SlideShare ist ein Scribd-Unternehmen logo
1 von 142
Downloaden Sie, um offline zu lesen
Section 4.7
Antiderivatives
V63.0121.021, Calculus I
New York University
November 30, 2010
Announcements
Quiz 5 in recitation this week on §§4.1–4.4
Final Exam: Monday, December 20, 12:00–1:50pm
. . . . . .
. . . . . .
Announcements
Quiz 5 in recitation this
week on §§4.1–4.4
Final Exam: Monday,
December 20,
12:00–1:50pm
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 2 / 37
. . . . . .
Objectives
Given a ”simple“
elementary function, find a
function whose derivative
is that function.
Remember that a function
whose derivative is zero
along an interval must be
zero along that interval.
Solve problems involving
rectilinear motion.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 3 / 37
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 4 / 37
. . . . . .
What is an antiderivative?
Definition
Let f be a function. An antiderivative for f is a function F such that
F′
= f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 5 / 37
. . . . . .
Who cares?
Question
Why would we want the antiderivative of a function?
Answers
For the challenge of it
For applications when the derivative of a function is known but the
original function is not
Biggest application will be after the Fundamental Theorem of
Calculus (Chapter 5)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 6 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x) = 1 · ln x + x ·
1
x
− 1
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x) = 1 · ln x + x ·
1
x
− 1 = ln x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x) = 1 · ln x + x ·
1
x
− 1 = ln x 
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Why the MVT is the MITC
Most Important Theorem In Calculus!
Theorem
Let f′
= 0 on an interval (a, b). Then f is constant on (a, b).
Proof.
Pick any points x and y in (a, b) with x  y. Then f is continuous on
[x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y)
such that
f(y) − f(x)
y − x
= f′
(z) =⇒ f(y) = f(x) + f′
(z)(y − x)
But f′
(z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b),
then f is constant.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 8 / 37
. . . . . .
When two functions have the same derivative
Theorem
Suppose f and g are two differentiable functions on (a, b) with f′
= g′
.
Then f and g differ by a constant. That is, there exists a constant C
such that f(x) = g(x) + C.
Proof.
Let h(x) = f(x) − g(x)
Then h′
(x) = f′
(x) − g′
(x) = 0 on (a, b)
So h(x) = C, a constant
This means f(x) − g(x) = C on (a, b)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 9 / 37
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 10 / 37
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
..
x
.
y
.
f(x) = x2
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
..
x
.
y
.
f(x) = x2
.
f′
(x) = 2x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
..
x
.
y
.
f(x) = x2
.
f′
(x) = 2x
.
F(x) = ?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
So in looking for antiderivatives
of power functions, try power
functions!
..
x
.
y
.
f(x) = x2
.
f′
(x) = 2x
.
F(x) = ?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3

V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3

Any others?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3

Any others? Yes, F(x) =
1
4
x4
+ C is the most general form.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Extrapolating to general power functions
Fact (The Power Rule for antiderivatives)
If f(x) = xr
, then
F(x) =
1
r + 1
xr+1
is an antiderivative for f…
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
. . . . . .
Extrapolating to general power functions
Fact (The Power Rule for antiderivatives)
If f(x) = xr
, then
F(x) =
1
r + 1
xr+1
is an antiderivative for f as long as r ̸= −1.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
. . . . . .
Extrapolating to general power functions
Fact (The Power Rule for antiderivatives)
If f(x) = xr
, then
F(x) =
1
r + 1
xr+1
is an antiderivative for f as long as r ̸= −1.
Fact
If f(x) = x−1
=
1
x
, then
F(x) = ln |x| + C
is an antiderivative for f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x|
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x|
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1) =
1
x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1) =
1
x

