SlideShare ist ein Scribd-Unternehmen logo
1 von 56
Downloaden Sie, um offline zu lesen
Section	3.4
     Exponential	Growth	and	Decay

                  V63.0121.027, Calculus	I



                      October	27, 2009



Announcements
   Quiz	3	this	week	in	recitation

                                         .   .   .   .   .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Derivatives	of	exponential	and	logarithmic	functions




                       y        y′
                       ex       ex
                       ax    (ln a)ax
                                1
                       ln x
                                 x
                               1 1
                      loga x       ·
                             ln a x




                                        .   .   .   .   .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Definition
A differential	equation is	an	equation	for	an	unknown	function
which	includes	the	function	and	its	derivatives.




                                           .   .    .   .   .    .
Definition
A differential	equation is	an	equation	for	an	unknown	function
which	includes	the	function	and	its	derivatives.

Example
    Newton’s	Second	Law F = ma is	a	differential	equation,
    where a(t) = x′′ (t).




                                           .   .    .   .    .   .
Definition
A differential	equation is	an	equation	for	an	unknown	function
which	includes	the	function	and	its	derivatives.

Example
    Newton’s	Second	Law F = ma is	a	differential	equation,
    where a(t) = x′′ (t).
    In	a	spring, F(x) = −kx, where x is	displacement	from
    equilibrium	and k is	a	constant. So

                                         k
                   −kx = mx′′ =⇒ x′′ +     = 0.
                                         m




                                           .   .    .   .    .   .
Definition
A differential	equation is	an	equation	for	an	unknown	function
which	includes	the	function	and	its	derivatives.

Example
    Newton’s	Second	Law F = ma is	a	differential	equation,
    where a(t) = x′′ (t).
    In	a	spring, F(x) = −kx, where x is	displacement	from
    equilibrium	and k is	a	constant. So

                                            k
                    −kx = mx′′ =⇒ x′′ +       = 0.
                                            m


    The	most	general	solution	is x(t) = A sin ω t + B cos ω t, where
        √
    ω = k/m.


                                             .    .    .   .    .      .
The	equation y′ = ky



   Example
      Find a solution	to y′ (t) = y(t).
      Find	the most	general solution	to y′ (t) = y(t).




                                               .    .    .   .   .   .
The	equation y′ = ky



   Example
       Find a solution	to y′ (t) = y(t).
       Find	the most	general solution	to y′ (t) = y(t).

   Solution
       A solution	is y(t) = et .




                                                .    .    .   .   .   .
The	equation y′ = ky



   Example
       Find a solution	to y′ (t) = y(t).
       Find	the most	general solution	to y′ (t) = y(t).

   Solution
       A solution	is y(t) = et .
       The	general	solution	is y = Cet , not y = et + C.
   (check	this)




                                                .    .     .   .   .   .
In	general

   Example
      Find	a	solution	to y′ = ky.
      Find	the	general	solution	to y′ = ky.




                                              .   .   .   .   .   .
In	general

   Example
       Find	a	solution	to y′ = ky.
       Find	the	general	solution	to y′ = ky.

   Solution
       y = ekt
       y = Cekt




                                               .   .   .   .   .   .
In	general

   Example
        Find	a	solution	to y′ = ky.
        Find	the	general	solution	to y′ = ky.

   Solution
        y = ekt
        y = Cekt

   Remark
   What	is C? Plug	in t = 0:

                         y(0) = Cek·0 = C · 1 = C,

   so y(0) = y0 , the initial	value of y.
                                                .    .   .   .   .   .
Exponential	Growth


      It	means	the	rate	of	change	(derivative)	is	proportional	to	the
      current	value
      Examples: Natural	population	growth, compounded	interest,
      social	networks




                                               .   .    .    .    .     .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Bacteria



     Since	you	need	bacteria
     to	make	bacteria, the
     amount	of	new	bacteria
     at	any	moment	is
     proportional	to	the	total
     amount	of	bacteria.
     This	means	bacteria
     populations	grow
     exponentially.




                                 .   .   .   .   .   .
Bacteria	Example
  Example
  A colony	of	bacteria	is	grown	under	ideal	conditions	in	a
  laboratory. At	the	end	of	3	hours	there	are	10,000	bacteria. At
  the	end	of	5	hours	there	are	40,000. How	many	bacteria	were
  present	initially?




