SlideShare ist ein Scribd-Unternehmen logo
1 von 101
Downloaden Sie, um offline zu lesen
Sec on 5.5
    Integra on by Subs tu on
          V63.0121.011: Calculus I
        Professor Ma hew Leingang
               New York University


               May 4, 2011


.
Announcements
  Today: 5.5
  Monday 5/9: Review in class
  Tuesday 5/10: Review Sessions by TAs
  Wednesday 5/11: TA office hours:
      Adam 10–noon (WWH 906)
      Jerome 3:30–5:30 (WWH 501)
      Soohoon 6–8 (WWH 511)
  Thursday 5/12: Final Exam,
  2:00–3:50pm, CANT 200
Resurrection Policy
        If your final score beats your midterm score, we will add 10% to its
        weight, and subtract 10% from the midterm weight.




Image credit: Sco Beale / Laughing Squid
Objectives
  Given an integral and a
  subs tu on, transform the
  integral into an equivalent one
  using a subs tu on
  Evaluate indefinite integrals
  using the method of
  subs tu on.
  Evaluate definite integrals using
  the method of subs tu on.
Outline
 Last Time: The Fundamental Theorem(s) of Calculus

 Subs tu on for Indefinite Integrals
    Theory
    Examples

 Subs tu on for Definite Integrals
    Theory
    Examples
Differentiation and Integration as
reverse processes
 Theorem (The Fundamental Theorem of Calculus)

  1. Let f be con nuous on [a, b]. Then
                              ∫
                           d x
                                   f(t) dt = f(x)
                          dx a

  2. Let f be con nuous on [a, b] and f = F′ for some other func on
     F. Then           ∫ b
                           f(x) dx = F(b) − F(a).
                          a
Techniques of antidifferentiation?
 So far we know only a few rules for an differen a on. Some are
 general, like
               ∫                   ∫          ∫
                 [f(x) + g(x)] dx = f(x) dx + g(x) dx
Techniques of antidifferentiation?
 So far we know only a few rules for an differen a on. Some are
 general, like
               ∫                   ∫          ∫
                 [f(x) + g(x)] dx = f(x) dx + g(x) dx

 Some are pre y par cular, like
                 ∫
                        1
                     √          dx = arcsec x + C.
                    x x2 − 1
Techniques of antidifferentiation?
 So far we know only a few rules for an differen a on. Some are
 general, like
               ∫                   ∫          ∫
                 [f(x) + g(x)] dx = f(x) dx + g(x) dx

 Some are pre y par cular, like
                 ∫
                        1
                     √          dx = arcsec x + C.
                    x x2 − 1
 What are we supposed to do with that?
No straightforward system of
antidifferentiation
 So far we don’t have any way to find
                           ∫
                                  2x
                              √         dx
                                 x2 + 1
 or                          ∫
                                 tan x dx.
No straightforward system of
antidifferentiation
 So far we don’t have any way to find
                           ∫
                                  2x
                              √         dx
                                 x2 + 1
 or                          ∫
                                 tan x dx.

 Luckily, we can be smart and use the “an ” version of one of the
 most important rules of differen a on: the chain rule.
Outline
 Last Time: The Fundamental Theorem(s) of Calculus

 Subs tu on for Indefinite Integrals
    Theory
    Examples

 Subs tu on for Definite Integrals
    Theory
    Examples
Substitution for Indefinite
Integrals
 Example
 Find        ∫
                       x
                 √          dx.
                     x2 + 1
Substitution for Indefinite
Integrals
 Example
 Find                      ∫
                                     x
                               √          dx.
                                   x2 + 1

 Solu on
 Stare at this long enough and you no ce the the integrand is the
                             √
 deriva ve of the expression 1 + x2 .
Say what?
 Solu on (More slowly, now)
 Let g(x) = x2 + 1.
Say what?
 Solu on (More slowly, now)
 Let g(x) = x2 + 1. Then g′ (x) = 2x and so
                d√         1                 x
                   g(x) = √     g′ (x) = √
                dx       2 g(x)            x2 + 1
Say what?
 Solu on (More slowly, now)
 Let g(x) = x2 + 1. Then g′ (x) = 2x and so
                d√         1                 x
                   g(x) = √     g′ (x) = √
                dx       2 g(x)            x2 + 1

 Thus
            ∫                ∫ ( √      )
                   x            d
                √       dx =        g(x) dx
                 x2 + 1         dx
                             √          √
                           = g(x) + C = 1 + x2 + C.
Leibnizian notation FTW
 Solu on (Same technique, new nota on)
 Let u = x2 + 1.
Leibnizian notation FTW
 Solu on (Same technique, new nota on)
                                    √        √
 Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u.
Leibnizian notation FTW
 Solu on (Same technique, new nota on)
                                      √        √
 Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the
 integrand becomes completely transformed into
               ∫              ∫ 1       ∫
                     x dx        2 du      1
                   √        =    √ =       √ du
                     x2 + 1         u     2 u
Leibnizian notation FTW
 Solu on (Same technique, new nota on)
                                      √        √
 Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the
 integrand becomes completely transformed into
               ∫              ∫ 1       ∫
                     x dx        2 du       1
                   √       =     √ =        √ du
                     x2 + 1 ∫       u      2 u
                                 1 −1/2
                           =     2u     du
Leibnizian notation FTW
 Solu on (Same technique, new nota on)
                                      √        √
 Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the
 integrand becomes completely transformed into
               ∫              ∫ 1       ∫
                     x dx        2 du       1
                   √       =     √ =        √ du
                     x2 + 1 ∫       u      2 u
                                 1 −1/2
                           =     2u     du
                              √          √
                           = u + C = 1 + x2 + C.
Useful but unsavory variation
 Solu on (Same technique, new nota on, more idiot-proof)
                                    √        √
 Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:”
                                   du
                            dx =
                                   2x
Useful but unsavory variation
 Solu on (Same technique, new nota on, more idiot-proof)
                                    √        √
 Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:”
                                   du
                            dx =
                                   2x
 So the integrand becomes completely transformed into
      ∫                 ∫
              x            x du
          √        dx =   √ ·
            x2 + 1          u 2x
Useful but unsavory variation
 Solu on (Same technique, new nota on, more idiot-proof)
                                    √        √
 Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:”
                                   du
                            dx =
                                   2x
 So the integrand becomes completely transformed into
      ∫                 ∫           ∫
              x            x du          1
          √        dx =   √ ·    =       √ du
            x2 + 1          u 2x        2 u
Useful but unsavory variation
 Solu on (Same technique, new nota on, more idiot-proof)
                                    √        √
 Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:”
                                   du
                            dx =
                                   2x
 So the integrand becomes completely transformed into
      ∫                 ∫            ∫
              x            x du          1
          √        dx =   √ ·      =     √ du
            x2 + 1          u 2x        2 u
                        ∫
                          1 −1/2
                      =   2u     du
Useful but unsavory variation
 Solu on (Same technique, new nota on, more idiot-proof)
                                    √        √
 Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:”
                                   du
                            dx =
                                   2x
 So the integrand becomes completely transformed into
      ∫                 ∫            ∫
              x             x du         1
          √        dx =   √ ·      =     √ du
            x2 + 1           u 2x       2 u
                        ∫                      √
                          1 −1/2
                                      √
                      =   2 u    du = u + C = 1 + x2 + C.
Theorem of the Day
 Theorem (The Subs tu on Rule)
 If u = g(x) is a differen able func on whose range is an interval I
 and f is con nuous on I, then
                      ∫                  ∫
                                ′
                        f(g(x))g (x) dx = f(u) du
Theorem of the Day
 Theorem (The Subs tu on Rule)
 If u = g(x) is a differen able func on whose range is an interval I
 and f is con nuous on I, then
                      ∫                  ∫
                                ′
                        f(g(x))g (x) dx = f(u) du

