SlideShare ist ein Scribd-Unternehmen logo
1 von 6
Ecuaciones Diferenciales Exactas <br />Una  Expresión diferencial M(x,y)+N(x,y)dy es una diferencial exacta en una región  Rdel plano xy ésta corresponde a la diferencial de alguna función fx,y definida en R. Una ecuación deferencial de primer orden de la forma:<br />M(x,y)+N(x,y)dy=0<br />Se dice que es una ecuación exacta si la expresión del lado izquierdo es diferencial exacta por ejemplo<br />2xydx + (x2-1)dy=0<br />Verificamos si tiene diferencial exacto<br />∂M∂y= 2xy = 2x <br />∂N∂x= x2-1 = 2x<br />El teorema que se presenta a continuación, muestra que la igualdad de las derivadas parciales  ∂M∂y,  ∂N∂x no  es una coincidencia<br />Criterio para una ecuación diferencial exacta<br />Sea M(x,y) y N(x,y) continuas y que tienen primeras derivadas parciales continuas en una región rectangular R definida por a<x<b,c<y<d. Entonces una condición necesaria y suficiente para que M(x,y)dx+N(x,y)dy sea una ecuación diferencial exacta es <br />∂M∂y =∂N∂x<br />Proceso algebraico para resolver la ecuación se resume mediante la expresión matemática:<br /> fx,y=M(x,y)+[Nx,y+ ∂∂yM(x,y)dx]dy<br />Ejemplo1<br />4y+2x-5dx+6y+4x-1dy=0<br />∂M∂y= 4y+2x-5=4 <br />∂N∂x=4x+6y-1=4<br />fx,y= (4y+2x-5) dx+ [4x+6y-1- ∂∂y 4y+2x-5dx]dy<br />fx,y=4xy+x2-5x+ [4x+6y-1- ∂∂y(4xy+x2-5x)]dy<br />fx,y=4xy+x2-5x+4x+6y-1-4xdy<br />fx,y=4xy+x2-5x+ 6y-1dy<br />fx,y=4xy+x2-5x+3y2+C  <br />Ecuaciones Diferenciales Exactas por factor integrante<br />Donde: μ Es el factor, que le permite a la expresión ser exactaSi una ecuación diferencial no es exacta, pudiera llegar a serlo si se la multiplica por una función especial μ(x,y)llamada factor integrante, tal que<br />∂M∂y ≠∂N∂x<br />μx,y= ep(x)dx μx,y= ep(y)dy<br />μx,y[Mx,y+Nx,ydy]=0 <br />Forma  o método de solución.<br />Si la ecuación diferencial posee un factor integrante respecto a x (es decir, p(x)), entonces se puede encontrar por medio de la fórmula siguiente: <br />px=My-NxN<br />Si la ecuación diferencial posee un factor integrante respecto a y (es decir, p(y)), entonces se puede encontrar por medio de la fórmula siguiente:<br />py=Ny-MxM<br />Ejemplo:<br />3x2ydx+ydy=0<br />∂M∂y ≠∂N∂x∂M∂y 3x2y=3x2<br />∂N∂x y=0<br />Como no  es una ecuación diferencial exacta procedemos a sacar el factor integrante  para volverla exacta.<br />py=0-3x23x2y<br />py=-1y<br />μx,y= ep(y)dy<br />μx,y= e-1ydy= e-lny=elny-1=1y<br />1y3x2ydx+ydy=0∴3x2dx+dy=0<br />fx,y= (3x2) dx+ [1- ∂∂y 3x2dx]dy<br />fx,y=x3+dy ∴fx,y=x3+y+c<br />Ecuaciones diferenciales lineales<br />Se llama ecuación diferencial lineal de primer orden a toda ecuación de la forma:<br />axy'+bxy=cx<br />Donde ax,bx,c(x) son funciones únicamente de la variable x.<br />Donde:qx=0 Entonces  es homogénea y se resuelve por variables separablesqx≠0 Entonces  es homogénea y se resuelve porFactor integranteVariación de parámetrosPara las ecuaciones lineales de primer orden expresadas en su forma normal:<br />y'+pxy=qx<br />  μx= ep(x)dx<br />y=1ux*qx*uxdx<br />Ejemplo:<br />xdy=xsinx-ydx<br />dydxx=xsinx-y<br />dydx=sinx-yx  ∴y'+ yx=sinx<br />px=1x        qx=sinx<br />μx= e1xdx ∴  elnx  ∴  x <br />y=1x*(sinx*x)dx<br />y=1x-xcosx+sinx  ∴   y=sinxx-cosx+cx<br />Ecuaciones de bernoulli<br />La ecuación diferencial<br />dydx+pxy=f(x)yn,<br />Donde:px y fx son funciones reales y continuas en un intervalo [a,b] y n es una constante real diferente de 0  y 1. La sustitución de u=y1-n ->dudxObservación: cuando  n=0 la ecuación de Bernoulli se reduce a una ecuación separable y cuando n=1 se trata de una ecuación lineal, casos ya estudiados.Donde n es cualquier número real,  se llama ecuación de bernoulli. <br />Ejemplo:<br />xdydx-y=x2y2<br />xy2dydx-y3= x2y2y2<br />xy2dydx-y3= x2       <br />u= -y3<br />Du= -3y2dy <br />-3xy2dydx+3u= -3x2<br />-xdydx+3u= -3x2<br />dudx-3ux=3xμ=e3dxx=e-3lnx  = x-3<br />d x-3u= x-3(3x)dx<br />           x-3u=3x-2dx<br />x-3u=-3x-1+c<br />          u=-3x-1+cx3<br />        u= -3x2+x3c<br />         -y3=-3x2-x3c<br />
Ecuaciones exactas por factor integrante,lineales,bernoulli
Ecuaciones exactas por factor integrante,lineales,bernoulli
Ecuaciones exactas por factor integrante,lineales,bernoulli
Ecuaciones exactas por factor integrante,lineales,bernoulli
Ecuaciones exactas por factor integrante,lineales,bernoulli

