SlideShare ist ein Scribd-Unternehmen logo
1 von 31
Downloaden Sie, um offline zu lesen
Section	3.2
                  Inverse	Functions	and	Logarithms

                            V63.0121, Calculus	I



                            March	4/9/10, 2009



        .

.
Image	credit: Roger	Smith
                                                   .   .   .   .   .   .
Outline




  Inverse	Functions



  Derivatives	of	Inverse	Functions



  Logarithmic	Functions




                                     .   .   .   .   .   .
What	is	an	inverse	function?



   Definition
   Let f be	a	function	with	domain D and	range E. The inverse of f is
   the	function f−1 defined	by:

                              f−1 (b) = a,

   where a is	chosen	so	that f(a) = b.




                                               .    .   .    .   .      .
What	is	an	inverse	function?



   Definition
   Let f be	a	function	with	domain D and	range E. The inverse of f is
   the	function f−1 defined	by:

                               f−1 (b) = a,

   where a is	chosen	so	that f(a) = b.
   So
                    f−1 (f(x)) = x,      f(f−1 (x)) = x




                                                  .       .   .   .   .   .
What	functions	are	invertible?



   In	order	for f−1 to	be	a	function, there	must	be	only	one a in D
   corresponding	to	each b in E.
       Such	a	function	is	called one-to-one
       The	graph	of	such	a	function	passes	the horizontal	line	test:
       any	horizontal	line	intersects	the	graph	in	exactly	one	point
       if	at	all.
       If f is	continuous, then f−1 is	continuous.




                                                .    .   .   .    .    .
Graphing	an	inverse	function



     The	graph	of f−1
     interchanges	the x and y               f
                                            .
     coordinate	of	every
     point	on	the	graph	of f

                                    .




                                .   .   .       .   .   .
Graphing	an	inverse	function



     The	graph	of f−1
     interchanges	the x and y                f
                                             .
     coordinate	of	every
     point	on	the	graph	of f
                                                     .−1
                                                     f
     The	result	is	that	to	get
     the	graph	of f−1 , we           .
     need	only	reflect	the
     graph	of f in	the
     diagonal	line y = x.




                                 .   .   .       .   .     .
How	to	find	the	inverse	function
 1. Write y = f(x)
 2. Solve	for x in	terms	of y
 3. To	express f−1 as	a	function	of x, interchange x and y




                                            .   .    .       .   .   .
How	to	find	the	inverse	function
 1. Write y = f(x)
 2. Solve	for x in	terms	of y
 3. To	express f−1 as	a	function	of x, interchange x and y

Example
Find	the	inverse	function	of f(x) = x3 + 1.




                                              .   .   .      .   .   .
How	to	find	the	inverse	function
 1. Write y = f(x)
 2. Solve	for x in	terms	of y
 3. To	express f−1 as	a	function	of x, interchange x and y

Example
Find	the	inverse	function	of f(x) = x3 + 1.

Answer               √
y = x3 + 1 =⇒ x =        y − 1, so
                     3


                                      √
                          f−1 (x) =   3
                                          x−1




                                                .   .   .    .   .   .
Outline




  Inverse	Functions



  Derivatives	of	Inverse	Functions



  Logarithmic	Functions




                                     .   .   .   .   .   .
derivative	of	square	root


                        √                   dy
   Recall	that	if y =       x, we	can	find      by	implicit	differentiation:
                                            dx
                              √
                                x =⇒ y2 = x
                        y=
                                     dy
                               =⇒ 2y    =1
                                     dx
                                     dy    1  1
                                             =√
                                 =⇒     =
                                     dx   2y  2x

                 d2
                    y , and y is	the	inverse	of	the	squaring	function.
   Notice 2y =
                 dy




                                                      .   .    .    .    .    .
Theorem	(The	Inverse	Function	Theorem)
Let f be	differentiable	at a, and f′ (a) ̸= 0. Then f−1 is	defined	in	an
open	interval	containing b = f(a), and

                                              1
                       (f−1 )′ (b) =   ′ −1
                                       f (f   (b))




                                                     .   .   .   .   .    .
Theorem	(The	Inverse	Function	Theorem)
Let f be	differentiable	at a, and f′ (a) ̸= 0. Then f−1 is	defined	in	an
open	interval	containing b = f(a), and

                                                 1
                          (f−1 )′ (b) =   ′ −1
                                          f (f   (b))


“Proof”.
If y = f−1 (x), then
                                 f(y) = x,
So	by	implicit	differentiation

                      dy        dy    1         1
             f′ (y)      = 1 =⇒    =′     = ′ −1
                      dx        dx  f (y)   f (f (x))



                                                        .   .   .   .   .   .
Outline




  Inverse	Functions



  Derivatives	of	Inverse	Functions



  Logarithmic	Functions




                                     .   .   .   .   .   .
Logarithms

  Definition
      The	base a logarithm loga x is	the	inverse	of	the	function ax

                          y = loga x ⇐⇒ x = ay

      The	natural	logarithm ln x is	the	inverse	of ex . So
      y = ln x ⇐⇒ x = ey .




