SlideShare ist ein Scribd-Unternehmen logo
1 von 7
Downloaden Sie, um offline zu lesen
http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015
1
Virus-induced Gene Silencing (VIGS) in Barley Seedling Leaves
Lokanadha R. Gunupuru
1
, Shahin S. Ali
1, 3 *
, Fiona M. Doohan
1
and Steven R. Scofield
2
1
Molecular Plant-Microbe Interactions Laboratory, School of Biology and Environmental
Science, University College Dublin, Dublin, Ireland;
2
USDA-ARS, Crop Production and Pest
Control Research Unit and Purdue University, Department of Agronomy, West Lafayette, USA
3
Current address: Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville Agricultural
Research Center-West, Beltsville, USA
*
For correspondence: shahinsharif.ali@gmail.com
[Abstract] Virus induced gene silencing (VIGS) is one of the most potent reverse genetics
technologies for gene functional characterisation. This method exploits a dsRNA-mediated
antiviral defence mechanism in plants. Using this method allows researchers to generate rapid
phenotypic data in a relatively rapid time frame as compared to the generation of stable
transformants. Here we describe a simple method for silencing a target gene in barley seedling
leaves using vectors based on the Barley Stripe Mosaic Virus (BSMV).
Materials and Reagents
1. Bacterial strain: Escherichia coli strain DH5 α
2. Taq DNA polymerase (Life Technologies, Invitrogen
TM
, catalog number: 11304-011)
3. pGEM-T easy cloning kit (Promega Corporation, catalog number: A1380)
4. QIAGEN QIAprep Centrifuge Miniprep Kit (QIAGEN, catalog number: 27106)
5. Recombinant Taq DNA polymerase (Life Technologies, Invitrogen
TM
, catalog number:
10342-020)
6. Plasmid vectors: pα4β (pα), p 4β.sp1 (p ), pSL0γ8-1 (p ), pSL0γ8-PDS (p -PDS).
Note: See Scofield and Brandt (2012) for the plasmid maps (provided by Prof. Steven
R. Scofield,
https://www.purdue.edu/gradschool/pulse/groups/faculty_cascade.cfm?alias=scofield)
.
7. Luria-Bertani (LB) liquid broth (Sigma-Aldrich L3152) and solid media containing 1.2%
(w/v) agar (OXOID, catalog number: LP0013)
8. Ampicillin (100 mg/l working concentration) (Sigma-Aldrich, catalog number:
A0166-5G)
9. Restriction enzymes:
PacI (New England Biolabs, catalog number: R0547S)
MluI (New England Biolabs, catalog number: R0198S)
SpeI (New England Biolabs, catalog number: R0133S)
10. Ethanol (Sigma-Aldrich, catalog number: 459844)
http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015
2
11. sodium acetate (Sigma-Aldrich, catalog number: S2889)
12. mMessage mMachine T7 in vitro transcription kit (Ambion Sigma-Aldrich, catalog
number: AM1344)
13. John Innes compost No 2 (Westland Horticulture)
14. Glycine (Sigma-Aldrich, catalog number: 410225)
15. K2HPO4 dibasic (Sigma-Aldrich, catalog number: P3786)
16. Sodium pyrophosphate decahydrate (Sigma-Aldrich, catalog number: 221368)
17. Bentonite (Aldrich, catalog number: 28,523-4)
18. Celite (Fluka, catalog number: 22141)
19. 5x GP buffer (see Recipes)
20. FES buffer (see Recipes)
Equipment
1. Plant growth chambers (24 °C, 16/8 photoperiod and 55% humidity) (CambridgeHOK
containment glasshouse)
2. Sterile culture tubes (Falcon, catalog number: 352057)
3. Centrifuge tubes (SARSTEDT AG, catalog number: 72.695.500)
4. Filter paper (Whatman, catalog number: 1001-090)
5. Cooled centrifuge (Eppendorf)
6. Shaking incubators for cultures (New Brunswick Scientific)
7. Gel apparatus (Helixx Mupid-exU) and image system (Fusion Fx vilber lourmat)
8. Thermal cycler (MJ Research PTC200)
9. Gel electrophoresis chamber (Helixx Mupid-exU)
10. Autoclave (Priorclave)
Software
1. Primer3 software (version 0.4.0; http://frodo.wi.mit.edu/primer3/)
Procedure
A. Seed germination and plant growth
1. Place barley seeds in a 9-cm diameter petri plate containing 2 pieces of filter paper (90
mm diameter) and 6ml of sterile water.
2. Cover the petri plates with aluminum foil and stratify in the dark for 2 days at 4 °C.
3. Transfer plates to 21 °C in dark for 2 days to germinate seeds.
4. Transplant etiolated seedlings to 3-inch pots containing John Innes compost No 2 at a
density of 2 seedlings/pot.
http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015
3