                                              .    .   .    .   .   .
Bacteria	Example
  Example
  A colony	of	bacteria	is	grown	under	ideal	conditions	in	a
  laboratory. At	the	end	of	3	hours	there	are	10,000	bacteria. At
  the	end	of	5	hours	there	are	40,000. How	many	bacteria	were
  present	initially?

  Solution
  Since y′ = ky for	bacteria, we	have y = y0 ekt . We	have

             10, 000 = y0 ek·3          40, 000 = y0 ek·5




                                               .   .    .    .   .   .
Bacteria	Example
  Example
  A colony	of	bacteria	is	grown	under	ideal	conditions	in	a
  laboratory. At	the	end	of	3	hours	there	are	10,000	bacteria. At
  the	end	of	5	hours	there	are	40,000. How	many	bacteria	were
  present	initially?

  Solution
  Since y′ = ky for	bacteria, we	have y = y0 ekt . We	have

             10, 000 = y0 ek·3           40, 000 = y0 ek·5

  Dividing	the	first	into	the	second	gives
  4 = e2k =⇒ 2k = ln 4 =⇒ k = ln 2. Now	we	have

                     10, 000 = y0 eln 2·3 = y0 · 8

            10, 000
  So y0 =           = 1250.
               8
                                               .     .   .   .   .   .
Could	you	do	that	again	please?

   We	have

                            10, 000 = y0 ek·3
                            40, 000 = y0 ek·5

   Dividing	the	first	into	the	second	gives

                40, 000  y e5k
                        = 0 3k
                10, 000  y0 e
                       4 = e2k
                    ln 4 = ln(e2k ) = 2k
                            ln 4   ln 22   2 ln 2
                       k=        =       =        = ln 2
                             2       2        2


                                                .   .      .   .   .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Modeling	radioactive	decay

   Radioactive	decay	occurs	because	many	large	atoms
   spontaneously	give	off	particles.




                                            .   .      .   .   .   .
Modeling	radioactive	decay

   Radioactive	decay	occurs	because	many	large	atoms
   spontaneously	give	off	particles.

  This	means	that	in	a	sample
  of	a	bunch	of	atoms, we	can
  assume	a	certain	percentage
  of	them	will	“go	off”	at	any
  point. (For	instance, if	all
  atom	of	a	certain	radioactive
  element	have	a	20%	chance
  of	decaying	at	any	point,
  then	we	can	expect	in	a
  sample	of	100	that	20	of
  them	will	be	decaying.)


                                            .   .      .   .   .   .
Thus	the	relative	rate	of	decay	is	constant:

                               y′
                                  =k
                               y

where k is negative.




                                               .   .   .   .   .   .
Thus	the	relative	rate	of	decay	is	constant:

                               y′
                                  =k
                               y

where k is negative. So

                      y′ = ky =⇒ y = y0 ekt

again!




                                               .   .   .   .   .   .
Thus	the	relative	rate	of	decay	is	constant:

                               y′
                                  =k
                               y

where k is negative. So

                      y′ = ky =⇒ y = y0 ekt

again!
It’s	customary	to	express	the	relative	rate	of	decay	in	the	units	of
half-life: the	amount	of	time	it	takes	a	pure	sample	to	decay	to
one	which	is	only	half	pure.




                                               .   .    .    .    .    .
Example
The	half-life	of	polonium-210	is	about	138	days. How	much	of	a
100	g	sample	remains	after t years?




                                          .   .   .    .   .     .
Example
The	half-life	of	polonium-210	is	about	138	days. How	much	of	a
100	g	sample	remains	after t years?

Solution
We	have y = y0 ekt , where y0 = y(0) = 100 grams. Then

                                                   365 · ln 2
            50 = 100ek·138/365 =⇒ k = −                       .
                                                     138
Therefore
                            365·ln 2
             y(t) = 100e−     138
                                     t
                                         = 100 · 2−365t/138 .




                                                    .    .      .   .   .   .
Carbon-14	Dating

                   The	ratio	of	carbon-14	to
                   carbon-12	in	an	organism
                   decays	exponentially:

                              p(t) = p0 e−kt .

                   The	half-life	of	carbon-14	is
                   about	5700	years. So	the
                   equation	for p(t) is
                                           ln2
                          p(t) = p0 e− 5700 t

                   Another	way	to	write	this
                   would	be

                         p(t) = p0 2−t/5700

                          .       .    .    .    .   .
Example
Suppose	a	fossil	is	found	where	the	ratio	of	carbon-14	to
carbon-12	is	10%	of	that	in	a	living	organism. How	old	is	the
fossil?