Weitere ähnliche Inhalte

Was ist angesagt?

Ed homogeneas y reducibles a homogéneas 2012 uncp
Ed homogeneas y reducibles a homogéneas  2012 uncpEd homogeneas y reducibles a homogéneas  2012 uncp
Ed homogeneas y reducibles a homogéneas 2012 uncp
Antony Melgar Salinas
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactas Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactas
Leo Casba
 
Ecuaciones diferenciales no exactas (factor integrante)
Ecuaciones diferenciales no exactas (factor integrante)Ecuaciones diferenciales no exactas (factor integrante)
Ecuaciones diferenciales no exactas (factor integrante)
Diego-Salcido-Hernandez
 

Was ist angesagt? (20)

Aplicaciones de las Integrales Triples ccesa007
Aplicaciones de las Integrales Triples  ccesa007Aplicaciones de las Integrales Triples  ccesa007
Aplicaciones de las Integrales Triples ccesa007
 
Ppto composicion con funciones
Ppto composicion  con funcionesPpto composicion  con funciones
Ppto composicion con funciones
 
Ecuaciones diferenciales _parciales
Ecuaciones diferenciales _parcialesEcuaciones diferenciales _parciales
Ecuaciones diferenciales _parciales
 
Calculo I La Regla De La Cadena
Calculo I La Regla De La CadenaCalculo I La Regla De La Cadena
Calculo I La Regla De La Cadena
 
Regla de la cadena
Regla de la cadenaRegla de la cadena
Regla de la cadena
 
Ed homogeneas y reducibles a homogéneas 2012 uncp
Ed homogeneas y reducibles a homogéneas  2012 uncpEd homogeneas y reducibles a homogéneas  2012 uncp
Ed homogeneas y reducibles a homogéneas 2012 uncp
 
Regla de la cadena
Regla de la cadenaRegla de la cadena
Regla de la cadena
 
Multiplicación de funciones
Multiplicación de funcionesMultiplicación de funciones
Multiplicación de funciones
 
Ejercicios de integrales triples
Ejercicios de integrales triplesEjercicios de integrales triples
Ejercicios de integrales triples
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactas Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactas
 
Ecuación de Cauchy-Euler
Ecuación de Cauchy-EulerEcuación de Cauchy-Euler
Ecuación de Cauchy-Euler
 
Operaciones con funciones
Operaciones con funcionesOperaciones con funciones
Operaciones con funciones
 
Derivadas de orden superior. Derivadas segundas. Matriz Hessiana. Derivación ...
Derivadas de orden superior. Derivadas segundas. Matriz Hessiana. Derivación ...Derivadas de orden superior. Derivadas segundas. Matriz Hessiana. Derivación ...
Derivadas de orden superior. Derivadas segundas. Matriz Hessiana. Derivación ...
 
