 𝑔 𝑥 = 𝑥4 + 𝑥3 − 3𝑥2 • 𝑓′ 𝑥 = 𝑑 𝑑𝑥 𝑥2 − 𝑑 𝑑𝑥 1 𝑔′ 𝑥 = 𝑑 𝑑𝑥 𝑥4 + 𝑑 𝑑𝑥 𝑥3 − 3. 𝑑 𝑑𝑥 𝑥2 • 𝑓′ 𝑥 = 2x − 0 𝑔′ 𝑥 = 4𝑥3 + 3𝑥2 − 6𝑥 • ℎ′ 𝑥 = [ 2x . 𝑥4+𝑥3−3𝑥2 − 4𝑥3+3𝑥2−6𝑥 .(𝑥2−1)] [𝑥4+𝑥3−3𝑥2]2 • ℎ′ 𝑥 = [ 2𝑥5+2𝑥4−6𝑥3 − 4𝑥5+3𝑥4−6𝑥3−4𝑥3−3𝑥2+6𝑥 ] [𝑥4+𝑥3−3𝑥2]2
  • 29. Ejemplo: • 𝑑 𝑑𝑥 𝑣/𝑢 = [ 𝑢. 𝑑𝑣 𝑑𝑥 −𝑣. 𝑑𝑢 𝑑𝑥 ] 𝑢2 • ℎ 𝑥 = 𝑓 𝑥 𝑔 𝑥 ; 𝑔 𝑥 ≠ 0 • ℎ′ 𝑥 = [𝑓′ 𝑥 .𝑔 𝑥 −𝑔′ 𝑥 .𝑓 𝑥 ] [𝑔(𝑥)]2 • ℎ′ 𝑥 = [ 2𝑥5+2𝑥4−6𝑥3 − 4𝑥5+3𝑥4−6𝑥3−4𝑥3−3𝑥2+6𝑥 ] [𝑥4+𝑥3−3𝑥2]2 • ℎ′ 𝑥 = [2𝑥5+2𝑥4−6𝑥3−4𝑥5−3𝑥4+6𝑥3+4𝑥3+3𝑥2−6𝑥] [𝑥4+𝑥3−3𝑥2]2 • ℎ′ 𝑥 = [−2𝑥5−𝑥4+4𝑥3+3𝑥2−6𝑥] [𝑥4+𝑥3−3𝑥2]2
  • 30. Aplicaciones: • En un circuito eléctrico, Si V volts es la fuerza electromotriz, I amperes es la corriente y R ohms es la resistencia, entonces de la ley de Ohms IR = V. Si se supone que V es una constante positiva ¿Cuál es la tasa instantánea de variación de I con respecto a R en un circuito eléctrico de 90 volts cuando la resistencia es de 15 ohms? : • 𝐼𝑅 = 𝑉; 𝐼 = 𝑉 𝑅 • V.I.=R (x) 𝑑 𝑑𝑥 ; 𝑑 𝑑𝑅 ; V.D.=I (y) • 𝑑𝐼 𝑑𝑅 = 𝑑 𝑑𝑅 . 𝑉 𝑅 • 𝑑𝐼 𝑑𝑅 = 𝑑 𝑑𝑅 . 90 𝑅 • 𝑑𝐼 𝑑𝑅 = 90. 𝑑 𝑑𝑅 . 𝑅−1 • 𝑑𝐼 𝑑𝑅 = −1(90). 𝑅−1−1 • 𝑑𝐼 𝑑𝑅 = −1(90). 𝑅−2 I R
  • 31. Aplicaciones: • En un circuito eléctrico, Si V volts es la fuerza electromotriz, I amperes es la corriente y R ohms es la resistencia, entonces de la ley de Ohms IR = V. Si se supone que V es una constante positiva ¿Cuál es la tasa instantánea de variación de I con respecto a R en un circuito eléctrico de 90 volts cuando la resistencia es de 15 ohms? : • 𝐼𝑅 = 𝐸; 𝐼 = 𝐸 𝑅 • 𝑑𝐼 𝑑𝑅 = −1(90). 𝑅−2 • 𝑑𝐼 𝑑𝑅 = −90 𝑉𝑜𝑙𝑡 𝑅2𝑜ℎ𝑚2 • 𝑑𝐼 𝑑𝑅 = −90 15 2 • 𝑑𝐼 𝑑𝑅 = −0.4 I R