                                           .    .   .    .      .   .
Example
Suppose	a	fossil	is	found	where	the	ratio	of	carbon-14	to
carbon-12	is	10%	of	that	in	a	living	organism. How	old	is	the
fossil?

Solution
We	are	looking	for	the	value	of t for	which

                           p(t)
                                = 0.1
                           p(0)




                                              .   .   .   .     .   .
Example
Suppose	a	fossil	is	found	where	the	ratio	of	carbon-14	to
carbon-12	is	10%	of	that	in	a	living	organism. How	old	is	the
fossil?

Solution
We	are	looking	for	the	value	of t for	which

                           p(t)
                                = 0.1
                           p(0)

From	the	equation	we	have

                         2−t/5700 = 0.1
                          t
                      −        ln 2 = ln 0.1
                        5700
                      ln 0.1
                   t=        · 5700 ≈ 18, 940
                       ln 2

                                              .   .   .   .     .   .
Example
Suppose	a	fossil	is	found	where	the	ratio	of	carbon-14	to
carbon-12	is	10%	of	that	in	a	living	organism. How	old	is	the
fossil?

Solution
We	are	looking	for	the	value	of t for	which

                            p(t)
                                 = 0.1
                            p(0)

From	the	equation	we	have

                         2−t/5700 = 0.1
                          t
                      −        ln 2 = ln 0.1
                        5700
                      ln 0.1
                   t=        · 5700 ≈ 18, 940
                       ln 2
So	the	fossil	is	almost	19,000	years	old.
                                              .   .   .   .     .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Newton’s	Law	of	Cooling

     Newton’s	Law	of
     Cooling states	that	the
     rate	of	cooling	of	an
     object	is	proportional	to
     the	temperature
     difference	between	the
     object	and	its
     surroundings.




                                 .   .   .   .   .   .
Newton’s	Law	of	Cooling

     Newton’s	Law	of
     Cooling states	that	the
     rate	of	cooling	of	an
     object	is	proportional	to
     the	temperature
     difference	between	the
     object	and	its
     surroundings.
     This	gives	us	a
     differential	equation	of
     the	form
          dT
             = k (T − T s )
          dt
     (where k < 0 again).

                                 .   .   .   .   .   .
General	Solution	to	NLC problems


  To	solve	this, change	the	variable y(t) = T(t) − Ts . Then y′ = T′
  and k(T − Ts ) = ky. The	equation	now	looks	like

                                dy
                                   = ky
                                dt




                                                .   .    .    .   .    .
General	Solution	to	NLC problems


  To	solve	this, change	the	variable y(t) = T(t) − Ts . Then y′ = T′
  and k(T − Ts ) = ky. The	equation	now	looks	like

                                dy
                                   = ky
                                dt
  which	we	can	solve:

                                y = Cekt
                          T − Ts = Cekt
                          =⇒ T = Cekt + Ts




                                                .   .    .    .   .    .
General	Solution	to	NLC problems


  To	solve	this, change	the	variable y(t) = T(t) − Ts . Then y′ = T′
  and k(T − Ts ) = ky. The	equation	now	looks	like

                                dy
                                   = ky
                                dt
  which	we	can	solve:

                                y = Cekt
                            T − Ts = Cekt
                            =⇒ T = Cekt + Ts

  Here C = y0 = T0 − Ts .



                                                .   .    .    .   .    .
Example
A hard-boiled	egg	at 98◦ C is	put	in	a	sink	of 18◦ C water. After	5
minutes, the	egg’s	temperature	is 38◦ C. Assuming	the	water	has
not	warmed	appreciably, how	much	longer	will	it	take	the	egg	to
reach 20◦ C?




                                             .    .   .    .    .     .
Example
A hard-boiled	egg	at 98◦ C is	put	in	a	sink	of 18◦ C water. After	5
minutes, the	egg’s	temperature	is 38◦ C. Assuming	the	water	has
not	warmed	appreciably, how	much	longer	will	it	take	the	egg	to
reach 20◦ C?

Solution
We	know	that	the	temperature	function	takes	the	form

              T(t) = (T0 − Ts )ekt + Ts = 80ekt + 18

To	find k, plug	in t = 5:

                     38 = T(5) = 80e5k + 18

and	solve	for k.