5. Grow the plants at 22 °C under long day conditions (16 h/8 h), bottom watering every
second day. Relative humidity was maintained at 70%.
B. Virus-induced gene silencing
Note: BSMV is a single-stranded RNA virus with three genome components termed α, ,
and RNA. A transcribed sequence representing a fragment of the gene to be silenced is
inserted immediately downstream of the termination codon of the open reading frame
that is encoded within a DNA plasmid. RNA is synthesized from α, , and encoded
within DNA plasmids. Barley seedlings are infected with all three RNA fragments leads to
synthesis of viral dsRNA, which activates the anti-viral RNA silencing pathway, resulting in
silencing of the target barley gene. Here we showed VIGS of barley
Brassinosteroid-Insensitive-1 (BRI1) gene using two constructs targeting non-overlapping
gene fragments. A BSMV RNA construct containing a 185 bp-fragment of the barley
phytoene desaturase (PDS) gene that protects chlorophyll from photo-bleaching was
used as a positive control for the VIGS experiment.
1. Two independent fragments of BRI1 gene were amplified from genomic DNA of barley
cv. Akashinriki using the fragment-specific primers HvBri1A-F/R or HvBri1B-F/R (Table
1). PCR was undertaken in 10 µl volume consisting 1 µl 10X high fidelity PCR buffer,
0.4 µl 50 mM MgSO4, 0.β µl 10 mM dNTP Mix, 0.β µl each of 5 μM forward and
reverse primer, 0.05 µl 5 U/μl platinum Taq DNA polymerase, 30 ng genomic DNA and
sterile Milli-Q H2O to 10 µl. PCR reactions were conducted in a Peltier thermal cycler
DNA engine and the PCR program consisted of an initial denaturation step at 94 °C for
2 min, 30 cycles of denaturation 94 °C for 30 sec, annealing at 60 °C for 30 sec,
extension at 68 °C for 45 sec and a final extension step at 72 °C for 5 min
Table 1. Primers used for VIGS of BRI1 gene
VIGS primer
name
Forward primer (5΄- 3΄) Reverse primer (5΄- 3΄)
HvBRI1:A CGATTAATTAAGCGGAGGCAGAAG
AATGA
CGACCCGGGGTCACCCTGGCCACT
CAC
HvBRI1:B CGATTAATTAAGTGAGTGGCCAGGG
TGAC
CGACCCGGGTGGATGATGTGCGGA
ATG
HvBRi1:RT
HvRNAH
pGamma
CAACGATGCTCAAGGTGATG
GCACAGGGAATCGTCAAAGT
TGATGATTCTTCTTCCGTTGC
CCGGTGGTCATCTTCCTAAT
TCAAAACAACACAACATCGAAGT
TGGTTTCCAATTCAGGCATCG
Primers were design using the Primer3 software (version 0.4.0;
http://frodo.wi.mit.edu/primer3/).
*Note: When designing the primers for gene silencing makes sure that the PCR
http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015
4
products will not contain restriction sites for the enzymes used to linearize the
plasmids at a later stage.
2. The amplified gene fragments were cloned into the pGEM-T vector using the pGEM-T
Easy cloning kit and were transformed in to E. Coli DH5α via electroporation.
3. The recombinant pGEM-T vectors carrying the silencing fragments were then digested
with PacI and SmaI. The inserts were purified by gel extraction and then cloned into
PacI and SmaI -digested RNA vector pSL0γ8-1.
4. The resulting recombinant pSL038-1-BRI1A (p -BRI1A) and pSL038-1-BRI1B
(p -BRI1B) plasmids harbouring the BRI1 gene fragments were transformed in to E.
coli DH5α via electroporation and cloned products were subsequently sequenced by
Macrogen Inc. (Korea) using the vector-specific primers pGamma-F/R (Table 1) to
check the orientation of silencing fragment. Positive clones with correct orientations
were stored at -80 °C as glycerol stocks.
5. E. coli glycerol stocks carrying plasmid pα, p , p , p -PDS, p -BRI1A and p -BRI1B
were streaked on LB-agar plates supplemented with 100 mg/L ampicillin and cultures
grown overnight at 37 °C.
6. A single colony from each plate was inoculated into 10 ml LB broth supplemented with
100 mg/L ampicillin and cultures were grown overnight at 37 °C.
7. Plasmid extraction was carried out using the QIAGEN QIAprep Centrifuge Miniprep Kit
as per the product protocol, but excluding RNaseA from buffer P1 (any residual
RNaseA carried over in the plasmid DNA preparation will interfere with in vitro
transcription at later stages).
8. The plasmids pα, p , p -PDS, p -BRI1A and p -BRI1B were linearized with MluI and
the plasmid p was linearized with SpeI. The linearized plasmids were precipitated
overnight using ½ volume 5 M ammonium acetate and 2 volume absolute ethanol