  • 32. Aplicaciones: • f(x)=x^(3)+3 x^(2)-x • 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥 • 𝑓′ 𝑥 = 𝑑 𝑑𝑥 𝑥3 + 3 𝑑 𝑑𝑥 𝑥2 − 𝑑 𝑑𝑥 𝑥 • 𝑓′ 𝑥 = 3𝑥2 + 6𝑥 − 1 • 3𝑥2 + 6𝑥 − 1 = 0 • 𝑥 = −𝑏± 𝑏2−43𝑐 23 • 𝑥 = −6± 62−4(2)(−1) 2(2) • 𝑥1 = 0.1547 • 𝑥2 = −2.154
  • 33. Aplicaciones: • f(x)=x^(3)+3 x^(2)-x • 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥 • 𝑥1 = 0.1547 • 𝑥2 = −2.154 • 𝑓 𝑥1 = 𝑥1 3 + 3𝑥1 2 − 𝑥1 • 𝑓 0.1547 = 0.1547 3 + (3)0.1547 2 − 0.1547 • 𝑓 0.1547 = −0.08 • 𝑓 𝑥2 = 𝑥2 3 + 3𝑥2 2 − 𝑥2 • 𝑓 −2.154 = −2.154 3 + (3)(−2.154 )2 −(−2.154) • 𝑓 −2.154 = 6.08
  • 34. Aplicaciones: • f(x)=x^(3)+3 x^(2)-x • 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥 • 𝑥1 = 0.1547 • 𝑥2 = −2.154 • 𝑓 0.1547 = −0.08 • 𝑓 −2.154 = 6.08 x F(x)=y Max o Min 0.1547 −0.08 Min −2.154 6.08 Max
  • 35. Ejercicios • 𝑦 = 𝑠𝑒𝑛𝑥 ; 𝑑𝑦 𝑑𝑥 = 𝑐𝑜𝑠𝑥; ℎ 𝑥 = 𝑠𝑒𝑛 𝑓 𝑥 ; ℎ′ 𝑥 = cos 𝑓 𝑥 . (𝑓′(𝑥)) • 𝑑𝑦 𝑑𝑥 = 𝑑 𝑑𝑥 𝑠𝑒𝑛𝑥 • 𝑑𝑦 𝑑𝑥 = cosx • ℎ 𝑥 = 𝑔(𝑓 𝑥 ) ; 𝑔 𝑓 𝑥 = 𝑠𝑒𝑛(𝑥3 − 1) • ℎ 𝑥 = 𝑠𝑒𝑛(𝑥3 − 1) ;𝑔 𝑥 = 𝑠𝑒𝑛 𝑥 ; 𝑓 𝑥 = 𝑥3 − 1 • ;𝑔′ 𝑥 = cos(𝑥) ; 𝑓′ 𝑥 = 3𝑥2 • ℎ′ 𝑥 = cos 𝑥3 − 1 . (3𝑥2)
  • 36. Ejercicios • 𝑦 = 𝑐𝑜𝑠𝑥 ; 𝑑𝑦 𝑑𝑥 = −𝑠𝑒𝑛𝑥; ℎ 𝑥 = 𝑐𝑜𝑠 𝑓 𝑥 ; ℎ′ 𝑥 = −𝑠𝑒𝑛(𝑓 𝑥 ). (𝑓′(𝑥)) • 𝑦 = cos(2𝑥5 + 𝑥) • 𝑑𝑦 𝑑𝑥 = 𝑑 𝑑𝑥 𝑐𝑜𝑠 2𝑥5 + 𝑥 • 𝑔 𝑥 = 𝑐𝑜𝑠𝑥 ; 𝑓 𝑥 = 2𝑥5 + 𝑥 • 𝑔′ 𝑥 = −𝑠𝑒𝑛𝑥 ; f′(x) = 10𝑥4 + 1 • 𝑑𝑦 𝑑𝑥 = −𝑠𝑒𝑛 2𝑥5 + 𝑥 . (10𝑥4 + 1) • 𝑑𝑦 𝑑𝑥 = − 10𝑥4 + 1 . 𝑠𝑒𝑛 2𝑥5 + 𝑥