V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1) =
1
x

We prefer the antiderivative with the larger domain.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
Graph of ln |x|
.. x.
y
. f(x) = 1/x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
. . . . . .
Graph of ln |x|
.. x.
y
. f(x) = 1/x.
F(x) = ln(x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
. . . . . .
Graph of ln |x|
.. x.
y
. f(x) = 1/x.
F(x) = ln |x|
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
. . . . . .
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)
If F is an antiderivative of f and G is an antiderivative of g, then
F + G is an antiderivative of f + g.
If F is an antiderivative of f and c is a constant, then cF is an
antiderivative of cf.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 16 / 37
. . . . . .
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)
If F is an antiderivative of f and G is an antiderivative of g, then
F + G is an antiderivative of f + g.
If F is an antiderivative of f and c is a constant, then cF is an
antiderivative of cf.
Proof.
These follow from the sum and constant multiple rule for derivatives:
If F′
= f and G′
= g, then
(F + G)′
= F′
+ G′
= f + g
Or, if F′
= f,
(cF)′
= cF′
= cf
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 16 / 37
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
Solution
The expression
1
2
x2
is an antiderivative for x, and x is an antiderivative for 1.
So
F(x) = 16 ·
(
1
2
x2
)
+ 5 · x + C = 8x2
+ 5x + C
is the antiderivative of f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
Solution
The expression
1
2
x2
is an antiderivative for x, and x is an antiderivative for 1.
So
F(x) = 16 ·
(
1
2
x2
)
+ 5 · x + C = 8x2
+ 5x + C
is the antiderivative of f.
Question
Do we need two C’s or just one?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
Solution
The expression
1
2
x2
is an antiderivative for x, and x is an antiderivative for 1.
So
F(x) = 16 ·
(
1
2
x2
)
+ 5 · x + C = 8x2
+ 5x + C
is the antiderivative of f.
Question
Do we need two C’s or just one?
Answer
Just one. A combination of two arbitrary constants is still an arbitrary constant.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
Accordingly,
Fact
If f(x) = ax
, then F(x) =
1
ln a
ax
+ C is the antiderivative of f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
Accordingly,
Fact
If f(x) = ax
, then F(x) =
1
ln a
ax
+ C is the antiderivative of f.
Proof.
Check it yourself.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
Accordingly,
Fact
If f(x) = ax
, then F(x) =
1
ln a
ax
+ C is the antiderivative of f.
Proof.
Check it yourself.
In particular,
Fact
If f(x) = ex
, then F(x) = ex
+ C is the antiderivative of f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
. . . . . .
Logarithmic functions?
Remember we found
F(x) = x ln x − x
is an antiderivative of f(x) = ln x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
. . . . . .
Logarithmic functions?
Remember we found
F(x) = x ln x − x
is an antiderivative of f(x) = ln x.
This is not obvious. See Calc II for the full story.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
. . . . . .
Logarithmic functions?
Remember we found
F(x) = x ln x − x
is an antiderivative of f(x) = ln x.
This is not obvious. See Calc II for the full story.
However, using the fact that loga x =
ln x
ln a
, we get:
Fact
If f(x) = loga(x)
F(x) =
1
ln a
(x ln x − x) + C = x loga x −
1
ln a
x + C
is the antiderivative of f(x).
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
. . . . . .
Trigonometric functions
Fact
d
dx
sin x = cos x
d
dx
cos x = − sin x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
. . . . . .
Trigonometric functions
Fact
d
dx
sin x = cos x
d
dx
cos x = − sin x
So to turn these around,
Fact
The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
. . . . . .
Trigonometric functions
Fact
d
dx
sin x = cos x
d
dx
cos x = − sin x
So to turn these around,
Fact
The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.
The function F(x) = sin x + C is the antiderivative of f(x) = cos x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x = tan x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x = tan x 
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x = tan x 
More about this later.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
Antiderivatives of piecewise functions
Example
Let
f(x) =
{
x if 0 ≤ x ≤ 1;
1 − x2
if 1  x.
Find the antiderivative of f with F(0) = 1.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 22 / 37
. . . . . .
Antiderivatives of piecewise functions
Example
Let
f(x) =
{
x if 0 ≤ x ≤ 1;
1 − x2
if 1  x.
Find the antiderivative of f with F(0) = 1.
Solution
We can antidifferentiate each piece:
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
The constants need to be chosen so that F(0) = 1 and F is continuous
(at 1).
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 22 / 37
. . . . . .
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
Note F(0) =
1
2
02
+ C1 = C1, so if F(0) is to be 1, C1 = 1.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
. . . . . .
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
Note F(0) =
1
2
02
+ C1 = C1, so if F(0) is to be 1, C1 = 1.
This means lim
x→1−
F(x) =
1
2
12
+ 1 =
3
2
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
. . . . . .
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
Note F(0) =
1
2
02
+ C1 = C1, so if F(0) is to be 1, C1 = 1.
This means lim
x→1−
F(x) =
1
2
12
+ 1 =
3
2
.
On the other hand,
lim
x→1+
F(x) = 1 −
1
3
+ C2 =
2
3
+ C2
So for F to be continuous we need
3
2
=
2
3
+ C2. Solving, C2 =
5
6
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 24 / 37
. . . . . .
Finding Antiderivatives Graphically
Problem