                                             .    .    .   .    .     .
Finding k


                38 = T(5) = 80e5k + 18
                 20 = 80e5k
                  1
                    = e5k
               ( )4
                1
            ln      = 5k
                4
                        1
              =⇒ k = − ln 4.
                        5




                                   .     .   .   .   .   .
Finding k


                          38 = T(5) = 80e5k + 18
                        20 = 80e5k
                         1
                           = e5k
                      ( )4
                       1
                   ln      = 5k
                       4
                               1
                     =⇒ k = − ln 4.
                               5
   Now	we	need	to	solve
                                      t
                   20 = T(t) = 80e− 5 ln 4 + 18

   for t.
                                             .     .   .   .   .   .
Finding t



                            t
                20 = 80e− 5 ln 4 + 18
                            t
                  2 = 80e− 5 ln 4
                 1       t
                    = e− 5 ln 4
                40
                        t
            − ln 40 = − ln 4
                        5

                       ln 40    5 ln 40
             =⇒ t =    1
                              =         ≈ 13 min
                       5 ln 4     ln 4




                                         .   .     .   .   .   .
Example
A murder	victim	is
discovered	at	midnight	and
the	temperature	of	the	body
is	recorded	as 31 ◦ C. One
hour	later, the	temperature	of
the	body	is 29 ◦ C. Assume
that	the	surrounding	air
temperature	remains
constant	at 21 ◦ C. Calculate
the	victim’s	time	of	death.
(The	“normal”	temperature	of
a	living	human	being	is
approximately 37 ◦ C.)


                                 .   .   .   .   .   .
Solution
    Let	time 0 be	midnight. We	know T0 = 31, Ts = 21, and
    T(1) = 29. We	want	to	know	the t for	which T(t) = 37.




                                         .   .   .   .      .   .
Solution
    Let	time 0 be	midnight. We	know T0 = 31, Ts = 21, and
    T(1) = 29. We	want	to	know	the t for	which T(t) = 37.
    To	find k:

                29 = 10ek·1 + 21 =⇒ k = ln 0.8




                                         .   .   .   .      .   .
Solution
    Let	time 0 be	midnight. We	know T0 = 31, Ts = 21, and
    T(1) = 29. We	want	to	know	the t for	which T(t) = 37.
    To	find k:

                 29 = 10ek·1 + 21 =⇒ k = ln 0.8


    To	find t:

                     37 = 10et·ln(0.8) + 21
                     1.6 = et·ln(0.8)
                           ln(1.6)
                       t=             ≈ −2.10 hr
                           ln(0.8)

    So	the	time	of	death	was	just	before	10:00pm.

                                              .    .   .   .   .   .
Outline

  Recall

  The	equation y′ = ky

  Modeling	simple	population	growth

  Modeling	radioactive	decay
    Carbon-14	Dating

  Newton’s	Law	of	Cooling

  Continuously	Compounded	Interest



                                      .   .   .   .   .   .
Interest

       If	an	account	has	an	compound	interest	rate	of r per	year
       compounded n times, then	an	initial	deposit	of A0 dollars
       becomes                  (     r )nt
                              A0 1 +
                                     n
       after t years.




                                              .   .    .   .   .   .
Interest

       If	an	account	has	an	compound	interest	rate	of r per	year
       compounded n times, then	an	initial	deposit	of A0 dollars
       becomes                  (     r )nt
                              A0 1 +
                                     n
       after t years.
       For	different	amounts	of	compounding, this	will	change. As
       n → ∞, we	get continously	compounded	interest
                                 (    r )nt
                    A(t) = lim A0 1 +       = A0 ert .
                          n→∞         n




                                              .   .      .   .   .   .
Interest

       If	an	account	has	an	compound	interest	rate	of r per	year
       compounded n times, then	an	initial	deposit	of A0 dollars
       becomes                  (     r )nt
                              A0 1 +
                                     n
       after t years.
       For	different	amounts	of	compounding, this	will	change. As
       n → ∞, we	get continously	compounded	interest
                                 (    r )nt
                    A(t) = lim A0 1 +       = A0 ert .
                          n→∞         n


       Thus	dollars	are	like	bacteria.


                                              .   .      .   .   .   .
Example
How	long	does	it	take	an	initial	deposit	of	$100, compounded
continuously, to	double?




                                          .   .    .   .   .   .
Example
How	long	does	it	take	an	initial	deposit	of	$100, compounded
continuously, to	double?