 That is, if F is an an deriva ve for f, then
                        ∫
                          f(g(x))g′ (x) dx = F(g(x))
Theorem of the Day
 Theorem (The Subs tu on Rule)
 If u = g(x) is a differen able func on whose range is an interval I
 and f is con nuous on I, then
                      ∫                  ∫
                                ′
                        f(g(x))g (x) dx = f(u) du

 In Leibniz nota on:
                       ∫               ∫
                               du
                           f(u) dx =       f(u) du
                               dx
A polynomial example
 Example
                                        ∫
 Use the subs tu on u = x2 + 3 to find       (x2 + 3)3 4x dx.
A polynomial example
 Example
                                        ∫
 Use the subs tu on u = x2 + 3 to find       (x2 + 3)3 4x dx.

 Solu on
 If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So
               ∫
                  (x2 + 3)3 4x dx
A polynomial example
 Example
                                        ∫
 Use the subs tu on u = x2 + 3 to find       (x2 + 3)3 4x dx.

 Solu on
 If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So
               ∫                   ∫            ∫
                  (x + 3) 4x dx = u 2du = 2 u3 du
                    2    3            3
A polynomial example
 Example
                                        ∫
 Use the subs tu on u = x2 + 3 to find       (x2 + 3)3 4x dx.

 Solu on
 If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So
               ∫                   ∫            ∫
                  (x + 3) 4x dx = u 2du = 2 u3 du
                    2    3            3


                              1
                             = u4
                              2
A polynomial example
 Example
                                        ∫
 Use the subs tu on u = x2 + 3 to find       (x2 + 3)3 4x dx.

 Solu on
 If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So
               ∫                   ∫            ∫
                  (x + 3) 4x dx = u 2du = 2 u3 du
                    2    3            3


                              1    1
                             = u4 = (x2 + 3)4
                              2    2
A polynomial example (brute force)
 Solu on
A polynomial example (brute force)
 Solu on
       ∫
           (x2 + 3)3 4x dx
A polynomial example (brute force)
 Solu on
       ∫                     ∫
            2     3
                                 (                       )
           (x + 3) 4x dx =           x6 + 9x4 + 27x2 + 27 4x dx
A polynomial example (brute force)
 Solu on
       ∫                     ∫
            2     3
                                 (                       )
           (x + 3) 4x dx =           x6 + 9x4 + 27x2 + 27 4x dx
                             ∫
                                 (                            )
                        =            4x7 + 36x5 + 108x3 + 108x dx
A polynomial example (brute force)
 Solu on
       ∫                     ∫
            2     3
                                 (                       )
           (x + 3) 4x dx =           x6 + 9x4 + 27x2 + 27 4x dx
                             ∫
                                 (                            )
                        =            4x7 + 36x5 + 108x3 + 108x dx
                         1
                        = x8 + 6x6 + 27x4 + 54x2
                         2
A polynomial example (brute force)
 Solu on
       ∫                     ∫
            2     3
                                 (                       )
           (x + 3) 4x dx =           x6 + 9x4 + 27x2 + 27 4x dx
                             ∫
                                 (                            )
                        =            4x7 + 36x5 + 108x3 + 108x dx
                         1
                        = x8 + 6x6 + 27x4 + 54x2
                         2

 Which would you rather do?
A polynomial example (brute force)
 Solu on
       ∫                     ∫
            2     3
                                 (                       )
           (x + 3) 4x dx =           x6 + 9x4 + 27x2 + 27 4x dx
                             ∫
                                 (                            )
                        =            4x7 + 36x5 + 108x3 + 108x dx
                         1
                        = x8 + 6x6 + 27x4 + 54x2
                         2

 Which would you rather do?
     It’s a wash for low powers
A polynomial example (brute force)
 Solu on
       ∫                     ∫
            2     3
                                 (                       )
           (x + 3) 4x dx =           x6 + 9x4 + 27x2 + 27 4x dx
                             ∫
                                 (                            )
                        =            4x7 + 36x5 + 108x3 + 108x dx
                         1
                        = x8 + 6x6 + 27x4 + 54x2
                         2

 Which would you rather do?
     It’s a wash for low powers
     But for higher powers, it’s much easier to do subs tu on.
Compare
 We have the subs tu on method, which, when mul plied out, gives
    ∫
                        1
      (x2 + 3)3 4x dx = (x2 + 3)4
                        2
                        1( 8                           )
                      =   x + 12x6 + 54x4 + 108x2 + 81
                        2
                        1                        81
                      = x8 + 6x6 + 27x4 + 54x2 +
                        2                         2
 and the brute force method
     ∫
                        1
       (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2
                        2
 Is there a difference? Is this a problem?
Compare
 We have the subs tu on method, which, when mul plied out, gives
    ∫
                        1
      (x2 + 3)3 4x dx = (x2 + 3)4 + C
                        2
                        1( 8                          )
                      =   x + 12x6 + 54x4 + 108x2 + 81 + C
                        2
                        1                        81
                      = x8 + 6x6 + 27x4 + 54x2 +    +C
                        2                         2
 and the brute force method
     ∫
                        1
       (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2 + C
                        2
 Is there a difference? Is this a problem? No, that’s what +C means!
A slick example
 Example
     ∫
 Find tan x dx.
A slick example
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x
A slick example
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x

 Solu on
 Let u = cos x . Then du = − sin x dx . So
           ∫               ∫
                             sin x
                tan x dx =         dx
                             cos x
A slick example
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x

 Solu on
 Let u = cos x . Then du = − sin x dx . So
           ∫               ∫
                             sin x
                tan x dx =         dx
                             cos x
A slick example
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x

 Solu on
 Let u = cos x . Then du = − sin x dx . So
           ∫               ∫
                             sin x
                tan x dx =         dx
                             cos x
A slick example
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x

 Solu on
 Let u = cos x . Then du = − sin x dx . So
           ∫               ∫               ∫
                             sin x           1
                tan x dx =         dx = −      du
                             cos x           u
A slick example
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x

 Solu on
 Let u = cos x . Then du = − sin x dx . So
           ∫               ∫               ∫
                              sin x          1
                tan x dx =          dx = −     du
                              cos x          u
                         = − ln |u| + C
A slick example
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x

 Solu on
 Let u = cos x . Then du = − sin x dx . So
           ∫               ∫                 ∫
                              sin x             1
                tan x dx =          dx = −         du
                              cos x             u
                         = − ln |u| + C
                         = − ln | cos x| + C = ln | sec x| + C
Can you do it another way?
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x
Can you do it another way?
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x

 Solu on
                                                  du
 Let u = sin x. Then du = cos x dx and so dx =         .
                                                 cos x
Can you do it another way?
 Example
     ∫
                               sin x
 Find tan x dx. (Hint: tan x =       )
                               cos x