followed by centrifuging at 18,000 x g for 15 min. DNA pellet was washed with 70%
ethanol, air-dried and resuspended in 50 µl RNase-free water. (For 50 seedlings, 1 µg
linearized plasmids of each).
9. Capped in vitro transcripts were prepared from the linearized plasmids pα, p , p ,
-PDS, p -BRI1A and p -BRI1B using the mMessage mMachine T7 in vitro
transcription kit following the manufacturer’s protocol. The prepared capped
transcripts were checked on a 1% agarose gel. Any smearing of the smaller band
indicates degradation of the RNA transcript. There should be a faint band at
approximately 10,000 bp and a bright band at approximately 3,000 bp.
10. For each plant, VIGS inoculum was prepared by mixing 9 µl of FES Buffer with 0.35 µl
each of the α, and the relevant -based transcript [ , -PDS (positive control),
-BRI1A or -BRI1B]. FES buffer served as a mock treatment.
11. The first leaf of 10-day-old seedlings was inoculated by rubbing with 10 µl of transcript
mixtures or FES (mock treatment) in between thumb and index finger. Care was taken
not to damage the leaf.
http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015
5
12. After 14 days plants were assessed for visual symptoms of gene silencing. In the case
of PDS-silenced plants, the leaves appeared photo bleached (Figure 1). The
BRI1-silenced plants showed dwarfing symptoms, as expected (Figure 2).
A B C
Figure 1. Silencing of PDS gene in barley results in photobleaching and
causes the leaves to turn white. A. FES treatment (negative control) B.
BSMV:00 (mock treatment) C. BSMV:PDS (positive control).
A B C
Figure 2. Silencing of HvBRI1 resulted in stunting of plant growth in barley
plants. A. FES treatment (negative control) B. BSMV:00 (mock treatment) C.
BSMV:HvBRI1.
13. To confirm the silencing, the 3
rd
leaf was harvested and flash-frozen in liquid N2 and
stored at -70 °C prior to RNA extraction. Total RNA was extracted from plants using the
TriZol™ protocol as given by the manufacturer.
14. Gene silencing was quantified by real-time RT-PCR using primers specific to BRI1
(HvBRi1:RT, Table 1) and relative to that of the RNA helicase housekeeping gene
(HvRNAH, Table 1). Note: It is important to design the real-time primers outside the
gene fragment that was cloned into the p plasmid.
http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015
6
Notes
1. Precaution should be taken not to mix the –PDS with other samples.
2. Gloves must be changed for every treatment
3. When applying the transcripts to the leaf, be gentle by not damaging the leaf too
much.
Recipes
1. 5x GP buffer (500 ml)
18.77 g glycine
26.13 g K2HPO4 dibasic
Bring to 500 ml with ddH2O and use immediately
2. FES buffer (500 ml)
100 ml GP buffer
5 g sodium pyrophosphate decahydrate
5 g bentonite
5 g celite
Bring to 500 ml with ddH2O
Aliquot into 50 ml volumes and autoclave (121 °C for 20 min)
Aliquots can be stored at room temperature under sterile condition
Acknowledgments
This work was supported by the Science Foundation Ireland research fund
(IN10/IN.1/B3028) and Department of Agriculture Research Stimulus Grant RSF 07 513.
Part of the procedures were adapted from a previously described methods by Ali et al.
(2014), Holzberg et al. (2002) and Scofield et al. (2005).
References
1. Ali, S. S., Gunupuru, L. R., Kumar, G. B., Khan, M., Scofield, S., Nicholson, P. and
Doohan, F. M. (2014). Plant disease resistance is augmented in uzu barley lines
modified in the brassinosteroid receptor BRI1. BMC Plant Biol 14: 227.
2. Holzberg, S., Brosio, P., Gross, C. and Pogue, G. P. (2002). Barley stripe mosaic
virus-induced gene silencing in a monocot plant. Plant J 30(3): 315-327.
3. Scofield, S. R. and Brandt, A. S. (2012). Virus-induced gene silencing in hexaploid
wheat using Barley stripe mosaic virus vectors. In: Watson, J. M. and Wang, M. B.
(eds). Antiviral Resistance in Plants: Methods and protocols. Springer, 93-112.
http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015
7
4. Scofield, S. R., Huang, L., Brandt, A. S. and Gill, B. S. (2005). Development of a
virus-induced gene-silencing system for hexaploid wheat and its use in functional
analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138(4):
2165-2173.