Exámenes resueltos de Topología
Exámenes resueltos de TopologíaExámenes resueltos de Topología
Exámenes resueltos de Topología
 
Regla de la cadena
Regla de la cadenaRegla de la cadena
Regla de la cadena
 
Campos vectoriales
Campos vectorialesCampos vectoriales
Campos vectoriales
 
Derivadas Parciales
Derivadas ParcialesDerivadas Parciales
Derivadas Parciales
 
S5 Operaciones con funciones
S5 Operaciones con funcionesS5 Operaciones con funciones
S5 Operaciones con funciones
 
Ejercicios resueltos de integrales indefinidas
Ejercicios resueltos de integrales indefinidasEjercicios resueltos de integrales indefinidas
Ejercicios resueltos de integrales indefinidas
 
Ecuaciones diferenciales no exactas (factor integrante)
Ecuaciones diferenciales no exactas (factor integrante)Ecuaciones diferenciales no exactas (factor integrante)
Ecuaciones diferenciales no exactas (factor integrante)
 

Ähnlich wie Ecuaciones exactas por factor integrante,lineales,bernoulli

Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactas
Mayi Punk
 
Ecuaciones diferenciales exactas y lineales
Ecuaciones diferenciales exactas y linealesEcuaciones diferenciales exactas y lineales
Ecuaciones diferenciales exactas y lineales
AndresMartinez101291
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactas
guamaras
 
Ecuaciones exactas
Ecuaciones exactasEcuaciones exactas
Ecuaciones exactas
ana
 
Ecuaciones exactas
Ecuaciones exactasEcuaciones exactas
Ecuaciones exactas
ana
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
Esteban
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
Esteban
 
ecuaciones difernciales,exactas,linelaes,bernoulli
ecuaciones difernciales,exactas,linelaes,bernoulliecuaciones difernciales,exactas,linelaes,bernoulli
ecuaciones difernciales,exactas,linelaes,bernoulli
guapispoops
 

Ähnlich wie Ecuaciones exactas por factor integrante,lineales,bernoulli (20)

Ecuaciones diferenciales trabajo
Ecuaciones diferenciales trabajoEcuaciones diferenciales trabajo
Ecuaciones diferenciales trabajo
 
T6
T6T6
T6
 
Documento blog e.d
Documento blog e.dDocumento blog e.d
Documento blog e.d
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactas
 
Ecuaciones diferenciales exactas y lineales
Ecuaciones diferenciales exactas y linealesEcuaciones diferenciales exactas y lineales
Ecuaciones diferenciales exactas y lineales
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactas
 
Resumen Ecuaciones Diferenciales
Resumen Ecuaciones DiferencialesResumen Ecuaciones Diferenciales
Resumen Ecuaciones Diferenciales
 
1 6 Ecuaciones Exactas
1 6 Ecuaciones Exactas1 6 Ecuaciones Exactas
1 6 Ecuaciones Exactas
 
1 6 ecuaciones_exactas
1 6 ecuaciones_exactas1 6 ecuaciones_exactas
1 6 ecuaciones_exactas
 
Concepto ecuacion dif...
Concepto  ecuacion dif...Concepto  ecuacion dif...
Concepto ecuacion dif...
 
Ecuaciones exactas
Ecuaciones exactasEcuaciones exactas
Ecuaciones exactas
 
Ecuaciones exactas
Ecuaciones exactasEcuaciones exactas
Ecuaciones exactas
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
 
Ecuaciones diferenciales lineales
Ecuaciones diferenciales linealesEcuaciones diferenciales lineales
Ecuaciones diferenciales lineales
 
Teoria Edo
Teoria EdoTeoria Edo
Teoria Edo
 
Trabajo terminado de ecuaciones
Trabajo terminado de ecuacionesTrabajo terminado de ecuaciones
Trabajo terminado de ecuaciones
 
Practica e-dif
Practica e-difPractica e-dif
Practica e-dif
 
Ps1
Ps1Ps1
Ps1
 
ecuaciones difernciales,exactas,linelaes,bernoulli
ecuaciones difernciales,exactas,linelaes,bernoulliecuaciones difernciales,exactas,linelaes,bernoulli
ecuaciones difernciales,exactas,linelaes,bernoulli
 
Apuntes ecuaciones diferenciales
Apuntes ecuaciones diferencialesApuntes ecuaciones diferenciales
Apuntes ecuaciones diferenciales
 