 Solu on
                                                  du
 Let u = sin x. Then du = cos x dx and so dx =         .
                                                 cos x
         ∫            ∫              ∫
                          sin x          u     du
             tan x dx =         dx =
                        ∫ cos x    ∫ cos x cos x ∫
                           u du         u du        u du
                      =          =               =
                          cos2 x      1 − sin2 x   1 − u2
For those who really must know all
 Solu on (Con nued, with algebra help)
 Let y = 1 − u2 , so dy = −2u du. Then
     ∫             ∫              ∫
                        u du         u dy
       tan x dx =               =
                       1∫− u2        y −2u
                      1 dy          1                1
                =−              = − ln |y| + C = − ln 1 − u2 + C
                      2      y      2                2
                           1                     1
                = ln √           + C = ln √             +C
                         1 − u2              1 − sin2 x
                         1
                = ln           + C = ln |sec x| + C
                      |cos x|
Outline
 Last Time: The Fundamental Theorem(s) of Calculus

 Subs tu on for Indefinite Integrals
    Theory
    Examples

 Subs tu on for Definite Integrals
    Theory
    Examples
Substitution for Definite Integrals
 Theorem (The Subs tu on Rule for Definite Integrals)
 If g′ is con nuous and f is con nuous on the range of u = g(x), then
                 ∫     b                       ∫   g(b)
                                   ′
                           f(g(x))g (x) dx =              f(u) du.
                   a                           g(a)
Substitution for Definite Integrals
 Theorem (The Subs tu on Rule for Definite Integrals)
 If g′ is con nuous and f is con nuous on the range of u = g(x), then
                 ∫     b                       ∫   g(b)
                                   ′
                           f(g(x))g (x) dx =              f(u) du.
                   a                           g(a)



 Why the change in the limits?
    The integral on the le happens in “x-land”
    The integral on the right happens in “u-land”, so the limits need
    to be u-values
    To get from x to u, apply g
Example
          ∫   π
Compute           cos2 x sin x dx.
          0
Example
          ∫   π
Compute           cos2 x sin x dx.
          0


Solu on (Slow Way)
Example
          ∫   π
Compute           cos2 x sin x dx.
          0


Solu on (Slow Way)                         ∫
    First compute the indefinite integral       cos2 x sin x dx and then
    evaluate.
    Let u = cos x . Then du = − sin x dx and
     ∫
         cos2 x sin x dx
Example
          ∫   π
Compute           cos2 x sin x dx.
          0


Solu on (Slow Way)                         ∫
    First compute the indefinite integral       cos2 x sin x dx and then
    evaluate.
    Let u = cos x . Then du = − sin x dx and
     ∫
         cos2 x sin x dx
Example
          ∫   π
Compute           cos2 x sin x dx.
          0


Solu on (Slow Way)                         ∫
    First compute the indefinite integral       cos2 x sin x dx and then
    evaluate.
    Let u = cos x . Then du = − sin x dx and
     ∫
         cos2 x sin x dx
Example
          ∫   π
Compute           cos2 x sin x dx.
          0


Solu on (Slow Way)                         ∫
    First compute the indefinite integral       cos2 x sin x dx and then
    evaluate.
    Let u = cos x . Then du = − sin x dx and
     ∫                      ∫
         cos2 x sin x dx = − u2 du
Example
          ∫   π
Compute           cos2 x sin x dx.
          0


Solu on (Slow Way)                         ∫
    First compute the indefinite integral       cos2 x sin x dx and then
    evaluate.
    Let u = cos x . Then du = − sin x dx and
     ∫                      ∫
         cos2 x sin x dx = − u2 du = − 1 u3 + C = − 3 cos3 x + C.
                                        3
                                                    1
Example
          ∫   π
Compute           cos2 x sin x dx.
          0


Solu on (Slow Way)
    Let u = cos x . Then du = − sin x dx and
     ∫                     ∫
         cos x sin x dx = − u2 du = − 1 u3 + C = − 3 cos3 x + C.
            2
                                        3
                                                   1



    Therefore
      ∫ π                              π
                             1
          cos2 x sin x dx = − cos3 x
       0                     3         0
Example
          ∫   π
Compute           cos2 x sin x dx.
          0


Solu on (Slow Way)
    Let u = cos x . Then du = − sin x dx and
     ∫                     ∫
         cos x sin x dx = − u2 du = − 1 u3 + C = − 3 cos3 x + C.
            2
                                        3
                                                   1



    Therefore
      ∫ π
                                                1(           )
                                       π
                             1
          cos2 x sin x dx = − cos3 x       =−     (−1)3 − 13
       0                     3         0        3
Example
          ∫   π
Compute           cos2 x sin x dx.
          0


Solu on (Slow Way)
    Let u = cos x . Then du = − sin x dx and
     ∫                     ∫
         cos x sin x dx = − u2 du = − 1 u3 + C = − 3 cos3 x + C.
            2
                                        3
                                                   1



    Therefore
      ∫ π
                                                1(          ) 2
                                       π
                             1
          cos2 x sin x dx = − cos3 x       =−     (−1)3 − 13 = .
       0                     3         0        3             3
Definite-ly Quicker
 Solu on (Fast Way)
 Do both the subs tu on and the evalua on at the same me. Let
 u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So
         ∫     π
                   cos2 x sin x dx
           0
Definite-ly Quicker
 Solu on (Fast Way)
 Do both the subs tu on and the evalua on at the same me. Let
 u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So
         ∫     π
                   cos2 x sin x dx
           0
Definite-ly Quicker
 Solu on (Fast Way)
 Do both the subs tu on and the evalua on at the same me. Let
 u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So
         ∫     π
                   cos2 x sin x dx
           0
Definite-ly Quicker
 Solu on (Fast Way)
 Do both the subs tu on and the evalua on at the same me. Let
 u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So
         ∫     π                      ∫   −1             ∫   1
                      2
                   cos x sin x dx =            −u du =
                                                 2
                                                                 u2 du
           0                          1                  −1
Definite-ly Quicker
 Solu on (Fast Way)
 Do both the subs tu on and the evalua on at the same me. Let
 u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So
         ∫     π                      ∫   −1               ∫   1
                      2
                   cos x sin x dx =            −u du =
                                                    2
                                                                   u2 du
           0                          1                     −1
                                                        1(        ) 2
                                               1
                                      1 3
                                 =      u           =     1 − (−1) =
                                      3        −1       3            3
Compare


  The advantage to the “fast way” is that you completely
  transform the integral into something simpler and don’t have
  to go back to the original variable (x).
  But the slow way is just as reliable.
An exponential example
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
     ln   3
An exponential example
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
       ln   3


 Solu on
 Let u = e2x , so du = 2e2x dx. We have
                ∫        √                                ∫
                    ln    8
                              2x
                                   √                  1       8√

                  √           e        e2x   + 1 dx =          u + 1 du
                ln 3                                  2   3
About those limits

 Since
                                 √             √ 2
                         e2(ln    3)
                                       = eln    3
                                                     = eln 3 = 3

 we have   ∫        √                      ∫
               ln    8      √             1 8√
                √        e2x e2x + 1 dx =     u + 1 du
           ln    3                        2 3
An exponential example
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
      ln   3