Weitere ähnliche Inhalte

Was ist angesagt?

H gh power resources
H gh power resourcesH gh power resources
H gh power resourcesabhinav009
 
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...James Silverman
 
Isolation and Molecular Detection of
Isolation and Molecular Detection ofIsolation and Molecular Detection of
Isolation and Molecular Detection ofHany Ellakany
 
Efficient transformation of lactococcus lactis il1403 and generation of knock...
Efficient transformation of lactococcus lactis il1403 and generation of knock...Efficient transformation of lactococcus lactis il1403 and generation of knock...
Efficient transformation of lactococcus lactis il1403 and generation of knock...CAS0609
 
2010 expression of a truncated form of yeast ribosomal protein l3
2010 expression of a truncated form of yeast ribosomal protein l32010 expression of a truncated form of yeast ribosomal protein l3
2010 expression of a truncated form of yeast ribosomal protein l3Agrin Life
 
Safi et al.ng.2743
Safi et al.ng.2743Safi et al.ng.2743
Safi et al.ng.2743Hassan Safi
 
Genetic Transformation Lab
Genetic Transformation LabGenetic Transformation Lab
Genetic Transformation LabSonja Silva
 
reporter gene assays by Tahura Mariyam
reporter gene assays by Tahura Mariyam reporter gene assays by Tahura Mariyam
reporter gene assays by Tahura Mariyam Tahura Mariyam Ansari
 
Shivaputra
ShivaputraShivaputra
ShivaputraSHVA5965
 
David Russell Thaler Lecture
David Russell Thaler LectureDavid Russell Thaler Lecture
David Russell Thaler LectureAerasGlobalTB
 
Pertussis Aaar Talk
Pertussis Aaar TalkPertussis Aaar Talk
Pertussis Aaar Talkmccabekm
 
Managment of Resistant Gram Negative Infections
Managment of Resistant Gram Negative InfectionsManagment of Resistant Gram Negative Infections
Managment of Resistant Gram Negative InfectionsYazan Kherallah
 

Was ist angesagt? (20)

Lc,cat,gfp,gal
Lc,cat,gfp,galLc,cat,gfp,gal
Lc,cat,gfp,gal
 
Dreb ppt
Dreb pptDreb ppt
Dreb ppt
 
Md iw mtqxmdm4
Md iw mtqxmdm4Md iw mtqxmdm4
Md iw mtqxmdm4
 
H gh power resources
H gh power resourcesH gh power resources
H gh power resources
 
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
Temp-Sensitive Inhibition of Development in Dictyostelium - Dev Bio 251 18-26...
 
Isolation and Molecular Detection of
Isolation and Molecular Detection ofIsolation and Molecular Detection of
Isolation and Molecular Detection of
 
Efficient transformation of lactococcus lactis il1403 and generation of knock...
Efficient transformation of lactococcus lactis il1403 and generation of knock...Efficient transformation of lactococcus lactis il1403 and generation of knock...
Efficient transformation of lactococcus lactis il1403 and generation of knock...
 
2010 expression of a truncated form of yeast ribosomal protein l3
2010 expression of a truncated form of yeast ribosomal protein l32010 expression of a truncated form of yeast ribosomal protein l3
2010 expression of a truncated form of yeast ribosomal protein l3
 
Safi et al.ng.2743
Safi et al.ng.2743Safi et al.ng.2743
Safi et al.ng.2743
 
Genetic Transformation Lab
Genetic Transformation LabGenetic Transformation Lab
Genetic Transformation Lab
 
Algae lab report
Algae lab report Algae lab report
Algae lab report
 
سمينار
سمينارسمينار
سمينار
 
reporter gene assays by Tahura Mariyam
reporter gene assays by Tahura Mariyam reporter gene assays by Tahura Mariyam
reporter gene assays by Tahura Mariyam
 
Shivaputra
ShivaputraShivaputra
Shivaputra
 
Ex Bio 2016 poster
Ex Bio 2016 posterEx Bio 2016 poster
Ex Bio 2016 poster
 
Cancer ppt 2
Cancer ppt 2Cancer ppt 2
Cancer ppt 2
 
David Russell Thaler Lecture
David Russell Thaler LectureDavid Russell Thaler Lecture
David Russell Thaler Lecture
 
Pertussis Aaar Talk
Pertussis Aaar TalkPertussis Aaar Talk
Pertussis Aaar Talk
 
Proposal for student
Proposal for studentProposal for student
Proposal for student
 
Managment of Resistant Gram Negative Infections
Managment of Resistant Gram Negative InfectionsManagment of Resistant Gram Negative Infections
Managment of Resistant Gram Negative Infections
 

Andere mochten auch

importance of ct-simulator in radiotherapy
importance of ct-simulator in radiotherapyimportance of ct-simulator in radiotherapy
importance of ct-simulator in radiotherapymakhhi
 
planning systems in radiotherapy
 planning systems in radiotherapy planning systems in radiotherapy
planning systems in radiotherapyfondas vakalis
 
Radiation Therapy
Radiation TherapyRadiation Therapy
Radiation Therapykathrnrt
 
Radiation therapy and Types of Radiation therapy
Radiation therapy and Types of Radiation therapyRadiation therapy and Types of Radiation therapy
Radiation therapy and Types of Radiation therapySembian Nandagopal
 
Radiation therapy
Radiation therapyRadiation therapy
Radiation therapyRad Tech
 
New Techniques in Radiotherapy
New Techniques in RadiotherapyNew Techniques in Radiotherapy
New Techniques in RadiotherapySantam Chakraborty
 
Introduction to radiation therapy
Introduction to radiation therapyIntroduction to radiation therapy
Introduction to radiation therapyRad Tech
 

Andere mochten auch (10)

importance of ct-simulator in radiotherapy
importance of ct-simulator in radiotherapyimportance of ct-simulator in radiotherapy
importance of ct-simulator in radiotherapy
 