Below is the graph of a function f. Draw the graph of an antiderivative
for f.
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
y = f(x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 25 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
..
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
...
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
.....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
?
.
?
.
?
.
?
.
?
.
?
The only question left is: What are the function values?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0. ..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
..
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
..
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
...
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
...
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
.....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
......
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
It’s harder to tell if/when F
crosses the axis; more
about that later.
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
......
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 28 / 37
. . . . . .
Say what?
“Rectilinear motion” just means motion along a line.
Often we are given information about the velocity or acceleration
of a moving particle and we want to know the equations of motion.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 29 / 37
. . . . . .
Application: Dead Reckoning
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 30 / 37
. . . . . .
Application: Dead Reckoning
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 30 / 37
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
Solution
By Newton’s Second Law (F = ma) a constant force induces a
constant acceleration. So a(t) = a =
F
m
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
Solution
By Newton’s Second Law (F = ma) a constant force induces a
constant acceleration. So a(t) = a =
F
m
.
Since v′
(t) = a(t), v(t) must be an antiderivative of the constant
function a. So
v(t) = at + C = at + v0
where v0 is the initial velocity.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
Solution
By Newton’s Second Law (F = ma) a constant force induces a
constant acceleration. So a(t) = a =
F
m
.
Since v′
(t) = a(t), v(t) must be an antiderivative of the constant
function a. So
v(t) = at + C = at + v0
where v0 is the initial velocity.
Since s′
(t) = v(t), s(t) must be an antiderivative of v(t), meaning
s(t) =
1
2
at2
+ v0t + C =
1
2
at2
+ v0t + s0
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
. . . . . .
An earlier Hatsumon
Example
Drop a ball off the roof of the Silver Center. What is its velocity when it
hits the ground?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 32 / 37
. . . . . .
An earlier Hatsumon
Example
Drop a ball off the roof of the Silver Center. What is its velocity when it
hits the ground?
Solution
Assume s0 = 100 m, and v0 = 0. Approximate a = g ≈ −10. Then
s(t) = 100 − 5t2
So s(t) = 0 when t =
√
20 = 2
√
5. Then
v(t) = −10t,
so the velocity at impact is v(2
√
5) = −20
√
5 m/s.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 32 / 37
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
Solution (Setup)
While braking, the car has acceleration a(t) = −20
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
Solution (Setup)
While braking, the car has acceleration a(t) = −20
Measure time 0 and position 0 when the car starts braking. So
s(0) = 0.
The car stops at time some t1, when v(t1) = 0.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
Solution (Setup)
While braking, the car has acceleration a(t) = −20
Measure time 0 and position 0 when the car starts braking. So
s(0) = 0.
The car stops at time some t1, when v(t1) = 0.
We know that when s(t1) = 160.
We want to know v(0), or v0.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
. . . . . .
Implementing the Solution
In general,
s(t) = s0 + v0t +
1
2
at2
Since s0 = 0 and a = −20, we have
s(t) = v0t − 10t2
v(t) = v0 − 20t
for all t.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 34 / 37
. . . . . .
Implementing the Solution
In general,
s(t) = s0 + v0t +
1
2
at2
Since s0 = 0 and a = −20, we have
s(t) = v0t − 10t2
v(t) = v0 − 20t
for all t. Plugging in t = t1,
160 = v0t1 − 10t2
1
0 = v0 − 20t1
We need to solve these two equations.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 34 / 37
. . . . . .
Solving
We have
v0t1 − 10t2
1 = 160 v0 − 20t1 = 0
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
. . . . . .
Solving
We have
v0t1 − 10t2
1 = 160 v0 − 20t1 = 0
The second gives t1 = v0/20, so substitute into the first:
v0 ·
v0
20
− 10
( v0
20
)2
= 160
Solve:
v2
0
20
−
10v2
0
400
= 160
2v2
0 − v2
0 = 160 · 40 = 6400
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
. . . . . .
Solving
We have
v0t1 − 10t2
1 = 160 v0 − 20t1 = 0
The second gives t1 = v0/20, so substitute into the first:
v0 ·
v0
20
− 10
( v0
20
)2
= 160
Solve:
v2
0
20
−
10v2
0
400
= 160
2v2
0 − v2
0 = 160 · 40 = 6400
So v0 = 80 ft/s ≈ 55 mi/hr
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
. . . . . .
Summary of Antiderivatives so far
f(x) F(x)
xr
, r ̸= 1
1
r + 1
xr+1
+ C
1
x
= x−1
ln |x| + C
ex
ex
+ C
ax 1
ln a
ax
+ C
ln x x ln x − x + C
loga x
x ln x − x
ln a
+ C
sin x − cos x + C
cos x sin x + C
tan x ln | tan x| + C
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 36 / 37
. . . . . .
Final Thoughts
Antiderivatives are a useful
concept, especially in
motion
We can graph an
antiderivative from the
graph of a function
We can compute
antiderivatives, but not
always
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.......
F
f(x) = e−x2
f′
(x) = ???
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 37 / 37