Ecuaciones exactas por factor integrante,lineales,bernoulli

  • 1. Ecuaciones Diferenciales Exactas <br />Una Expresión diferencial M(x,y)+N(x,y)dy es una diferencial exacta en una región Rdel plano xy ésta corresponde a la diferencial de alguna función fx,y definida en R. Una ecuación deferencial de primer orden de la forma:<br />M(x,y)+N(x,y)dy=0<br />Se dice que es una ecuación exacta si la expresión del lado izquierdo es diferencial exacta por ejemplo<br />2xydx + (x2-1)dy=0<br />Verificamos si tiene diferencial exacto<br />∂M∂y= 2xy = 2x <br />∂N∂x= x2-1 = 2x<br />El teorema que se presenta a continuación, muestra que la igualdad de las derivadas parciales ∂M∂y, ∂N∂x no es una coincidencia<br />Criterio para una ecuación diferencial exacta<br />Sea M(x,y) y N(x,y) continuas y que tienen primeras derivadas parciales continuas en una región rectangular R definida por a<x<b,c<y<d. Entonces una condición necesaria y suficiente para que M(x,y)dx+N(x,y)dy sea una ecuación diferencial exacta es <br />∂M∂y =∂N∂x<br />Proceso algebraico para resolver la ecuación se resume mediante la expresión matemática:<br /> fx,y=M(x,y)+[Nx,y+ ∂∂yM(x,y)dx]dy<br />Ejemplo1<br />4y+2x-5dx+6y+4x-1dy=0<br />∂M∂y= 4y+2x-5=4 <br />∂N∂x=4x+6y-1=4<br />fx,y= (4y+2x-5) dx+ [4x+6y-1- ∂∂y 4y+2x-5dx]dy<br />fx,y=4xy+x2-5x+ [4x+6y-1- ∂∂y(4xy+x2-5x)]dy<br />fx,y=4xy+x2-5x+4x+6y-1-4xdy<br />fx,y=4xy+x2-5x+ 6y-1dy<br />fx,y=4xy+x2-5x+3y2+C <br />Ecuaciones Diferenciales Exactas por factor integrante<br />Donde: μ Es el factor, que le permite a la expresión ser exactaSi una ecuación diferencial no es exacta, pudiera llegar a serlo si se la multiplica por una función especial μ(x,y)llamada factor integrante, tal que<br />∂M∂y ≠∂N∂x<br />μx,y= ep(x)dx μx,y= ep(y)dy<br />μx,y[Mx,y+Nx,ydy]=0 <br />Forma o método de solución.<br />Si la ecuación diferencial posee un factor integrante respecto a x (es decir, p(x)), entonces se puede encontrar por medio de la fórmula siguiente: <br />px=My-NxN<br />Si la ecuación diferencial posee un factor integrante respecto a y (es decir, p(y)), entonces se puede encontrar por medio de la fórmula siguiente:<br />py=Ny-MxM<br />Ejemplo:<br />3x2ydx+ydy=0<br />∂M∂y ≠∂N∂x∂M∂y 3x2y=3x2<br />∂N∂x y=0<br />Como no es una ecuación diferencial exacta procedemos a sacar el factor integrante para volverla exacta.<br />py=0-3x23x2y<br />py=-1y<br />μx,y= ep(y)dy<br />μx,y= e-1ydy= e-lny=elny-1=1y<br />1y3x2ydx+ydy=0∴3x2dx+dy=0<br />fx,y= (3x2) dx+ [1- ∂∂y 3x2dx]dy<br />fx,y=x3+dy ∴fx,y=x3+y+c<br />Ecuaciones diferenciales lineales<br />Se llama ecuación diferencial lineal de primer orden a toda ecuación de la forma:<br />axy'+bxy=cx<br />Donde ax,bx,c(x) son funciones únicamente de la variable x.<br />Donde:qx=0 Entonces es homogénea y se resuelve por variables separablesqx≠0 Entonces es homogénea y se resuelve porFactor integranteVariación de parámetrosPara las ecuaciones lineales de primer orden expresadas en su forma normal:<br />y'+pxy=qx<br /> μx= ep(x)dx<br />y=1ux*qx*uxdx<br />Ejemplo:<br />xdy=xsinx-ydx<br />dydxx=xsinx-y<br />dydx=sinx-yx ∴y'+ yx=sinx<br />px=1x qx=sinx<br />μx= e1xdx ∴ elnx ∴ x <br />y=1x*(sinx*x)dx<br />y=1x-xcosx+sinx ∴ y=sinxx-cosx+cx<br />Ecuaciones de bernoulli<br />La ecuación diferencial<br />dydx+pxy=f(x)yn,<br />Donde:px y fx son funciones reales y continuas en un intervalo [a,b] y n es una constante real diferente de 0 y 1. La sustitución de u=y1-n ->dudxObservación: cuando n=0 la ecuación de Bernoulli se reduce a una ecuación separable y cuando n=1 se trata de una ecuación lineal, casos ya estudiados.Donde n es cualquier número real, se llama ecuación de bernoulli. <br />Ejemplo:<br />xdydx-y=x2y2<br />xy2dydx-y3= x2y2y2<br />xy2dydx-y3= x2 <br />u= -y3<br />Du= -3y2dy <br />-3xy2dydx+3u= -3x2<br />-xdydx+3u= -3x2<br />dudx-3ux=3xμ=e3dxx=e-3lnx = x-3<br />d x-3u= x-3(3x)dx<br /> x-3u=3x-2dx<br />x-3u=-3x-1+c<br /> u=-3x-1+cx3<br /> u= -3x2+x3c<br /> -y3=-3x2-x3c<br />