 Solu on
 Now let y = u + 1, dy = du. So
    ∫                  ∫
  1 8√
                                             9
                     1 9√          1 2               1            19
          u + 1 du =         y dy = · y3/2       =     (27 − 8) =
  2 3                2 4           2 3       4       3            3
About those fractional powers
 We have

                             93/2 = (91/2 )3 = 33 = 27
                             43/2 = (41/2 )3 = 23 = 8

 so            ∫   9                       9
           1                     1 2               1            19
                       1/2
                       y     dy = · y3/2       =     (27 − 8) =
           2   4                 2 3       4       3            3
An exponential example
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
      ln   3


 Solu on
 Now let y = u + 1, dy = du. So
    ∫                  ∫
  1 8√
                                             9
                     1 9√          1 2               1            19
          u + 1 du =         y dy = · y3/2       =     (27 − 8) =
  2 3                2 4           2 3       4       3            3
Another way to skin that cat
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
       ln   3


 Solu on
 Let u = e2x + 1,
Another way to skin that cat
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
       ln   3


 Solu on
 Let u = e2x + 1,so that du = 2e2x dx.
Another way to skin that cat
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
              ln    3


 Solu on
 Let u = e2x + 1,so that du = 2e2x dx. Then
 ∫        √                         ∫
     ln       8      √             1 9√
       √          e2x e2x + 1 dx =      u du
  ln    3                          2 4
Another way to skin that cat
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
              ln    3


 Solu on
 Let u = e2x + 1,so that du = 2e2x dx. Then
 ∫        √                         ∫
     ln       8      √             1 9√       1
                                                      9

       √          e2x e2x + 1 dx =      u du = u3/2
  ln    3                          2 4        3       4
Another way to skin that cat
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
              ln    3


 Solu on
 Let u = e2x + 1,so that du = 2e2x dx. Then
 ∫        √                         ∫
     ln       8      √             1 9√       1
                                                      9
                                                              1            19
    √             e2x e2x + 1 dx =      u du = u3/2       =     (27 − 8) =
  ln 3                             2 4        3       4       3             3
A third skinned cat
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
      ln   3


 Solu on
        √
 Let u = e2x + 1, so that u2 = e2x + 1
A third skinned cat
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
      ln   3


 Solu on
        √
 Let u = e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx
A third skinned cat
 Example
     ∫ ln √8 √
 Find √ e2x e2x + 1 dx
      ln   3


 Solu on
        √
 Let u = e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx Thus
           ∫        √                     ∫ 3
               ln    8      √                           1
                                                              3
                                                                      19
                √        e2x e2x + 1 dx =     u · u du = u3       =
           ln       3                      2            3     2        3
A Trigonometric Example
 Example
 Find      ∫               ( )      ( )
               3π/2
                            θ        θ
                      cot5     sec2     dθ.
           π                6        6
A Trigonometric Example
 Example
 Find             ∫                 ( )      ( )
                        3π/2
                                     θ        θ
                               cot5     sec2     dθ.
                    π                6        6

 Before we dive in, think about:
     What “easy” subs tu ons might help?
     Which of the trig func ons suggests a subs tu on?
Solu on
         θ             1
Let φ = . Then dφ = dθ.
         6             6
      ∫ 3π/2      ( )      ( )        ∫ π/4
                   θ        θ
             cot5     sec2     dθ = 6       cot5 φ sec2 φ dφ
       π           6        6          π/6
                                      ∫ π/4
                                            sec2 φ dφ
                                  =6
                                       π/6    tan5 φ
Solu on
         θ             1
Let φ = . Then dφ = dθ.
         6             6
      ∫ 3π/2      ( )      ( )        ∫ π/4
                   θ        θ
             cot5     sec2     dθ = 6       cot5 φ sec2 φ dφ
       π           6        6          π/6
                                      ∫ π/4
                                            sec2 φ dφ
                                  =6
                                       π/6    tan5 φ

Now let u = tan φ. So du = sec2 φ dφ, and
Solu on
Now let u = tan φ. So du = sec2 φ dφ, and
       ∫ π/4              ∫ 1
             sec2 φ dφ
     6             5φ
                       = 6 √ u−5 du
        π/6    tan          1/ 3
                           (        )1
                               1 −4          3
                       =6 − u            √
                                            = [9 − 1] = 12.
                               4       1/ 3  2
The limits explained

                         √
            π  sin(π/4)    2/2
         tan =          =√     =1
            4  cos(π/4)    2/2
            π  sin(π/6)   1/2    1
         tan =          =√     =√
            6  cos(π/6)    3/2    3
The limits explained

      (      )
                          3 [ −4 ]1 √    3 [ −4 ]1/√3
                 1
        1 −4
     6 − u         √
                        =    −u 1/ 3 =      u 1
        4        1/ 3     2              2
                          3 [ −1/2 −4     −1/2 −4
                                                  ]
                        =    (3   ) − (1      )
                          2
                          3           3
                        = [32 − 12 ] = (9 − 1) = 12
                          2           2
Graphs
    ∫ 3π/2           ( )      ( )                   ∫   π/4
                      θ        θ
                cot5     sec2     dθ                          6 cot5 φ sec2 φ dφ
            π         6        6                    π/6
       y                                        y




        .                       θ                                 φ
                      π      3π                     ππ
                              2                     64
 The areas of these two regions are the same.
∫                                ∫
Graphs           π/4
                           5     2
                       6 cot φ sec φ dφ
                                                  1

                                                √ 6u
                                                    −5
                                                       du
             π/6                              1/ 3
         y                                y




         .                φ                           u
         ππ                            11
                                      √
          64                            3
     The areas of these two regions are the same.
u/du pairs

 When deciding on a subs tu on, look for sub-expressions where
 one is (a constant mul ple of) the deriva ve of the other. Such as:
                                                      √
              u          xn   ln x sin x cos x tan x   x ex
                               1                      1
       constant × du xn−1          cos x sin x sec2 x √ ex
                               x                       x
Summary
  If F is an an deriva ve for f, then:
                     ∫
                        f(g(x))g′ (x) dx = F(g(x))

  If F is an an deriva ve for f, which is con nuous on the range
  of g, then:
        ∫ b                   ∫ g(b)
                    ′
            f(g(x))g (x) dx =        f(u) du = F(g(b)) − F(g(a))
       a                      g(a)

  An differen a on in general and subs tu on in par cular is a
  “nonlinear” problem that needs prac ce, intui on, and
  perserverance.
  The whole an differen a on story is in Chapter 6.

Weitere ähnliche Inhalte

Was ist angesagt?