Weitere ähnliche Inhalte

Was ist angesagt?

"reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli..."reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli...Christian Robert
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Imprecision in learning: an overview
Imprecision in learning: an overviewImprecision in learning: an overview
Imprecision in learning: an overviewSebastien Destercke
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsUmberto Picchini
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesGabriel Peyré
 
Introductory maths analysis chapter 11 official
Introductory maths analysis   chapter 11 officialIntroductory maths analysis   chapter 11 official
Introductory maths analysis chapter 11 officialEvert Sandye Taasiringan
 
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...IJERA Editor
 
Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Umberto Picchini
 
accurate ABC Oliver Ratmann
accurate ABC Oliver Ratmannaccurate ABC Oliver Ratmann
accurate ABC Oliver Ratmannolli0601
 
Laplace's Demon: seminar #1
Laplace's Demon: seminar #1Laplace's Demon: seminar #1
Laplace's Demon: seminar #1Christian Robert
 

Was ist angesagt? (18)

"reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli..."reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli...
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Lecture6.handout
Lecture6.handoutLecture6.handout
Lecture6.handout
 
Unit iv
Unit ivUnit iv
Unit iv
 
asymptotics of ABC
asymptotics of ABCasymptotics of ABC
asymptotics of ABC
 
Imprecision in learning: an overview
Imprecision in learning: an overviewImprecision in learning: an overview
Imprecision in learning: an overview
 
ABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space modelsABC with data cloning for MLE in state space models
ABC with data cloning for MLE in state space models
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular Gauges
 
Introductory maths analysis chapter 11 official
Introductory maths analysis   chapter 11 officialIntroductory maths analysis   chapter 11 official
Introductory maths analysis chapter 11 official
 
Finite difference & interpolation
Finite difference & interpolationFinite difference & interpolation
Finite difference & interpolation
 
Interpolation
InterpolationInterpolation
Interpolation
 
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
 
Propensity albert
Propensity albertPropensity albert
Propensity albert
 
Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...Inference for stochastic differential equations via approximate Bayesian comp...
Inference for stochastic differential equations via approximate Bayesian comp...
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
accurate ABC Oliver Ratmann
accurate ABC Oliver Ratmannaccurate ABC Oliver Ratmann
accurate ABC Oliver Ratmann
 