                                                .    .       .   .   .   .
Logarithms

  Definition
       The	base a logarithm loga x is	the	inverse	of	the	function ax

                              y = loga x ⇐⇒ x = ay

       The	natural	logarithm ln x is	the	inverse	of ex . So
       y = ln x ⇐⇒ x = ey .

  Facts
    (i) loga (x · x′ ) = loga x + loga x′




                                                 .    .       .   .   .   .
Logarithms

  Definition
       The	base a logarithm loga x is	the	inverse	of	the	function ax

                              y = loga x ⇐⇒ x = ay

       The	natural	logarithm ln x is	the	inverse	of ex . So
       y = ln x ⇐⇒ x = ey .

  Facts
    (i) loga (x · x′ ) = loga x + loga x′
             (x)
   (ii) loga ′ = loga x − loga x′
               x



                                                 .    .       .   .   .   .
Logarithms

  Definition
        The	base a logarithm loga x is	the	inverse	of	the	function ax

                               y = loga x ⇐⇒ x = ay

        The	natural	logarithm ln x is	the	inverse	of ex . So
        y = ln x ⇐⇒ x = ey .

  Facts
     (i) loga (x · x′ ) = loga x + loga x′
              (x)
    (ii) loga ′ = loga x − loga x′
                x
   (iii) loga (xr ) = r loga x


                                                  .    .       .   .   .   .
Logarithms	convert	products	to	sums

      Suppose y = loga x and y′ = loga x′
                                  ′
      Then x = ay and x′ = ay
                   ′          ′
      So xx′ = ay ay = ay+y
      Therefore

                  loga (xx′ ) = y + y′ = loga x + loga x′




                                               .    .       .   .   .   .
Example
Write	as	a	single	logarithm: 2 ln 4 − ln 3.




                                              .   .   .   .   .   .
Example
Write	as	a	single	logarithm: 2 ln 4 − ln 3.

Solution
                                        42
    2 ln 4 − ln 3 = ln 42 − ln 3 = ln
                                        3
          ln 42
    not         !
           ln 3




                                              .   .   .   .   .   .
Example
Write	as	a	single	logarithm: 2 ln 4 − ln 3.

Solution
                                        42
    2 ln 4 − ln 3 = ln 42 − ln 3 = ln
                                        3
          ln 42
    not         !
           ln 3

Example
                                  3
Write	as	a	single	logarithm: ln     + 4 ln 2
                                  4




                                               .   .   .   .   .   .
Example
Write	as	a	single	logarithm: 2 ln 4 − ln 3.

Solution
                                        42
    2 ln 4 − ln 3 = ln 42 − ln 3 = ln
                                        3
          ln 42
    not         !
           ln 3

Example
                                  3
Write	as	a	single	logarithm: ln     + 4 ln 2
                                  4
Answer
ln 12


                                               .   .   .   .   .   .
“.
                          . lawn”



    .
    Image	credit: Selva
.




                                    .   .   .   .   .   .
Graphs	of	logarithmic	functions

       y
       .
                   . = 2x
                   y


                                              y
                                              . = log2 x



       . . 0, 1)
         (

       ..1, 0) .                                   x
                                                   .
       (




                                  .   .   .    .    .      .
Graphs	of	logarithmic	functions

       y
       .
                   . = 3x= 2x
                   y.  y


                                              y
                                              . = log2 x


                                              y
                                              . = log3 x
       . . 0, 1)
         (

       ..1, 0) .                                   x
                                                   .
       (




                                  .   .   .    .    .      .
Graphs	of	logarithmic	functions

       y
       .
             . = .10x 3x= 2x
             y y=.    y


                                              y
                                              . = log2 x


                                              y
                                              . = log3 x
       . . 0, 1)
         (
                                              y
                                              . = log10 x
       ..1, 0) .                                    x
                                                    .
       (




                                  .   .   .     .    .      .
Graphs	of	logarithmic	functions

       y
       .
             . = .10=3xx 2x
                  yxy
             y y. = .e =