Solution
We	need t such	that A(t) = 200. In	other	words

                                                         ln 2
    200 = 100ert =⇒ 2 = ert =⇒ ln 2 = rt =⇒ t =               .
                                                           r
For	instance, if r = 6% = 0.06, we	have

                  ln 2   0.69   69
             t=        ≈      =    = 11.5 years.
                  0.06   0.06   6




                                          .      .   .     .      .   .
I-banking	interview	tip	of	the	day

                  ln 2
     The	fraction      can
                    r
     also	be	approximated	as
     either	70	or	72	divided
     by	the	percentage	rate
     (as	a	number	between	0
     and	100, not	a	fraction
     between	0	and	1.)
     This	is	sometimes	called
     the rule	of	70 or rule	of
     72.
     72	has	lots	of	factors	so
     it’s	used	more	often.


                                     .   .   .   .   .   .

Weitere ähnliche Inhalte

Was ist angesagt?

3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
 
Different types of functions
Different types of functionsDifferent types of functions
Different types of functionsKatrina Young
 
A presentation on differencial calculus
A presentation on differencial calculusA presentation on differencial calculus
A presentation on differencial calculusbujh balok
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equationPratik Sudra
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its applicationKrishna Peshivadiya
 
Infinite sequence and series
Infinite sequence and seriesInfinite sequence and series
Infinite sequence and seriesBhavik A Shah
 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebraNaliniSPatil
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusShubham .
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability Seyid Kadher
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesJuan Miguel Palero
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsJayanshu Gundaniya
 
3.2 Derivative as a Function
3.2 Derivative as a Function3.2 Derivative as a Function
3.2 Derivative as a Functiongregcross22
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsMatthew Leingang
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpointcanalculus
 
Composite functions
Composite functionsComposite functions
Composite functionsShaun Wilson
 
Practicle application of maxima and minima
Practicle application of maxima and minimaPracticle application of maxima and minima
Practicle application of maxima and minimaBritish Council
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functionsLeo Crisologo
 

Was ist angesagt? (20)

Power series
Power series Power series
Power series
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
Different types of functions
Different types of functionsDifferent types of functions
Different types of functions
 
A presentation on differencial calculus
A presentation on differencial calculusA presentation on differencial calculus
A presentation on differencial calculus
 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equation
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
 
Infinite sequence and series
Infinite sequence and seriesInfinite sequence and series
Infinite sequence and series
 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebra
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
 
First order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applicationsFirst order non-linear partial differential equation & its applications
First order non-linear partial differential equation & its applications
 
Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)
 
3.2 Derivative as a Function
3.2 Derivative as a Function3.2 Derivative as a Function
3.2 Derivative as a Function
 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit Laws
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Limits and continuity powerpoint
Limits and continuity powerpointLimits and continuity powerpoint
Limits and continuity powerpoint
 
Composite functions
Composite functionsComposite functions
Composite functions
 
Practicle application of maxima and minima
Practicle application of maxima and minimaPracticle application of maxima and minima
Practicle application of maxima and minima
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 

Andere mochten auch

Exponential growth and decay
Exponential growth and decayExponential growth and decay
Exponential growth and decayJessica Garcia
 
Exponential Growth & Decay
Exponential Growth & DecayExponential Growth & Decay
Exponential Growth & DecayBitsy Griffin
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Matthew Leingang
 
Families of curves
Families of curvesFamilies of curves
Families of curvesTarun Gehlot
 
Exponential growth and decay
Exponential growth and decayExponential growth and decay
Exponential growth and decaySimon Borgert
 
4 5 Exponential Growth And Decay
4 5 Exponential Growth And Decay4 5 Exponential Growth And Decay
4 5 Exponential Growth And Decaysilvia
 
2) exponential growth and decay
2) exponential growth and decay2) exponential growth and decay
2) exponential growth and decayestelav
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMatthew Leingang
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesMatthew Leingang
 
Lesson 6: Limits Involving Infinity
Lesson 6: Limits Involving InfinityLesson 6: Limits Involving Infinity
Lesson 6: Limits Involving InfinityMatthew Leingang
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMatthew Leingang
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMatthew Leingang
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayMatthew Leingang
 
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleLesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsMatthew Leingang
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 

Andere mochten auch (20)

Exponential growth and decay
Exponential growth and decayExponential growth and decay
Exponential growth and decay
 
Exponential Growth & Decay
Exponential Growth & DecayExponential Growth & Decay
Exponential Growth & Decay
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)
 
Families of curves
Families of curvesFamilies of curves
Families of curves
 
Exponential growth and decay
Exponential growth and decayExponential growth and decay
Exponential growth and decay
 
4 5 Exponential Growth And Decay
4 5 Exponential Growth And Decay4 5 Exponential Growth And Decay
4 5 Exponential Growth And Decay
 