Radiotherapy Treatment Simulation
Radiotherapy Treatment SimulationRadiotherapy Treatment Simulation
Radiotherapy Treatment Simulation
 
Radiation therapy of oral cancers
Radiation therapy of oral cancersRadiation therapy of oral cancers
Radiation therapy of oral cancers
 
planning systems in radiotherapy
 planning systems in radiotherapy planning systems in radiotherapy
planning systems in radiotherapy
 
Radiation Therapy
Radiation TherapyRadiation Therapy
Radiation Therapy
 
Radiation therapy and Types of Radiation therapy
Radiation therapy and Types of Radiation therapyRadiation therapy and Types of Radiation therapy
Radiation therapy and Types of Radiation therapy
 
Radiation therapy
Radiation therapyRadiation therapy
Radiation therapy
 
Radiotherapy
RadiotherapyRadiotherapy
Radiotherapy
 
New Techniques in Radiotherapy
New Techniques in RadiotherapyNew Techniques in Radiotherapy
New Techniques in Radiotherapy
 
Introduction to radiation therapy
Introduction to radiation therapyIntroduction to radiation therapy
Introduction to radiation therapy
 

Ähnlich wie VIGS in barley seedlings leaves

DNA damage repair Neil3 gene Knockout in MOLT-4
DNA damage repair Neil3 gene Knockout in MOLT-4DNA damage repair Neil3 gene Knockout in MOLT-4
DNA damage repair Neil3 gene Knockout in MOLT-4iosrjce
 
Biotechnological Approaches In Crop Improvement
Biotechnological Approaches  In Crop ImprovementBiotechnological Approaches  In Crop Improvement
Biotechnological Approaches In Crop ImprovementMahbubul Hassan
 
Final ppt project and tour
Final ppt project and tourFinal ppt project and tour
Final ppt project and tourFriendsCyber1037
 
To study of the genetic variations among the Azospirillum lipoferu isolates u...
To study of the genetic variations among the Azospirillum lipoferu isolates u...To study of the genetic variations among the Azospirillum lipoferu isolates u...
To study of the genetic variations among the Azospirillum lipoferu isolates u...ijsrd.com
 
DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...iosrjce
 
written work Gapdh august 2009
written work Gapdh august 2009written work Gapdh august 2009
written work Gapdh august 2009Lydia Cortes
 
Production of Genetically Modified Grape (Vitis vinifera L.) Plants
Production of Genetically Modified Grape (Vitis vinifera L.) PlantsProduction of Genetically Modified Grape (Vitis vinifera L.) Plants
Production of Genetically Modified Grape (Vitis vinifera L.) PlantsAI Publications
 
Detection of banana viruses in weed plants through dac elisa
Detection of banana viruses in weed plants through dac elisaDetection of banana viruses in weed plants through dac elisa
Detection of banana viruses in weed plants through dac elisaShone Shaji
 
Honours Report Draft COMPLETE
Honours Report Draft COMPLETEHonours Report Draft COMPLETE
Honours Report Draft COMPLETEBjorn Hunter
 
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...IJEAB
 
The biodegradation of Polystyrene
The biodegradation of PolystyreneThe biodegradation of Polystyrene
The biodegradation of PolystyrenePat Pataranutaporn
 
seed DNA extraction.pdf
seed DNA extraction.pdfseed DNA extraction.pdf
seed DNA extraction.pdfKanwalMalik18
 
DNA Vaccine + Nanoparticles
DNA Vaccine + NanoparticlesDNA Vaccine + Nanoparticles
DNA Vaccine + NanoparticlesHamid Salari
 

Ähnlich wie VIGS in barley seedlings leaves (20)

DNA damage repair Neil3 gene Knockout in MOLT-4
DNA damage repair Neil3 gene Knockout in MOLT-4DNA damage repair Neil3 gene Knockout in MOLT-4
DNA damage repair Neil3 gene Knockout in MOLT-4
 
Biotechnological Approaches In Crop Improvement
Biotechnological Approaches  In Crop ImprovementBiotechnological Approaches  In Crop Improvement
Biotechnological Approaches In Crop Improvement
 
Researchpaper
ResearchpaperResearchpaper
Researchpaper
 
Final ppt project and tour
Final ppt project and tourFinal ppt project and tour
Final ppt project and tour
 
To study of the genetic variations among the Azospirillum lipoferu isolates u...
To study of the genetic variations among the Azospirillum lipoferu isolates u...To study of the genetic variations among the Azospirillum lipoferu isolates u...
To study of the genetic variations among the Azospirillum lipoferu isolates u...
 
Transgenic Plant
Transgenic PlantTransgenic Plant
Transgenic Plant
 
DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...
 