                                              y
                                              . = log2 x

                                               y
                                               . = ln x
                                              y
                                              . = log3 x
       . . 0, 1)
         (
                                              y
                                              . = log10 x
       ..1, 0) .                                    x
                                                    .
       (




                                  .   .   .     .    .      .
Change	of	base	formula	for	exponentials

   Fact
   If a > 0 and a ̸= 1, then

                                          ln x
                               loga x =
                                          ln a




                                                 .   .   .   .   .   .
Change	of	base	formula	for	exponentials

   Fact
   If a > 0 and a ̸= 1, then

                                            ln x
                                 loga x =
                                            ln a


   Proof.
          If y = loga x, then x = ay
          So ln x = ln(ay ) = y ln a
          Therefore
                                                   ln x
                                  y = loga x =
                                                   ln a



                                                          .   .   .   .   .   .

Weitere ähnliche Inhalte

Was ist angesagt?

Lesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functionsLesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functionsLawrence De Vera
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
 
3.2 Logarithmic Functions
3.2 Logarithmic Functions3.2 Logarithmic Functions
3.2 Logarithmic Functionslgemgnani
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functionsmath265
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts xmath266
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsMatthew Leingang
 
Function transformations
Function transformationsFunction transformations
Function transformationsTerry Gastauer
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiationmath265
 
1.7 derivative
1.7 derivative1.7 derivative
1.7 derivativemath265
 
Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Matthew Leingang
 
Inverse functions
Inverse functionsInverse functions
Inverse functionsJJkedst
 
The two dimensional wave equation
The two dimensional wave equationThe two dimensional wave equation
The two dimensional wave equationGermán Ceballos
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 

Was ist angesagt? (20)

Lesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functionsLesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functions
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
Types of function
Types of function Types of function
Types of function
 
Lectures4 8
Lectures4 8Lectures4 8
Lectures4 8
 
Chain Rule
Chain RuleChain Rule
Chain Rule
 
3.2 Logarithmic Functions
3.2 Logarithmic Functions3.2 Logarithmic Functions
3.2 Logarithmic Functions
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functions
 
Integration
IntegrationIntegration
Integration
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts x
 
Lesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric FunctionsLesson 17: Inverse Trigonometric Functions
Lesson 17: Inverse Trigonometric Functions
 
Function transformations
Function transformationsFunction transformations
Function transformations
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
 
1.7 derivative
1.7 derivative1.7 derivative
1.7 derivative
 
Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
The two dimensional wave equation
The two dimensional wave equationThe two dimensional wave equation
The two dimensional wave equation
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 

Andere mochten auch

Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6Debra Wallace
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Matthew Leingang
 
Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008Darren Kuropatwa
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesMatthew Leingang
 
Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Matthew Leingang
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsMatthew Leingang
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesMatthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesMatthew Leingang
 
Lesson 13: Linear Approximation
Lesson 13: Linear ApproximationLesson 13: Linear Approximation
Lesson 13: Linear ApproximationMatthew Leingang
 
Lesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient RulesLesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient RulesMatthew Leingang
 
Lesson 12: Implicit Differentiation
Lesson 12: Implicit DifferentiationLesson 12: Implicit Differentiation
Lesson 12: Implicit DifferentiationMatthew Leingang
 
Lesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsLesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsMatthew Leingang
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremMatthew Leingang
 
Inverse trig functions
Inverse trig functionsInverse trig functions
Inverse trig functionsJessica Garcia
 

Andere mochten auch (20)

Inverse functions 1.6
Inverse functions 1.6Inverse functions 1.6
Inverse functions 1.6
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)
 
Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008Calculus 45S Slides March 28, 2008
Calculus 45S Slides March 28, 2008
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum Vaues
 
Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Lesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential FunctionsLesson 2: A Catalog of Essential Functions
Lesson 2: A Catalog of Essential Functions
 
Lesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum VauesLesson 18: Maximum and Minimum Vaues
Lesson 18: Maximum and Minimum Vaues
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of Curves
 
Lesson 13: Linear Approximation
Lesson 13: Linear ApproximationLesson 13: Linear Approximation
Lesson 13: Linear Approximation
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient RulesLesson 10: the Product and Quotient Rules
Lesson 10: the Product and Quotient Rules
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Lesson 12: Implicit Differentiation
Lesson 12: Implicit DifferentiationLesson 12: Implicit Differentiation
Lesson 12: Implicit Differentiation
 
Lesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsLesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functions
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value Theorem
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Inverse trig functions
Inverse trig functionsInverse trig functions
Inverse trig functions
 

Ähnlich wie Lesson 15: Inverse Functions And Logarithms

Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsMatthew Leingang
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsMatthew Leingang
 
Lesson03 The Concept Of Limit 027 Slides
Lesson03   The Concept Of Limit 027 SlidesLesson03   The Concept Of Limit 027 Slides
Lesson03 The Concept Of Limit 027 SlidesMatthew Leingang
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial DerivativesMatthew Leingang
 
Lesson 6: The derivative as a function
Lesson 6: The derivative as a functionLesson 6: The derivative as a function
Lesson 6: The derivative as a functionMatthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Matthew Leingang
 
grph_of_polynomial_fnctn.ppt
grph_of_polynomial_fnctn.pptgrph_of_polynomial_fnctn.ppt
grph_of_polynomial_fnctn.pptLunaLedezma3
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).Eko Wijayanto
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Matthew Leingang
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6homeworkping3
 
Comp Of Functions 0922
Comp Of Functions 0922Comp Of Functions 0922
Comp Of Functions 0922ingroy
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
2.2 Polynomial Function Notes
2.2 Polynomial Function Notes2.2 Polynomial Function Notes
2.2 Polynomial Function Noteslgemgnani
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 

Ähnlich wie Lesson 15: Inverse Functions And Logarithms (20)

Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Lesson03 The Concept Of Limit 027 Slides
Lesson03   The Concept Of Limit 027 SlidesLesson03   The Concept Of Limit 027 Slides
Lesson03 The Concept Of Limit 027 Slides
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
Lesson 6: The derivative as a function
Lesson 6: The derivative as a functionLesson 6: The derivative as a function
Lesson 6: The derivative as a function
 
gfg
gfggfg
gfg
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
grph_of_polynomial_fnctn.ppt
grph_of_polynomial_fnctn.pptgrph_of_polynomial_fnctn.ppt
grph_of_polynomial_fnctn.ppt
 
Chapter 1 (functions).
Chapter 1 (functions).Chapter 1 (functions).
Chapter 1 (functions).
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Exponents)
Exponents)Exponents)
Exponents)
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6
 
Matlab
MatlabMatlab
Matlab
 
Comp Of Functions 0922
Comp Of Functions 0922Comp Of Functions 0922
Comp Of Functions 0922
 
Pre-Cal 40S March 3, 2009
Pre-Cal 40S March 3, 2009Pre-Cal 40S March 3, 2009
Pre-Cal 40S March 3, 2009
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential Functions
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
2.2 Polynomial Function Notes
2.2 Polynomial Function Notes2.2 Polynomial Function Notes
2.2 Polynomial Function Notes
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential Functions
 

Mehr von Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

Mehr von Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Kürzlich hochgeladen

Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 

Kürzlich hochgeladen (20)

Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 

Lesson 15: Inverse Functions And Logarithms

  • 1. Section 3.2 Inverse Functions and Logarithms V63.0121, Calculus I March 4/9/10, 2009 . . Image credit: Roger Smith . . . . . .
  • 2. Outline Inverse Functions Derivatives of Inverse Functions Logarithmic Functions . . . . . .
  • 3. What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. . . . . . .
  • 4. What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. So f−1 (f(x)) = x, f(f−1 (x)) = x . . . . . .
  • 5. What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. . . . . . .
  • 6. Graphing an inverse function The graph of f−1 interchanges the x and y f . coordinate of every point on the graph of f . . . . . . .
  • 7. Graphing an inverse function The graph of f−1 interchanges the x and y f . coordinate of every point on the graph of f .−1 f The result is that to get the graph of f−1 , we . need only reflect the graph of f in the diagonal line y = x. . . . . . .
  • 8. How to find the inverse function 1. Write y = f(x) 2. Solve for x in terms of y 3. To express f−1 as a function of x, interchange x and y . . . . . .
  • 9. How to find the inverse function 1. Write y = f(x) 2. Solve for x in terms of y 3. To express f−1 as a function of x, interchange x and y Example Find the inverse function of f(x) = x3 + 1. . . . . . .
  • 10. How to find the inverse function 1. Write y = f(x) 2. Solve for x in terms of y 3. To express f−1 as a function of x, interchange x and y Example Find the inverse function of f(x) = x3 + 1. Answer √ y = x3 + 1 =⇒ x = y − 1, so 3 √ f−1 (x) = 3 x−1 . . . . . .
  • 11. Outline Inverse Functions Derivatives of Inverse Functions Logarithmic Functions . . . . . .
  • 12. derivative of square root √ dy Recall that if y = x, we can find by implicit differentiation: dx √ x =⇒ y2 = x y= dy =⇒ 2y =1 dx dy 1 1 =√ =⇒ = dx 2y 2x d2 y , and y is the inverse of the squaring function. Notice 2y = dy . . . . . .
  • 13. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) . . . . . .
  • 14. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) “Proof”. If y = f−1 (x), then f(y) = x, So by implicit differentiation dy dy 1 1 f′ (y) = 1 =⇒ =′ = ′ −1 dx dx f (y) f (f (x)) . . . . . .
  • 15. Outline Inverse Functions Derivatives of Inverse Functions Logarithmic Functions . . . . . .
  • 16. Logarithms Definition The base a logarithm loga x is the inverse of the function ax y = loga x ⇐⇒ x = ay The natural logarithm ln x is the inverse of ex . So y = ln x ⇐⇒ x = ey . . . . . . .
  • 17. Logarithms Definition The base a logarithm loga x is the inverse of the function ax y = loga x ⇐⇒ x = ay The natural logarithm ln x is the inverse of ex . So y = ln x ⇐⇒ x = ey . Facts (i) loga (x · x′ ) = loga x + loga x′ . . . . . .
  • 18. Logarithms Definition The base a logarithm loga x is the inverse of the function ax y = loga x ⇐⇒ x = ay The natural logarithm ln x is the inverse of ex . So y = ln x ⇐⇒ x = ey . Facts (i) loga (x · x′ ) = loga x + loga x′ (x) (ii) loga ′ = loga x − loga x′ x . . . . . .
  • 19. Logarithms Definition The base a logarithm loga x is the inverse of the function ax y = loga x ⇐⇒ x = ay The natural logarithm ln x is the inverse of ex . So y = ln x ⇐⇒ x = ey . Facts (i) loga (x · x′ ) = loga x + loga x′ (x) (ii) loga ′ = loga x − loga x′ x (iii) loga (xr ) = r loga x . . . . . .
  • 20. Logarithms convert products to sums Suppose y = loga x and y′ = loga x′ ′ Then x = ay and x′ = ay ′ ′ So xx′ = ay ay = ay+y Therefore loga (xx′ ) = y + y′ = loga x + loga x′ . . . . . .
  • 21. Example Write as a single logarithm: 2 ln 4 − ln 3. . . . . . .
  • 22. Example Write as a single logarithm: 2 ln 4 − ln 3. Solution 42 2 ln 4 − ln 3 = ln 42 − ln 3 = ln 3 ln 42 not ! ln 3 . . . . . .
  • 23. Example Write as a single logarithm: 2 ln 4 − ln 3. Solution 42 2 ln 4 − ln 3 = ln 42 − ln 3 = ln 3 ln 42 not ! ln 3 Example 3 Write as a single logarithm: ln + 4 ln 2 4 . . . . . .
  • 24. Example Write as a single logarithm: 2 ln 4 − ln 3. Solution 42 2 ln 4 − ln 3 = ln 42 − ln 3 = ln 3 ln 42 not ! ln 3 Example 3 Write as a single logarithm: ln + 4 ln 2 4 Answer ln 12 . . . . . .
  • 25. “. . lawn” . Image credit: Selva . . . . . . .
  • 26. Graphs of logarithmic functions y . . = 2x y y . = log2 x . . 0, 1) ( ..1, 0) . x . ( . . . . . .
  • 27. Graphs of logarithmic functions y . . = 3x= 2x y. y y . = log2 x y . = log3 x . . 0, 1) ( ..1, 0) . x . ( . . . . . .
  • 28. Graphs of logarithmic functions y . . = .10x 3x= 2x y y=. y y . = log2 x y . = log3 x . . 0, 1) ( y . = log10 x ..1, 0) . x . ( . . . . . .
  • 29. Graphs of logarithmic functions y . . = .10=3xx 2x yxy y y. = .e = y . = log2 x y . = ln x y . = log3 x . . 0, 1) ( y . = log10 x ..1, 0) . x . ( . . . . . .
  • 30. Change of base formula for exponentials Fact If a > 0 and a ̸= 1, then ln x loga x = ln a . . . . . .
  • 31. Change of base formula for exponentials Fact If a > 0 and a ̸= 1, then ln x loga x = ln a Proof. If y = loga x, then x = ay So ln x = ln(ay ) = y ln a Therefore ln x y = loga x = ln a . . . . . .