2) exponential growth and decay
2) exponential growth and decay2) exponential growth and decay
2) exponential growth and decay
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient Rules
 
Lesson 6: Limits Involving Infinity
Lesson 6: Limits Involving InfinityLesson 6: Limits Involving Infinity
Lesson 6: Limits Involving Infinity
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 10: The Chain Rule
Lesson 10: The Chain RuleLesson 10: The Chain Rule
Lesson 10: The Chain Rule
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and Decay
 
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's RuleLesson 18: Indeterminate Forms and L'Hôpital's Rule
Lesson 18: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential Functions
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Lesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential FunctionsLesson 16: Derivatives of Logarithmic and Exponential Functions
Lesson 16: Derivatives of Logarithmic and Exponential Functions
 

Ähnlich wie Lesson 16: Exponential Growth and Decay

Lesson 14: Exponential Growth and Decay
Lesson 14: Exponential Growth and DecayLesson 14: Exponential Growth and Decay
Lesson 14: Exponential Growth and DecayMatthew Leingang
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Mel Anthony Pepito
 
Lesson 15: Exponential Growth and Decay (handout)
Lesson 15: Exponential Growth and Decay (handout)Lesson 15: Exponential Growth and Decay (handout)
Lesson 15: Exponential Growth and Decay (handout)Matthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Mel Anthony Pepito
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15  -exponential_growth_and_decay_021_slidesLesson15  -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesMatthew Leingang
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Mel Anthony Pepito
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesLesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesMel Anthony Pepito
 
Bath_IMI_Summer_Project
Bath_IMI_Summer_ProjectBath_IMI_Summer_Project
Bath_IMI_Summer_ProjectJosh Young
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsMatthew Leingang
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopyclayqn88
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Matthew Leingang
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Mel Anthony Pepito
 
5.8 Modeling Using Variation
5.8 Modeling Using Variation5.8 Modeling Using Variation
5.8 Modeling Using Variationsmiller5
 
Advanced Algebra 2.1&2.2
Advanced Algebra 2.1&2.2Advanced Algebra 2.1&2.2
Advanced Algebra 2.1&2.2sfulkerson
 
Lesson 16 The Spectral Theorem and Applications
Lesson 16  The Spectral Theorem and ApplicationsLesson 16  The Spectral Theorem and Applications
Lesson 16 The Spectral Theorem and ApplicationsMatthew Leingang
 

Ähnlich wie Lesson 16: Exponential Growth and Decay (20)

Lesson 14: Exponential Growth and Decay
Lesson 14: Exponential Growth and DecayLesson 14: Exponential Growth and Decay
Lesson 14: Exponential Growth and Decay
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)
 
Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)Lesson 15: Exponential Growth and Decay (slides)
Lesson 15: Exponential Growth and Decay (slides)
 
Lesson 15: Exponential Growth and Decay (handout)
Lesson 15: Exponential Growth and Decay (handout)Lesson 15: Exponential Growth and Decay (handout)
Lesson 15: Exponential Growth and Decay (handout)
 
Newton
NewtonNewton
Newton
 
Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)Lesson 15: Exponential Growth and Decay (Section 041 slides)
Lesson 15: Exponential Growth and Decay (Section 041 slides)
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15  -exponential_growth_and_decay_021_slidesLesson15  -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slides
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
 
Lesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slidesLesson15 -exponential_growth_and_decay_021_slides
Lesson15 -exponential_growth_and_decay_021_slides
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Bath_IMI_Summer_Project
Bath_IMI_Summer_ProjectBath_IMI_Summer_Project
Bath_IMI_Summer_Project
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
5.8 Modeling Using Variation
5.8 Modeling Using Variation5.8 Modeling Using Variation
5.8 Modeling Using Variation
 
Advanced Algebra 2.1&2.2
Advanced Algebra 2.1&2.2Advanced Algebra 2.1&2.2
Advanced Algebra 2.1&2.2
 
Lesson 16 The Spectral Theorem and Applications
Lesson 16  The Spectral Theorem and ApplicationsLesson 16  The Spectral Theorem and Applications
Lesson 16 The Spectral Theorem and Applications
 
Direct variation
Direct variationDirect variation
Direct variation
 
DIFFERENTIATION
DIFFERENTIATIONDIFFERENTIATION
DIFFERENTIATION
 

Mehr von Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

Mehr von Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Kürzlich hochgeladen

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 

Kürzlich hochgeladen (20)

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 

Lesson 16: Exponential Growth and Decay