IJAA
IJAAIJAA
IJAA
 
written work Gapdh august 2009
written work Gapdh august 2009written work Gapdh august 2009
written work Gapdh august 2009
 
Production of Genetically Modified Grape (Vitis vinifera L.) Plants
Production of Genetically Modified Grape (Vitis vinifera L.) PlantsProduction of Genetically Modified Grape (Vitis vinifera L.) Plants
Production of Genetically Modified Grape (Vitis vinifera L.) Plants
 
Detection of banana viruses in weed plants through dac elisa
Detection of banana viruses in weed plants through dac elisaDetection of banana viruses in weed plants through dac elisa
Detection of banana viruses in weed plants through dac elisa
 
Final552 (1)
Final552 (1)Final552 (1)
Final552 (1)
 
Honours Report Draft COMPLETE
Honours Report Draft COMPLETEHonours Report Draft COMPLETE
Honours Report Draft COMPLETE
 
MGG2003-cDNA-AFLP
MGG2003-cDNA-AFLPMGG2003-cDNA-AFLP
MGG2003-cDNA-AFLP
 
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation ...
 
Publication
PublicationPublication
Publication
 
Gorripati2021
Gorripati2021Gorripati2021
Gorripati2021
 
The biodegradation of Polystyrene
The biodegradation of PolystyreneThe biodegradation of Polystyrene
The biodegradation of Polystyrene
 
seed DNA extraction.pdf
seed DNA extraction.pdfseed DNA extraction.pdf
seed DNA extraction.pdf
 
DNA Vaccine + Nanoparticles
DNA Vaccine + NanoparticlesDNA Vaccine + Nanoparticles
DNA Vaccine + Nanoparticles
 