  • 37. Ejercicios • 𝑦 = 𝑡𝑎𝑛𝑥 ; 𝑑𝑦 𝑑𝑥 = 𝑠𝑒𝑐2𝑥; ℎ 𝑥 = 𝑡𝑎𝑛 𝑓 𝑥 ; ℎ′ 𝑥 = 𝑠𝑒𝑐2(𝑓 𝑥 ). (𝑓′(𝑥)) • ℎ 𝑥 = tan 𝑥 − 1 • 𝑔 𝑥 = 𝑡𝑎𝑛𝑥 ; 𝑓 𝑥 = 𝑥 − 1 • 𝑔′ 𝑥 = 𝑠𝑒𝑐2 𝑥 ; f 𝑥 = 𝑥 1 2 − 1 • 𝑓′(𝑥) = 1 2 𝑥 1 2 −1 − 0 • 𝑓′(𝑥) = 1 2 𝑥− 1 2 • ℎ′ 𝑥 = 𝑠𝑒𝑐2 𝑥 − 1 . ( 1 2 𝑥− 1 2) • ℎ′ 𝑥 = ( 1 2𝑥 1 2 ). 𝑠𝑒𝑐2 𝑥 − 1 • ℎ′ 𝑥 = ( 1 2 𝑥 ). 𝑠𝑒𝑐2 𝑥 − 1
  • 38. Ejercicios • 𝑦 = 𝑐𝑜𝑡𝑥 ; 𝑑𝑦 𝑑𝑥 = −𝑐𝑠𝑐2 𝑥; ℎ 𝑥 = 𝑐𝑜𝑡 𝑓 𝑥 ; ℎ′ 𝑥 = −𝑐𝑠𝑐2 (𝑓 𝑥 ). (𝑓′(𝑥)) • 𝑦 = cot(𝑥 1 4 − 𝑥) • 𝑑𝑦 𝑑𝑥 = 𝑑 𝑑𝑥 (cot 𝑥 1 4 − 𝑥 ) • 𝑔 𝑥 = 𝑐𝑜𝑡𝑥 ; 𝑓 𝑥 = 𝑥 1 4 − 𝑥 • 𝑔′ 𝑥 = −𝑐𝑠𝑐2(𝑥) ; 𝑓′ 𝑥 = 1 4 𝑥− 3 4 − 1 • 𝑑𝑦 𝑑𝑥 = −𝑐𝑠𝑐2 𝑥 1 4 − 𝑥 . ( 1 4 𝑥− 3 4 − 1) • 𝑑𝑦 𝑑𝑥 = − 1 4𝑥 3 4 − 1 . 𝑐𝑠𝑐2 𝑥 1 4 − 𝑥
  • 39. Ejercicios • 𝑦 = 𝑠𝑒𝑐𝑥 ; 𝑑𝑦 𝑑𝑥 = 𝑠𝑒𝑐𝑥. 𝑡𝑎𝑛𝑥; • ℎ 𝑥 = 𝑠𝑒𝑐 𝑓 𝑥 ; ℎ′ 𝑥 = 𝑠𝑒𝑐 𝑓 𝑥 . tan(𝑓 𝑥 ). (𝑓′(𝑥)) • ℎ(𝑥) = sec(1 − 𝑥3) • 𝑔 𝑥 = 𝑠𝑒𝑐𝑥 ; 𝑓 𝑥 = 1 − 𝑥3 • 𝑔′ 𝑥 = 𝑠𝑒𝑐𝑥. 𝑡𝑎𝑛𝑥 ; 𝑓′ 𝑥 = −3𝑥2 • ℎ′ 𝑥 = sec 1 − 𝑥3 . tan 1 − 𝑥3 . (−3𝑥2) • ℎ′ 𝑥 =. −3𝑥2 . sec 1 − 𝑥3 . tan 1 − 𝑥3
  • 40. Ejercicios • 𝑦 = 𝑐𝑠𝑐𝑥 ; 𝑑𝑦 𝑑𝑥 = −𝑐𝑠𝑐𝑥. 𝑐𝑜𝑡𝑥; • ℎ 𝑥 = 𝑐𝑠𝑐 𝑓 𝑥 ; ℎ′ 𝑥 = −𝑐𝑠𝑐 𝑓 𝑥 . 𝑐𝑜𝑡(𝑓 𝑥 ). (𝑓′(𝑥)) • ℎ(𝑥) = csc(𝑥7 − 𝑥3) • 𝑔 𝑥 = 𝑐𝑠𝑐𝑥 ; 𝑓 𝑥 = 𝑥7 − 𝑥3 • 𝑔′ 𝑥 = −𝑐𝑠𝑐𝑥. 𝑐𝑜𝑡𝑥 ; 𝑓′ 𝑥 = 7𝑥6 − 3𝑥2 • ℎ′ 𝑥 = − csc 𝑥7 − 𝑥3 . cot 𝑥7 − 𝑥3 . (7𝑥6 − 3𝑥2) • ℎ′ 𝑥 = − 7𝑥6 − 3𝑥2 . csc 𝑥7 − 𝑥3 . cot 𝑥7 − 𝑥3
  • 41. Ejercicios • 𝑦 = 𝑙𝑛𝑥; 𝑑𝑦 𝑑𝑥 = 1 𝑥 ; ℎ 𝑥 = ln(𝑓 𝑥 ) ; ℎ′ 𝑥 = 1 𝑓 𝑥 . (𝑓′ 𝑥 ) • ℎ 𝑥 = ln(𝑥2 − 1) ; ℎ 𝑥 = 𝑔(𝑓 𝑥 ) • 𝑔 𝑥 = 𝑙𝑛𝑥 ; 𝑓 𝑥 = 𝑥2 − 1 • 𝑔′ 𝑥 = 1 𝑥 ; 𝑓′ 𝑥 = 2𝑥 • ℎ′ 𝑥 = 1 𝑥2−1 . (2𝑥) • ℎ′ 𝑥 = 2𝑥 𝑥2−1
  • 42. Ejercicios • 𝑦 = 𝑒𝑥 ; 𝑑𝑦 𝑑𝑥 = 𝑒𝑥 ; ℎ 𝑥 = 𝑒(𝑓(𝑥)); ℎ′ 𝑥 = 𝑒 𝑓 𝑥 . 𝑓′(𝑥) • ℎ 𝑥 = 𝑒(𝑥2−2𝑥+1) • 𝑔 𝑥 = 𝑒𝑥 ; 𝑓 𝑥 = 𝑥2 − 2𝑥 + 1 • 𝑔′ 𝑥 = 𝑒𝑥 ; 𝑓′ 𝑥 = 2𝑥 − 2 • ℎ′ 𝑥 = 𝑒 𝑥2−2𝑥+1 . (2𝑥 − 2)