Laplace's Demon: seminar #1
Laplace's Demon: seminar #1Laplace's Demon: seminar #1
Laplace's Demon: seminar #1
 

Ähnlich wie Lesson 23: Antiderivatives (Section 021 slides)

Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Mel Anthony Pepito
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Mel Anthony Pepito
 
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Matthew Leingang
 
Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Matthew Leingang
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: AntiderivativesMatthew Leingang
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: AntiderivativesMatthew Leingang
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Matthew Leingang
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Matthew Leingang
 
Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)Matthew Leingang
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slidesMatthew Leingang
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15  -exponential_growth_and_decay_021_slidesLesson15  -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesMatthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Matthew Leingang
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Mel Anthony Pepito
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (Section 021 slides)
Lesson 19: The Mean Value Theorem (Section 021 slides)Lesson 19: The Mean Value Theorem (Section 021 slides)
Lesson 19: The Mean Value Theorem (Section 021 slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Mel Anthony Pepito
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Mel Anthony Pepito
 

Ähnlich wie Lesson 23: Antiderivatives (Section 021 slides) (20)

Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 021 slides)
 
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 041 slides)
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
 
Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)Lesson 21: Antiderivatives (notes)
Lesson 21: Antiderivatives (notes)
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
Lesson 20: Derivatives and the Shape of Curves (Section 041 slides)
 
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
Lesson 14: Derivatives of Exponential and Logarithmic Functions (Section 041 ...
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)
 
Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)Lesson 22: Optimization II (Section 041 slides)
Lesson 22: Optimization II (Section 041 slides)
 
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
Lesson20  -derivatives_and_the_shape_of_curves_021_slidesLesson20  -derivatives_and_the_shape_of_curves_021_slides
Lesson20 -derivatives_and_the_shape_of_curves_021_slides
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15  -exponential_growth_and_decay_021_slidesLesson15  -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slides
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)
 
Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)Lesson 5: Continuity (Section 41 slides)
Lesson 5: Continuity (Section 41 slides)
 
Lesson 19: The Mean Value Theorem (Section 021 slides)
Lesson 19: The Mean Value Theorem (Section 021 slides)Lesson 19: The Mean Value Theorem (Section 021 slides)
Lesson 19: The Mean Value Theorem (Section 021 slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
 

Mehr von Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 

Mehr von Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 

Lesson 23: Antiderivatives (Section 021 slides)