Functions for Grade 10
Functions for Grade 10Functions for Grade 10
Functions for Grade 10
Boipelo Radebe
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions
hisema01
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
math265
 
7.7 Solving Radical Equations
7.7 Solving Radical Equations7.7 Solving Radical Equations
7.7 Solving Radical Equations
swartzje
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Line
seltzermath
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
swartzje
 
5 6 laws of logarithms
5 6 laws of logarithms5 6 laws of logarithms
5 6 laws of logarithms
hisema01
 

Was ist angesagt? (20)

Functions for Grade 10
Functions for Grade 10Functions for Grade 10
Functions for Grade 10
 
5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions5.1 Graphing Quadratic Functions
5.1 Graphing Quadratic Functions
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
 
3.2 Domain and Range
3.2 Domain and Range3.2 Domain and Range
3.2 Domain and Range
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
Factor Theorem and Remainder Theorem
Factor Theorem and Remainder TheoremFactor Theorem and Remainder Theorem
Factor Theorem and Remainder Theorem
 
7.7 Solving Radical Equations
7.7 Solving Radical Equations7.7 Solving Radical Equations
7.7 Solving Radical Equations
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Line
 
Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)Lesson 26: Integration by Substitution (slides)
Lesson 26: Integration by Substitution (slides)
 
Inverse Functions
Inverse FunctionsInverse Functions
Inverse Functions
 
Lecture 4 the limit of a function
Lecture 4   the limit of a functionLecture 4   the limit of a function
Lecture 4 the limit of a function
 
composite functions
composite functionscomposite functions
composite functions
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
The integral
The integralThe integral
The integral
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
5 6 laws of logarithms
5 6 laws of logarithms5 6 laws of logarithms
5 6 laws of logarithms
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
 
Limits
LimitsLimits
Limits
 

Andere mochten auch

Indefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution MethodIndefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution Method
Scott Bailey
 
Lesson 29: Integration by Substition (worksheet)
Lesson 29: Integration by Substition (worksheet)Lesson 29: Integration by Substition (worksheet)
Lesson 29: Integration by Substition (worksheet)
Matthew Leingang
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient Rules
Matthew Leingang
 
Lesson 5: Limits Involving Infinity
Lesson 5: Limits Involving InfinityLesson 5: Limits Involving Infinity
Lesson 5: Limits Involving Infinity
Matthew Leingang
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
Matthew Leingang
 

Andere mochten auch (20)

Lesson 10: The Chain Rule
Lesson 10: The Chain RuleLesson 10: The Chain Rule
Lesson 10: The Chain Rule
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Indefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution MethodIndefinite and Definite Integrals Using the Substitution Method
Indefinite and Definite Integrals Using the Substitution Method
 
Topic 6
Topic 6Topic 6
Topic 6
 
Core 3 The Chain Rule
Core 3 The Chain RuleCore 3 The Chain Rule
Core 3 The Chain Rule
 
Lesson 29: Integration by Substition (worksheet)
Lesson 29: Integration by Substition (worksheet)Lesson 29: Integration by Substition (worksheet)
Lesson 29: Integration by Substition (worksheet)
 
Lesson 6: The Derivative
Lesson 6: The DerivativeLesson 6: The Derivative
Lesson 6: The Derivative
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Introduction
IntroductionIntroduction
Introduction
 
Chain Rule
Chain RuleChain Rule
Chain Rule
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient Rules
 
Lesson 4: Continuity
Lesson 4: ContinuityLesson 4: Continuity
Lesson 4: Continuity
 
Lesson 5: Limits Involving Infinity
Lesson 5: Limits Involving InfinityLesson 5: Limits Involving Infinity
Lesson 5: Limits Involving Infinity
 
4 summary
4 summary4 summary
4 summary
 
Free Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.comFree Ebooks Download ! Edhole.com
Free Ebooks Download ! Edhole.com
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 

Ähnlich wie Lesson 27: Integration by Substitution (slides)

Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)
Matthew Leingang
 
Lesson 29: Integration by Substition
Lesson 29: Integration by SubstitionLesson 29: Integration by Substition
Lesson 29: Integration by Substition
Matthew Leingang
 
125 4.1 through 4.5
125 4.1 through 4.5125 4.1 through 4.5
125 4.1 through 4.5
Jeneva Clark
 
Varian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookVarian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution book
José Antonio PAYANO YALE
 
Anti derivatives
Anti derivativesAnti derivatives
Anti derivatives
canalculus
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
tutulk
 
Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009
akabaka12
 

Ähnlich wie Lesson 27: Integration by Substitution (slides) (20)

Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)
 
Lesson 29: Integration by Substition
Lesson 29: Integration by SubstitionLesson 29: Integration by Substition
Lesson 29: Integration by Substition
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)
 
125 4.1 through 4.5
125 4.1 through 4.5125 4.1 through 4.5
125 4.1 through 4.5
 
intro to Implicit differentiation
intro to Implicit differentiationintro to Implicit differentiation
intro to Implicit differentiation
 
125 5.3
125 5.3125 5.3
125 5.3
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)
 
Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)Lesson 11: Implicit Differentiation (slides)
Lesson 11: Implicit Differentiation (slides)
 
Varian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution bookVarian, microeconomic analysis, solution book
Varian, microeconomic analysis, solution book
 
Hw2 s
Hw2 sHw2 s
Hw2 s
 
Anti derivatives
Anti derivativesAnti derivatives
Anti derivatives
 
Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
125 5.1
125 5.1125 5.1
125 5.1
 
Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009
 

Mehr von Matthew Leingang

Mehr von Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)
 

Kürzlich hochgeladen

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Kürzlich hochgeladen (20)

TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 

Lesson 27: Integration by Substitution (slides)