VIGS in barley seedlings leaves

  • 1. http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015 1 Virus-induced Gene Silencing (VIGS) in Barley Seedling Leaves Lokanadha R. Gunupuru 1 , Shahin S. Ali 1, 3 * , Fiona M. Doohan 1 and Steven R. Scofield 2 1 Molecular Plant-Microbe Interactions Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland; 2 USDA-ARS, Crop Production and Pest Control Research Unit and Purdue University, Department of Agronomy, West Lafayette, USA 3 Current address: Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, USA * For correspondence: shahinsharif.ali@gmail.com [Abstract] Virus induced gene silencing (VIGS) is one of the most potent reverse genetics technologies for gene functional characterisation. This method exploits a dsRNA-mediated antiviral defence mechanism in plants. Using this method allows researchers to generate rapid phenotypic data in a relatively rapid time frame as compared to the generation of stable transformants. Here we describe a simple method for silencing a target gene in barley seedling leaves using vectors based on the Barley Stripe Mosaic Virus (BSMV). Materials and Reagents 1. Bacterial strain: Escherichia coli strain DH5 α 2. Taq DNA polymerase (Life Technologies, Invitrogen TM , catalog number: 11304-011) 3. pGEM-T easy cloning kit (Promega Corporation, catalog number: A1380) 4. QIAGEN QIAprep Centrifuge Miniprep Kit (QIAGEN, catalog number: 27106) 5. Recombinant Taq DNA polymerase (Life Technologies, Invitrogen TM , catalog number: 10342-020) 6. Plasmid vectors: pα4β (pα), p 4β.sp1 (p ), pSL0γ8-1 (p ), pSL0γ8-PDS (p -PDS). Note: See Scofield and Brandt (2012) for the plasmid maps (provided by Prof. Steven R. Scofield, https://www.purdue.edu/gradschool/pulse/groups/faculty_cascade.cfm?alias=scofield) . 7. Luria-Bertani (LB) liquid broth (Sigma-Aldrich L3152) and solid media containing 1.2% (w/v) agar (OXOID, catalog number: LP0013) 8. Ampicillin (100 mg/l working concentration) (Sigma-Aldrich, catalog number: A0166-5G) 9. Restriction enzymes: PacI (New England Biolabs, catalog number: R0547S) MluI (New England Biolabs, catalog number: R0198S) SpeI (New England Biolabs, catalog number: R0133S) 10. Ethanol (Sigma-Aldrich, catalog number: 459844)
  • 2. http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015 2 11. sodium acetate (Sigma-Aldrich, catalog number: S2889) 12. mMessage mMachine T7 in vitro transcription kit (Ambion Sigma-Aldrich, catalog number: AM1344) 13. John Innes compost No 2 (Westland Horticulture) 14. Glycine (Sigma-Aldrich, catalog number: 410225) 15. K2HPO4 dibasic (Sigma-Aldrich, catalog number: P3786) 16. Sodium pyrophosphate decahydrate (Sigma-Aldrich, catalog number: 221368) 17. Bentonite (Aldrich, catalog number: 28,523-4) 18. Celite (Fluka, catalog number: 22141) 19. 5x GP buffer (see Recipes) 20. FES buffer (see Recipes) Equipment 1. Plant growth chambers (24 °C, 16/8 photoperiod and 55% humidity) (CambridgeHOK containment glasshouse) 2. Sterile culture tubes (Falcon, catalog number: 352057) 3. Centrifuge tubes (SARSTEDT AG, catalog number: 72.695.500) 4. Filter paper (Whatman, catalog number: 1001-090) 5. Cooled centrifuge (Eppendorf) 6. Shaking incubators for cultures (New Brunswick Scientific) 7. Gel apparatus (Helixx Mupid-exU) and image system (Fusion Fx vilber lourmat) 8. Thermal cycler (MJ Research PTC200) 9. Gel electrophoresis chamber (Helixx Mupid-exU) 10. Autoclave (Priorclave) Software 1. Primer3 software (version 0.4.0; http://frodo.wi.mit.edu/primer3/) Procedure A. Seed germination and plant growth 1. Place barley seeds in a 9-cm diameter petri plate containing 2 pieces of filter paper (90 mm diameter) and 6ml of sterile water. 2. Cover the petri plates with aluminum foil and stratify in the dark for 2 days at 4 °C. 3. Transfer plates to 21 °C in dark for 2 days to germinate seeds. 4. Transplant etiolated seedlings to 3-inch pots containing John Innes compost No 2 at a density of 2 seedlings/pot.
  • 3. http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015 3 5. Grow the plants at 22 °C under long day conditions (16 h/8 h), bottom watering every second day. Relative humidity was maintained at 70%. B. Virus-induced gene silencing Note: BSMV is a single-stranded RNA virus with three genome components termed α, , and RNA. A transcribed sequence representing a fragment of the gene to be silenced is inserted immediately downstream of the termination codon of the open reading frame that is encoded within a DNA plasmid. RNA is synthesized from α, , and encoded within DNA plasmids. Barley seedlings are infected with all three RNA fragments leads to synthesis of viral dsRNA, which activates the anti-viral RNA silencing pathway, resulting in silencing of the target barley gene. Here we showed VIGS of barley Brassinosteroid-Insensitive-1 (BRI1) gene using two constructs targeting non-overlapping gene fragments. A BSMV RNA construct containing a 185 bp-fragment of the barley phytoene desaturase (PDS) gene that protects chlorophyll from photo-bleaching was used as a positive control for the VIGS experiment. 1. Two independent fragments of BRI1 gene were amplified from genomic DNA of barley cv. Akashinriki using the fragment-specific primers HvBri1A-F/R or HvBri1B-F/R (Table 1). PCR was undertaken in 10 µl volume consisting 1 µl 10X high fidelity PCR buffer, 0.4 µl 50 mM MgSO4, 0.β µl 10 mM dNTP Mix, 0.β µl each of 5 μM forward and reverse primer, 0.05 µl 5 U/μl platinum Taq DNA polymerase, 30 ng genomic DNA and sterile Milli-Q H2O to 10 µl. PCR reactions were conducted in a Peltier thermal cycler DNA engine and the PCR program consisted of an initial denaturation step at 94 °C for 2 min, 30 cycles of denaturation 94 °C for 30 sec, annealing at 60 °C for 30 sec, extension at 68 °C for 45 sec and a final extension step at 72 °C for 5 min Table 1. Primers used for VIGS of BRI1 gene VIGS primer name Forward primer (5΄- 3΄) Reverse primer (5΄- 3΄) HvBRI1:A CGATTAATTAAGCGGAGGCAGAAG AATGA CGACCCGGGGTCACCCTGGCCACT CAC HvBRI1:B CGATTAATTAAGTGAGTGGCCAGGG TGAC CGACCCGGGTGGATGATGTGCGGA ATG HvBRi1:RT HvRNAH pGamma CAACGATGCTCAAGGTGATG GCACAGGGAATCGTCAAAGT TGATGATTCTTCTTCCGTTGC CCGGTGGTCATCTTCCTAAT TCAAAACAACACAACATCGAAGT TGGTTTCCAATTCAGGCATCG Primers were design using the Primer3 software (version 0.4.0; http://frodo.wi.mit.edu/primer3/). *Note: When designing the primers for gene silencing makes sure that the PCR