  • 1. Section 4.7 Antiderivatives V63.0121.021, Calculus I New York University November 30, 2010 Announcements Quiz 5 in recitation this week on §§4.1–4.4 Final Exam: Monday, December 20, 12:00–1:50pm . . . . . .
  • 2. . . . . . . Announcements Quiz 5 in recitation this week on §§4.1–4.4 Final Exam: Monday, December 20, 12:00–1:50pm V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 2 / 37
  • 3. . . . . . . Objectives Given a ”simple“ elementary function, find a function whose derivative is that function. Remember that a function whose derivative is zero along an interval must be zero along that interval. Solve problems involving rectilinear motion. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 3 / 37
  • 4. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 4 / 37
  • 5. . . . . . . What is an antiderivative? Definition Let f be a function. An antiderivative for f is a function F such that F′ = f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 5 / 37
  • 6. . . . . . . Who cares? Question Why would we want the antiderivative of a function? Answers For the challenge of it For applications when the derivative of a function is known but the original function is not Biggest application will be after the Fundamental Theorem of Calculus (Chapter 5) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 6 / 37
  • 7. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 8. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 9. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 10. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 11. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) = 1 · ln x + x · 1 x − 1 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 12. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) = 1 · ln x + x · 1 x − 1 = ln x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 13. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) = 1 · ln x + x · 1 x − 1 = ln x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 14. . . . . . . Why the MVT is the MITC Most Important Theorem In Calculus! Theorem Let f′ = 0 on an interval (a, b). Then f is constant on (a, b). Proof. Pick any points x and y in (a, b) with x y. Then f is continuous on [x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y) such that f(y) − f(x) y − x = f′ (z) =⇒ f(y) = f(x) + f′ (z)(y − x) But f′ (z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b), then f is constant. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 8 / 37
  • 15. . . . . . . When two functions have the same derivative Theorem Suppose f and g are two differentiable functions on (a, b) with f′ = g′ . Then f and g differ by a constant. That is, there exists a constant C such that f(x) = g(x) + C. Proof. Let h(x) = f(x) − g(x) Then h′ (x) = f′ (x) − g′ (x) = 0 on (a, b) So h(x) = C, a constant This means f(x) − g(x) = C on (a, b) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 9 / 37
  • 16. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 10 / 37
  • 17. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . .. x . y . f(x) = x2 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
  • 18. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . .. x . y . f(x) = x2 . f′ (x) = 2x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
  • 19. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . .. x . y . f(x) = x2 . f′ (x) = 2x . F(x) = ? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
  • 20. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . So in looking for antiderivatives of power functions, try power functions! .. x . y . f(x) = x2 . f′ (x) = 2x . F(x) = ? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
  • 21. . . . . . . Example Find an antiderivative for the function f(x) = x3 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 22. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 23. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 24. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 25. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 26. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 27. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 28. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 29. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 Any others? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 30. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 Any others? Yes, F(x) = 1 4 x4 + C is the most general form. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 31. . . . . . . Extrapolating to general power functions Fact (The Power Rule for antiderivatives) If f(x) = xr , then F(x) = 1 r + 1 xr+1 is an antiderivative for f… V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
  • 32. . . . . . . Extrapolating to general power functions Fact (The Power Rule for antiderivatives) If f(x) = xr , then F(x) = 1 r + 1 xr+1 is an antiderivative for f as long as r ̸= −1. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
  • 33. . . . . . . Extrapolating to general power functions Fact (The Power Rule for antiderivatives) If f(x) = xr , then F(x) = 1 r + 1 xr+1 is an antiderivative for f as long as r ̸= −1. Fact If f(x) = x−1 = 1 x , then F(x) = ln |x| + C is an antiderivative for f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
  • 34. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 35. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 36. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 37. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 38. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 39. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 40. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 41. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 42. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 43. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 44. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x We prefer the antiderivative with the larger domain. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 45. . . . . . . Graph of ln |x| .. x. y . f(x) = 1/x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
  • 46. . . . . . . Graph of ln |x| .. x. y . f(x) = 1/x. F(x) = ln(x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
  • 47. . . . . . . Graph of ln |x| .. x. y . f(x) = 1/x. F(x) = ln |x| V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
  • 48. . . . . . . Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 16 / 37
  • 49. . . . . . . Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. Proof. These follow from the sum and constant multiple rule for derivatives: If F′ = f and G′ = g, then (F + G)′ = F′ + G′ = f + g Or, if F′ = f, (cF)′ = cF′ = cf V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 16 / 37