  • 1. Sec on 5.5 Integra on by Subs tu on V63.0121.011: Calculus I Professor Ma hew Leingang New York University May 4, 2011 .
  • 2. Announcements Today: 5.5 Monday 5/9: Review in class Tuesday 5/10: Review Sessions by TAs Wednesday 5/11: TA office hours: Adam 10–noon (WWH 906) Jerome 3:30–5:30 (WWH 501) Soohoon 6–8 (WWH 511) Thursday 5/12: Final Exam, 2:00–3:50pm, CANT 200
  • 3. Resurrection Policy If your final score beats your midterm score, we will add 10% to its weight, and subtract 10% from the midterm weight. Image credit: Sco Beale / Laughing Squid
  • 4. Objectives Given an integral and a subs tu on, transform the integral into an equivalent one using a subs tu on Evaluate indefinite integrals using the method of subs tu on. Evaluate definite integrals using the method of subs tu on.
  • 5. Outline Last Time: The Fundamental Theorem(s) of Calculus Subs tu on for Indefinite Integrals Theory Examples Subs tu on for Definite Integrals Theory Examples
  • 6. Differentiation and Integration as reverse processes Theorem (The Fundamental Theorem of Calculus) 1. Let f be con nuous on [a, b]. Then ∫ d x f(t) dt = f(x) dx a 2. Let f be con nuous on [a, b] and f = F′ for some other func on F. Then ∫ b f(x) dx = F(b) − F(a). a
  • 7. Techniques of antidifferentiation? So far we know only a few rules for an differen a on. Some are general, like ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx
  • 8. Techniques of antidifferentiation? So far we know only a few rules for an differen a on. Some are general, like ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx Some are pre y par cular, like ∫ 1 √ dx = arcsec x + C. x x2 − 1
  • 9. Techniques of antidifferentiation? So far we know only a few rules for an differen a on. Some are general, like ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx Some are pre y par cular, like ∫ 1 √ dx = arcsec x + C. x x2 − 1 What are we supposed to do with that?
  • 10. No straightforward system of antidifferentiation So far we don’t have any way to find ∫ 2x √ dx x2 + 1 or ∫ tan x dx.
  • 11. No straightforward system of antidifferentiation So far we don’t have any way to find ∫ 2x √ dx x2 + 1 or ∫ tan x dx. Luckily, we can be smart and use the “an ” version of one of the most important rules of differen a on: the chain rule.
  • 12. Outline Last Time: The Fundamental Theorem(s) of Calculus Subs tu on for Indefinite Integrals Theory Examples Subs tu on for Definite Integrals Theory Examples
  • 13. Substitution for Indefinite Integrals Example Find ∫ x √ dx. x2 + 1
  • 14. Substitution for Indefinite Integrals Example Find ∫ x √ dx. x2 + 1 Solu on Stare at this long enough and you no ce the the integrand is the √ deriva ve of the expression 1 + x2 .
  • 15. Say what? Solu on (More slowly, now) Let g(x) = x2 + 1.
  • 16. Say what? Solu on (More slowly, now) Let g(x) = x2 + 1. Then g′ (x) = 2x and so d√ 1 x g(x) = √ g′ (x) = √ dx 2 g(x) x2 + 1
  • 17. Say what? Solu on (More slowly, now) Let g(x) = x2 + 1. Then g′ (x) = 2x and so d√ 1 x g(x) = √ g′ (x) = √ dx 2 g(x) x2 + 1 Thus ∫ ∫ ( √ ) x d √ dx = g(x) dx x2 + 1 dx √ √ = g(x) + C = 1 + x2 + C.
  • 18. Leibnizian notation FTW Solu on (Same technique, new nota on) Let u = x2 + 1.
  • 19. Leibnizian notation FTW Solu on (Same technique, new nota on) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u.
  • 20. Leibnizian notation FTW Solu on (Same technique, new nota on) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the integrand becomes completely transformed into ∫ ∫ 1 ∫ x dx 2 du 1 √ = √ = √ du x2 + 1 u 2 u
  • 21. Leibnizian notation FTW Solu on (Same technique, new nota on) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the integrand becomes completely transformed into ∫ ∫ 1 ∫ x dx 2 du 1 √ = √ = √ du x2 + 1 ∫ u 2 u 1 −1/2 = 2u du
  • 22. Leibnizian notation FTW Solu on (Same technique, new nota on) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. So the integrand becomes completely transformed into ∫ ∫ 1 ∫ x dx 2 du 1 √ = √ = √ du x2 + 1 ∫ u 2 u 1 −1/2 = 2u du √ √ = u + C = 1 + x2 + C.
  • 23. Useful but unsavory variation Solu on (Same technique, new nota on, more idiot-proof) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:” du dx = 2x
  • 24. Useful but unsavory variation Solu on (Same technique, new nota on, more idiot-proof) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:” du dx = 2x So the integrand becomes completely transformed into ∫ ∫ x x du √ dx = √ · x2 + 1 u 2x
  • 25. Useful but unsavory variation Solu on (Same technique, new nota on, more idiot-proof) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:” du dx = 2x So the integrand becomes completely transformed into ∫ ∫ ∫ x x du 1 √ dx = √ · = √ du x2 + 1 u 2x 2 u
  • 26. Useful but unsavory variation Solu on (Same technique, new nota on, more idiot-proof) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:” du dx = 2x So the integrand becomes completely transformed into ∫ ∫ ∫ x x du 1 √ dx = √ · = √ du x2 + 1 u 2x 2 u ∫ 1 −1/2 = 2u du
  • 27. Useful but unsavory variation Solu on (Same technique, new nota on, more idiot-proof) √ √ Let u = x2 + 1. Then du = 2x dx and 1 + x2 = u. “Solve for dx:” du dx = 2x So the integrand becomes completely transformed into ∫ ∫ ∫ x x du 1 √ dx = √ · = √ du x2 + 1 u 2x 2 u ∫ √ 1 −1/2 √ = 2 u du = u + C = 1 + x2 + C.
  • 28. Theorem of the Day Theorem (The Subs tu on Rule) If u = g(x) is a differen able func on whose range is an interval I and f is con nuous on I, then ∫ ∫ ′ f(g(x))g (x) dx = f(u) du
  • 29. Theorem of the Day Theorem (The Subs tu on Rule) If u = g(x) is a differen able func on whose range is an interval I and f is con nuous on I, then ∫ ∫ ′ f(g(x))g (x) dx = f(u) du That is, if F is an an deriva ve for f, then ∫ f(g(x))g′ (x) dx = F(g(x))
  • 30. Theorem of the Day Theorem (The Subs tu on Rule) If u = g(x) is a differen able func on whose range is an interval I and f is con nuous on I, then ∫ ∫ ′ f(g(x))g (x) dx = f(u) du In Leibniz nota on: ∫ ∫ du f(u) dx = f(u) du dx
  • 31. A polynomial example Example ∫ Use the subs tu on u = x2 + 3 to find (x2 + 3)3 4x dx.
  • 32. A polynomial example Example ∫ Use the subs tu on u = x2 + 3 to find (x2 + 3)3 4x dx. Solu on If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So ∫ (x2 + 3)3 4x dx