  • 4. http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015 4 products will not contain restriction sites for the enzymes used to linearize the plasmids at a later stage. 2. The amplified gene fragments were cloned into the pGEM-T vector using the pGEM-T Easy cloning kit and were transformed in to E. Coli DH5α via electroporation. 3. The recombinant pGEM-T vectors carrying the silencing fragments were then digested with PacI and SmaI. The inserts were purified by gel extraction and then cloned into PacI and SmaI -digested RNA vector pSL0γ8-1. 4. The resulting recombinant pSL038-1-BRI1A (p -BRI1A) and pSL038-1-BRI1B (p -BRI1B) plasmids harbouring the BRI1 gene fragments were transformed in to E. coli DH5α via electroporation and cloned products were subsequently sequenced by Macrogen Inc. (Korea) using the vector-specific primers pGamma-F/R (Table 1) to check the orientation of silencing fragment. Positive clones with correct orientations were stored at -80 °C as glycerol stocks. 5. E. coli glycerol stocks carrying plasmid pα, p , p , p -PDS, p -BRI1A and p -BRI1B were streaked on LB-agar plates supplemented with 100 mg/L ampicillin and cultures grown overnight at 37 °C. 6. A single colony from each plate was inoculated into 10 ml LB broth supplemented with 100 mg/L ampicillin and cultures were grown overnight at 37 °C. 7. Plasmid extraction was carried out using the QIAGEN QIAprep Centrifuge Miniprep Kit as per the product protocol, but excluding RNaseA from buffer P1 (any residual RNaseA carried over in the plasmid DNA preparation will interfere with in vitro transcription at later stages). 8. The plasmids pα, p , p -PDS, p -BRI1A and p -BRI1B were linearized with MluI and the plasmid p was linearized with SpeI. The linearized plasmids were precipitated overnight using ½ volume 5 M ammonium acetate and 2 volume absolute ethanol followed by centrifuging at 18,000 x g for 15 min. DNA pellet was washed with 70% ethanol, air-dried and resuspended in 50 µl RNase-free water. (For 50 seedlings, 1 µg linearized plasmids of each). 9. Capped in vitro transcripts were prepared from the linearized plasmids pα, p , p , -PDS, p -BRI1A and p -BRI1B using the mMessage mMachine T7 in vitro transcription kit following the manufacturer’s protocol. The prepared capped transcripts were checked on a 1% agarose gel. Any smearing of the smaller band indicates degradation of the RNA transcript. There should be a faint band at approximately 10,000 bp and a bright band at approximately 3,000 bp. 10. For each plant, VIGS inoculum was prepared by mixing 9 µl of FES Buffer with 0.35 µl each of the α, and the relevant -based transcript [ , -PDS (positive control), -BRI1A or -BRI1B]. FES buffer served as a mock treatment. 11. The first leaf of 10-day-old seedlings was inoculated by rubbing with 10 µl of transcript mixtures or FES (mock treatment) in between thumb and index finger. Care was taken not to damage the leaf.
  • 5. http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015 5 12. After 14 days plants were assessed for visual symptoms of gene silencing. In the case of PDS-silenced plants, the leaves appeared photo bleached (Figure 1). The BRI1-silenced plants showed dwarfing symptoms, as expected (Figure 2). A B C Figure 1. Silencing of PDS gene in barley results in photobleaching and causes the leaves to turn white. A. FES treatment (negative control) B. BSMV:00 (mock treatment) C. BSMV:PDS (positive control). A B C Figure 2. Silencing of HvBRI1 resulted in stunting of plant growth in barley plants. A. FES treatment (negative control) B. BSMV:00 (mock treatment) C. BSMV:HvBRI1. 13. To confirm the silencing, the 3 rd leaf was harvested and flash-frozen in liquid N2 and stored at -70 °C prior to RNA extraction. Total RNA was extracted from plants using the TriZol™ protocol as given by the manufacturer. 14. Gene silencing was quantified by real-time RT-PCR using primers specific to BRI1 (HvBRi1:RT, Table 1) and relative to that of the RNA helicase housekeeping gene (HvRNAH, Table 1). Note: It is important to design the real-time primers outside the gene fragment that was cloned into the p plasmid.
  • 6. http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015 6 Notes 1. Precaution should be taken not to mix the –PDS with other samples. 2. Gloves must be changed for every treatment 3. When applying the transcripts to the leaf, be gentle by not damaging the leaf too much. Recipes 1. 5x GP buffer (500 ml) 18.77 g glycine 26.13 g K2HPO4 dibasic Bring to 500 ml with ddH2O and use immediately 2. FES buffer (500 ml) 100 ml GP buffer 5 g sodium pyrophosphate decahydrate 5 g bentonite 5 g celite Bring to 500 ml with ddH2O Aliquot into 50 ml volumes and autoclave (121 °C for 20 min) Aliquots can be stored at room temperature under sterile condition Acknowledgments This work was supported by the Science Foundation Ireland research fund (IN10/IN.1/B3028) and Department of Agriculture Research Stimulus Grant RSF 07 513. Part of the procedures were adapted from a previously described methods by Ali et al. (2014), Holzberg et al. (2002) and Scofield et al. (2005). References 1. Ali, S. S., Gunupuru, L. R., Kumar, G. B., Khan, M., Scofield, S., Nicholson, P. and Doohan, F. M. (2014). Plant disease resistance is augmented in uzu barley lines modified in the brassinosteroid receptor BRI1. BMC Plant Biol 14: 227. 2. Holzberg, S., Brosio, P., Gross, C. and Pogue, G. P. (2002). Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30(3): 315-327. 3. Scofield, S. R. and Brandt, A. S. (2012). Virus-induced gene silencing in hexaploid wheat using Barley stripe mosaic virus vectors. In: Watson, J. M. and Wang, M. B. (eds). Antiviral Resistance in Plants: Methods and protocols. Springer, 93-112.
  • 7. http://www.bio-protocol.org/e1506 Vol 5, Iss 12, Jun 20, 2015 7 4. Scofield, S. R., Huang, L., Brandt, A. S. and Gill, B. S. (2005). Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138(4): 2165-2173.