  • 50. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
  • 51. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. Solution The expression 1 2 x2 is an antiderivative for x, and x is an antiderivative for 1. So F(x) = 16 · ( 1 2 x2 ) + 5 · x + C = 8x2 + 5x + C is the antiderivative of f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
  • 52. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. Solution The expression 1 2 x2 is an antiderivative for x, and x is an antiderivative for 1. So F(x) = 16 · ( 1 2 x2 ) + 5 · x + C = 8x2 + 5x + C is the antiderivative of f. Question Do we need two C’s or just one? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
  • 53. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. Solution The expression 1 2 x2 is an antiderivative for x, and x is an antiderivative for 1. So F(x) = 16 · ( 1 2 x2 ) + 5 · x + C = 8x2 + 5x + C is the antiderivative of f. Question Do we need two C’s or just one? Answer Just one. A combination of two arbitrary constants is still an arbitrary constant. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
  • 54. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
  • 55. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact If f(x) = ax , then F(x) = 1 ln a ax + C is the antiderivative of f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
  • 56. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact If f(x) = ax , then F(x) = 1 ln a ax + C is the antiderivative of f. Proof. Check it yourself. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
  • 57. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact If f(x) = ax , then F(x) = 1 ln a ax + C is the antiderivative of f. Proof. Check it yourself. In particular, Fact If f(x) = ex , then F(x) = ex + C is the antiderivative of f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
  • 58. . . . . . . Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
  • 59. . . . . . . Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
  • 60. . . . . . . Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. However, using the fact that loga x = ln x ln a , we get: Fact If f(x) = loga(x) F(x) = 1 ln a (x ln x − x) + C = x loga x − 1 ln a x + C is the antiderivative of f(x). V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
  • 61. . . . . . . Trigonometric functions Fact d dx sin x = cos x d dx cos x = − sin x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
  • 62. . . . . . . Trigonometric functions Fact d dx sin x = cos x d dx cos x = − sin x So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
  • 63. . . . . . . Trigonometric functions Fact d dx sin x = cos x d dx cos x = − sin x So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. The function F(x) = sin x + C is the antiderivative of f(x) = cos x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
  • 64. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 65. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 66. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 67. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 68. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 69. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x = tan x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 70. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x = tan x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 71. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x = tan x More about this later. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 72. . . . . . . Antiderivatives of piecewise functions Example Let f(x) = { x if 0 ≤ x ≤ 1; 1 − x2 if 1 x. Find the antiderivative of f with F(0) = 1. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 22 / 37
  • 73. . . . . . . Antiderivatives of piecewise functions Example Let f(x) = { x if 0 ≤ x ≤ 1; 1 − x2 if 1 x. Find the antiderivative of f with F(0) = 1. Solution We can antidifferentiate each piece: F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. The constants need to be chosen so that F(0) = 1 and F is continuous (at 1). V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 22 / 37
  • 74. . . . . . . F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. Note F(0) = 1 2 02 + C1 = C1, so if F(0) is to be 1, C1 = 1. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
  • 75. . . . . . . F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. Note F(0) = 1 2 02 + C1 = C1, so if F(0) is to be 1, C1 = 1. This means lim x→1− F(x) = 1 2 12 + 1 = 3 2 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
  • 76. . . . . . . F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. Note F(0) = 1 2 02 + C1 = C1, so if F(0) is to be 1, C1 = 1. This means lim x→1− F(x) = 1 2 12 + 1 = 3 2 . On the other hand, lim x→1+ F(x) = 1 − 1 3 + C2 = 2 3 + C2 So for F to be continuous we need 3 2 = 2 3 + C2. Solving, C2 = 5 6 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
  • 77. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 24 / 37
  • 78. . . . . . . Finding Antiderivatives Graphically Problem Below is the graph of a function f. Draw the graph of an antiderivative for f. .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... y = f(x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 25 / 37
  • 79. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 80. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 81. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 82. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 83. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 84. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 85. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 86. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 87. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 88. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 89. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 90. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 91. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 92. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 93. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 94. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 95. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 96. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 97. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 98. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 99. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 100. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 101. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 102. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 103. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 104. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 105. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 106. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 107. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 .... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 108. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ..... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 109. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... ? . ? . ? . ? . ? . ? The only question left is: What are the function values? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 110. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 111. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 112. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 113. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 114. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 115. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 116. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 117. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 118. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 119. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ..... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 120. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ...... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 121. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity It’s harder to tell if/when F crosses the axis; more about that later. .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ...... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 122. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 28 / 37
  • 123. . . . . . . Say what? “Rectilinear motion” just means motion along a line. Often we are given information about the velocity or acceleration of a moving particle and we want to know the equations of motion. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 29 / 37
  • 124. . . . . . . Application: Dead Reckoning V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 30 / 37
  • 125. . . . . . . Application: Dead Reckoning V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 30 / 37
  • 126. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
  • 127. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). Solution By Newton’s Second Law (F = ma) a constant force induces a constant acceleration. So a(t) = a = F m . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
  • 128. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). Solution By Newton’s Second Law (F = ma) a constant force induces a constant acceleration. So a(t) = a = F m . Since v′ (t) = a(t), v(t) must be an antiderivative of the constant function a. So v(t) = at + C = at + v0 where v0 is the initial velocity. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
  • 129. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). Solution By Newton’s Second Law (F = ma) a constant force induces a constant acceleration. So a(t) = a = F m . Since v′ (t) = a(t), v(t) must be an antiderivative of the constant function a. So v(t) = at + C = at + v0 where v0 is the initial velocity. Since s′ (t) = v(t), s(t) must be an antiderivative of v(t), meaning s(t) = 1 2 at2 + v0t + C = 1 2 at2 + v0t + s0 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
  • 130. . . . . . . An earlier Hatsumon Example Drop a ball off the roof of the Silver Center. What is its velocity when it hits the ground? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 32 / 37
  • 131. . . . . . . An earlier Hatsumon Example Drop a ball off the roof of the Silver Center. What is its velocity when it hits the ground? Solution Assume s0 = 100 m, and v0 = 0. Approximate a = g ≈ −10. Then s(t) = 100 − 5t2 So s(t) = 0 when t = √ 20 = 2 √ 5. Then v(t) = −10t, so the velocity at impact is v(2 √ 5) = −20 √ 5 m/s. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 32 / 37
  • 132. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
  • 133. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? Solution (Setup) While braking, the car has acceleration a(t) = −20 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
  • 134. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? Solution (Setup) While braking, the car has acceleration a(t) = −20 Measure time 0 and position 0 when the car starts braking. So s(0) = 0. The car stops at time some t1, when v(t1) = 0. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
  • 135. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? Solution (Setup) While braking, the car has acceleration a(t) = −20 Measure time 0 and position 0 when the car starts braking. So s(0) = 0. The car stops at time some t1, when v(t1) = 0. We know that when s(t1) = 160. We want to know v(0), or v0. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
  • 136. . . . . . . Implementing the Solution In general, s(t) = s0 + v0t + 1 2 at2 Since s0 = 0 and a = −20, we have s(t) = v0t − 10t2 v(t) = v0 − 20t for all t. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 34 / 37
  • 137. . . . . . . Implementing the Solution In general, s(t) = s0 + v0t + 1 2 at2 Since s0 = 0 and a = −20, we have s(t) = v0t − 10t2 v(t) = v0 − 20t for all t. Plugging in t = t1, 160 = v0t1 − 10t2 1 0 = v0 − 20t1 We need to solve these two equations. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 34 / 37
  • 138. . . . . . . Solving We have v0t1 − 10t2 1 = 160 v0 − 20t1 = 0 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
  • 139. . . . . . . Solving We have v0t1 − 10t2 1 = 160 v0 − 20t1 = 0 The second gives t1 = v0/20, so substitute into the first: v0 · v0 20 − 10 ( v0 20 )2 = 160 Solve: v2 0 20 − 10v2 0 400 = 160 2v2 0 − v2 0 = 160 · 40 = 6400 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
  • 140. . . . . . . Solving We have v0t1 − 10t2 1 = 160 v0 − 20t1 = 0 The second gives t1 = v0/20, so substitute into the first: v0 · v0 20 − 10 ( v0 20 )2 = 160 Solve: v2 0 20 − 10v2 0 400 = 160 2v2 0 − v2 0 = 160 · 40 = 6400 So v0 = 80 ft/s ≈ 55 mi/hr V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
  • 141. . . . . . . Summary of Antiderivatives so far f(x) F(x) xr , r ̸= 1 1 r + 1 xr+1 + C 1 x = x−1 ln |x| + C ex ex + C ax 1 ln a ax + C ln x x ln x − x + C loga x x ln x − x ln a + C sin x − cos x + C cos x sin x + C tan x ln | tan x| + C V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 36 / 37
  • 142. . . . . . . Final Thoughts Antiderivatives are a useful concept, especially in motion We can graph an antiderivative from the graph of a function We can compute antiderivatives, but not always .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f ....... F f(x) = e−x2 f′ (x) = ??? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 37 / 37