  • 33. A polynomial example Example ∫ Use the subs tu on u = x2 + 3 to find (x2 + 3)3 4x dx. Solu on If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So ∫ ∫ ∫ (x + 3) 4x dx = u 2du = 2 u3 du 2 3 3
  • 34. A polynomial example Example ∫ Use the subs tu on u = x2 + 3 to find (x2 + 3)3 4x dx. Solu on If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So ∫ ∫ ∫ (x + 3) 4x dx = u 2du = 2 u3 du 2 3 3 1 = u4 2
  • 35. A polynomial example Example ∫ Use the subs tu on u = x2 + 3 to find (x2 + 3)3 4x dx. Solu on If u = x2 + 3, then du = 2x dx, and 4x dx = 2 du. So ∫ ∫ ∫ (x + 3) 4x dx = u 2du = 2 u3 du 2 3 3 1 1 = u4 = (x2 + 3)4 2 2
  • 36. A polynomial example (brute force) Solu on
  • 37. A polynomial example (brute force) Solu on ∫ (x2 + 3)3 4x dx
  • 38. A polynomial example (brute force) Solu on ∫ ∫ 2 3 ( ) (x + 3) 4x dx = x6 + 9x4 + 27x2 + 27 4x dx
  • 39. A polynomial example (brute force) Solu on ∫ ∫ 2 3 ( ) (x + 3) 4x dx = x6 + 9x4 + 27x2 + 27 4x dx ∫ ( ) = 4x7 + 36x5 + 108x3 + 108x dx
  • 40. A polynomial example (brute force) Solu on ∫ ∫ 2 3 ( ) (x + 3) 4x dx = x6 + 9x4 + 27x2 + 27 4x dx ∫ ( ) = 4x7 + 36x5 + 108x3 + 108x dx 1 = x8 + 6x6 + 27x4 + 54x2 2
  • 41. A polynomial example (brute force) Solu on ∫ ∫ 2 3 ( ) (x + 3) 4x dx = x6 + 9x4 + 27x2 + 27 4x dx ∫ ( ) = 4x7 + 36x5 + 108x3 + 108x dx 1 = x8 + 6x6 + 27x4 + 54x2 2 Which would you rather do?
  • 42. A polynomial example (brute force) Solu on ∫ ∫ 2 3 ( ) (x + 3) 4x dx = x6 + 9x4 + 27x2 + 27 4x dx ∫ ( ) = 4x7 + 36x5 + 108x3 + 108x dx 1 = x8 + 6x6 + 27x4 + 54x2 2 Which would you rather do? It’s a wash for low powers
  • 43. A polynomial example (brute force) Solu on ∫ ∫ 2 3 ( ) (x + 3) 4x dx = x6 + 9x4 + 27x2 + 27 4x dx ∫ ( ) = 4x7 + 36x5 + 108x3 + 108x dx 1 = x8 + 6x6 + 27x4 + 54x2 2 Which would you rather do? It’s a wash for low powers But for higher powers, it’s much easier to do subs tu on.
  • 44. Compare We have the subs tu on method, which, when mul plied out, gives ∫ 1 (x2 + 3)3 4x dx = (x2 + 3)4 2 1( 8 ) = x + 12x6 + 54x4 + 108x2 + 81 2 1 81 = x8 + 6x6 + 27x4 + 54x2 + 2 2 and the brute force method ∫ 1 (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2 2 Is there a difference? Is this a problem?
  • 45. Compare We have the subs tu on method, which, when mul plied out, gives ∫ 1 (x2 + 3)3 4x dx = (x2 + 3)4 + C 2 1( 8 ) = x + 12x6 + 54x4 + 108x2 + 81 + C 2 1 81 = x8 + 6x6 + 27x4 + 54x2 + +C 2 2 and the brute force method ∫ 1 (x2 + 3)3 4x dx = x8 + 6x6 + 27x4 + 54x2 + C 2 Is there a difference? Is this a problem? No, that’s what +C means!
  • 46. A slick example Example ∫ Find tan x dx.
  • 47. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x
  • 48. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solu on Let u = cos x . Then du = − sin x dx . So ∫ ∫ sin x tan x dx = dx cos x
  • 49. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solu on Let u = cos x . Then du = − sin x dx . So ∫ ∫ sin x tan x dx = dx cos x
  • 50. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solu on Let u = cos x . Then du = − sin x dx . So ∫ ∫ sin x tan x dx = dx cos x
  • 51. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solu on Let u = cos x . Then du = − sin x dx . So ∫ ∫ ∫ sin x 1 tan x dx = dx = − du cos x u
  • 52. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solu on Let u = cos x . Then du = − sin x dx . So ∫ ∫ ∫ sin x 1 tan x dx = dx = − du cos x u = − ln |u| + C
  • 53. A slick example Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solu on Let u = cos x . Then du = − sin x dx . So ∫ ∫ ∫ sin x 1 tan x dx = dx = − du cos x u = − ln |u| + C = − ln | cos x| + C = ln | sec x| + C
  • 54. Can you do it another way? Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x
  • 55. Can you do it another way? Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solu on du Let u = sin x. Then du = cos x dx and so dx = . cos x
  • 56. Can you do it another way? Example ∫ sin x Find tan x dx. (Hint: tan x = ) cos x Solu on du Let u = sin x. Then du = cos x dx and so dx = . cos x ∫ ∫ ∫ sin x u du tan x dx = dx = ∫ cos x ∫ cos x cos x ∫ u du u du u du = = = cos2 x 1 − sin2 x 1 − u2
  • 57. For those who really must know all Solu on (Con nued, with algebra help) Let y = 1 − u2 , so dy = −2u du. Then ∫ ∫ ∫ u du u dy tan x dx = = 1∫− u2 y −2u 1 dy 1 1 =− = − ln |y| + C = − ln 1 − u2 + C 2 y 2 2 1 1 = ln √ + C = ln √ +C 1 − u2 1 − sin2 x 1 = ln + C = ln |sec x| + C |cos x|
  • 58. Outline Last Time: The Fundamental Theorem(s) of Calculus Subs tu on for Indefinite Integrals Theory Examples Subs tu on for Definite Integrals Theory Examples
  • 59. Substitution for Definite Integrals Theorem (The Subs tu on Rule for Definite Integrals) If g′ is con nuous and f is con nuous on the range of u = g(x), then ∫ b ∫ g(b) ′ f(g(x))g (x) dx = f(u) du. a g(a)
  • 60. Substitution for Definite Integrals Theorem (The Subs tu on Rule for Definite Integrals) If g′ is con nuous and f is con nuous on the range of u = g(x), then ∫ b ∫ g(b) ′ f(g(x))g (x) dx = f(u) du. a g(a) Why the change in the limits? The integral on the le happens in “x-land” The integral on the right happens in “u-land”, so the limits need to be u-values To get from x to u, apply g
  • 61. Example ∫ π Compute cos2 x sin x dx. 0
  • 62. Example ∫ π Compute cos2 x sin x dx. 0 Solu on (Slow Way)
  • 63. Example ∫ π Compute cos2 x sin x dx. 0 Solu on (Slow Way) ∫ First compute the indefinite integral cos2 x sin x dx and then evaluate. Let u = cos x . Then du = − sin x dx and ∫ cos2 x sin x dx
  • 64. Example ∫ π Compute cos2 x sin x dx. 0 Solu on (Slow Way) ∫ First compute the indefinite integral cos2 x sin x dx and then evaluate. Let u = cos x . Then du = − sin x dx and ∫ cos2 x sin x dx
  • 65. Example ∫ π Compute cos2 x sin x dx. 0 Solu on (Slow Way) ∫ First compute the indefinite integral cos2 x sin x dx and then evaluate. Let u = cos x . Then du = − sin x dx and ∫ cos2 x sin x dx
  • 66. Example ∫ π Compute cos2 x sin x dx. 0 Solu on (Slow Way) ∫ First compute the indefinite integral cos2 x sin x dx and then evaluate. Let u = cos x . Then du = − sin x dx and ∫ ∫ cos2 x sin x dx = − u2 du
  • 67. Example ∫ π Compute cos2 x sin x dx. 0 Solu on (Slow Way) ∫ First compute the indefinite integral cos2 x sin x dx and then evaluate. Let u = cos x . Then du = − sin x dx and ∫ ∫ cos2 x sin x dx = − u2 du = − 1 u3 + C = − 3 cos3 x + C. 3 1
  • 68. Example ∫ π Compute cos2 x sin x dx. 0 Solu on (Slow Way) Let u = cos x . Then du = − sin x dx and ∫ ∫ cos x sin x dx = − u2 du = − 1 u3 + C = − 3 cos3 x + C. 2 3 1 Therefore ∫ π π 1 cos2 x sin x dx = − cos3 x 0 3 0
  • 69. Example ∫ π Compute cos2 x sin x dx. 0 Solu on (Slow Way) Let u = cos x . Then du = − sin x dx and ∫ ∫ cos x sin x dx = − u2 du = − 1 u3 + C = − 3 cos3 x + C. 2 3 1 Therefore ∫ π 1( ) π 1 cos2 x sin x dx = − cos3 x =− (−1)3 − 13 0 3 0 3
  • 70. Example ∫ π Compute cos2 x sin x dx. 0 Solu on (Slow Way) Let u = cos x . Then du = − sin x dx and ∫ ∫ cos x sin x dx = − u2 du = − 1 u3 + C = − 3 cos3 x + C. 2 3 1 Therefore ∫ π 1( ) 2 π 1 cos2 x sin x dx = − cos3 x =− (−1)3 − 13 = . 0 3 0 3 3
  • 71. Definite-ly Quicker Solu on (Fast Way) Do both the subs tu on and the evalua on at the same me. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So ∫ π cos2 x sin x dx 0
  • 72. Definite-ly Quicker Solu on (Fast Way) Do both the subs tu on and the evalua on at the same me. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So ∫ π cos2 x sin x dx 0
  • 73. Definite-ly Quicker Solu on (Fast Way) Do both the subs tu on and the evalua on at the same me. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So ∫ π cos2 x sin x dx 0
  • 74. Definite-ly Quicker Solu on (Fast Way) Do both the subs tu on and the evalua on at the same me. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So ∫ π ∫ −1 ∫ 1 2 cos x sin x dx = −u du = 2 u2 du 0 1 −1
  • 75. Definite-ly Quicker Solu on (Fast Way) Do both the subs tu on and the evalua on at the same me. Let u = cos x. Then du = − sin x dx, u(0) = 1 and u(π) = −1 . So ∫ π ∫ −1 ∫ 1 2 cos x sin x dx = −u du = 2 u2 du 0 1 −1 1( ) 2 1 1 3 = u = 1 − (−1) = 3 −1 3 3
  • 76. Compare The advantage to the “fast way” is that you completely transform the integral into something simpler and don’t have to go back to the original variable (x). But the slow way is just as reliable.
  • 77. An exponential example Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3
  • 78. An exponential example Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on Let u = e2x , so du = 2e2x dx. We have ∫ √ ∫ ln 8 2x √ 1 8√ √ e e2x + 1 dx = u + 1 du ln 3 2 3
  • 79. About those limits Since √ √ 2 e2(ln 3) = eln 3 = eln 3 = 3 we have ∫ √ ∫ ln 8 √ 1 8√ √ e2x e2x + 1 dx = u + 1 du ln 3 2 3
  • 80. An exponential example Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on Now let y = u + 1, dy = du. So ∫ ∫ 1 8√ 9 1 9√ 1 2 1 19 u + 1 du = y dy = · y3/2 = (27 − 8) = 2 3 2 4 2 3 4 3 3
  • 81. About those fractional powers We have 93/2 = (91/2 )3 = 33 = 27 43/2 = (41/2 )3 = 23 = 8 so ∫ 9 9 1 1 2 1 19 1/2 y dy = · y3/2 = (27 − 8) = 2 4 2 3 4 3 3
  • 82. An exponential example Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on Now let y = u + 1, dy = du. So ∫ ∫ 1 8√ 9 1 9√ 1 2 1 19 u + 1 du = y dy = · y3/2 = (27 − 8) = 2 3 2 4 2 3 4 3 3
  • 83. Another way to skin that cat Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on Let u = e2x + 1,
  • 84. Another way to skin that cat Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on Let u = e2x + 1,so that du = 2e2x dx.
  • 85. Another way to skin that cat Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on Let u = e2x + 1,so that du = 2e2x dx. Then ∫ √ ∫ ln 8 √ 1 9√ √ e2x e2x + 1 dx = u du ln 3 2 4
  • 86. Another way to skin that cat Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on Let u = e2x + 1,so that du = 2e2x dx. Then ∫ √ ∫ ln 8 √ 1 9√ 1 9 √ e2x e2x + 1 dx = u du = u3/2 ln 3 2 4 3 4
  • 87. Another way to skin that cat Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on Let u = e2x + 1,so that du = 2e2x dx. Then ∫ √ ∫ ln 8 √ 1 9√ 1 9 1 19 √ e2x e2x + 1 dx = u du = u3/2 = (27 − 8) = ln 3 2 4 3 4 3 3
  • 88. A third skinned cat Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on √ Let u = e2x + 1, so that u2 = e2x + 1
  • 89. A third skinned cat Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on √ Let u = e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx
  • 90. A third skinned cat Example ∫ ln √8 √ Find √ e2x e2x + 1 dx ln 3 Solu on √ Let u = e2x + 1, so that u2 = e2x + 1 =⇒ 2u du = 2e2x dx Thus ∫ √ ∫ 3 ln 8 √ 1 3 19 √ e2x e2x + 1 dx = u · u du = u3 = ln 3 2 3 2 3
  • 91. A Trigonometric Example Example Find ∫ ( ) ( ) 3π/2 θ θ cot5 sec2 dθ. π 6 6
  • 92. A Trigonometric Example Example Find ∫ ( ) ( ) 3π/2 θ θ cot5 sec2 dθ. π 6 6 Before we dive in, think about: What “easy” subs tu ons might help? Which of the trig func ons suggests a subs tu on?
  • 93. Solu on θ 1 Let φ = . Then dφ = dθ. 6 6 ∫ 3π/2 ( ) ( ) ∫ π/4 θ θ cot5 sec2 dθ = 6 cot5 φ sec2 φ dφ π 6 6 π/6 ∫ π/4 sec2 φ dφ =6 π/6 tan5 φ
  • 94. Solu on θ 1 Let φ = . Then dφ = dθ. 6 6 ∫ 3π/2 ( ) ( ) ∫ π/4 θ θ cot5 sec2 dθ = 6 cot5 φ sec2 φ dφ π 6 6 π/6 ∫ π/4 sec2 φ dφ =6 π/6 tan5 φ Now let u = tan φ. So du = sec2 φ dφ, and
  • 95. Solu on Now let u = tan φ. So du = sec2 φ dφ, and ∫ π/4 ∫ 1 sec2 φ dφ 6 5φ = 6 √ u−5 du π/6 tan 1/ 3 ( )1 1 −4 3 =6 − u √ = [9 − 1] = 12. 4 1/ 3 2
  • 96. The limits explained √ π sin(π/4) 2/2 tan = =√ =1 4 cos(π/4) 2/2 π sin(π/6) 1/2 1 tan = =√ =√ 6 cos(π/6) 3/2 3
  • 97. The limits explained ( ) 3 [ −4 ]1 √ 3 [ −4 ]1/√3 1 1 −4 6 − u √ = −u 1/ 3 = u 1 4 1/ 3 2 2 3 [ −1/2 −4 −1/2 −4 ] = (3 ) − (1 ) 2 3 3 = [32 − 12 ] = (9 − 1) = 12 2 2
  • 98. Graphs ∫ 3π/2 ( ) ( ) ∫ π/4 θ θ cot5 sec2 dθ 6 cot5 φ sec2 φ dφ π 6 6 π/6 y y . θ φ π 3π ππ 2 64 The areas of these two regions are the same.
  • 99. ∫ Graphs π/4 5 2 6 cot φ sec φ dφ 1 √ 6u −5 du π/6 1/ 3 y y . φ u ππ 11 √ 64 3 The areas of these two regions are the same.
  • 100. u/du pairs When deciding on a subs tu on, look for sub-expressions where one is (a constant mul ple of) the deriva ve of the other. Such as: √ u xn ln x sin x cos x tan x x ex 1 1 constant × du xn−1 cos x sin x sec2 x √ ex x x
  • 101. Summary If F is an an deriva ve for f, then: ∫ f(g(x))g′ (x) dx = F(g(x)) If F is an an deriva ve for f, which is con nuous on the range of g, then: ∫ b ∫ g(b) ′ f(g(x))g (x) dx = f(u) du = F(g(b)) − F(g(a)) a g(a) An differen a on in general and subs tu on in par cular is a “nonlinear” problem that needs prac ce, intui on, and perserverance. The whole an differen a on story is in Chapter 6.