SlideShare ist ein Scribd-Unternehmen logo
1 von 32
CINEMÁTICA
Repaso de derivadas e integrales de funciones polinómicas.
Velocidad media. Velocidad instantánea. Aceleración media.
Aceleración instantánea. MRU. MRUV.
LOGROS
• Al término de la sesión de aprendizaje el estudiante calcula la
velocidad y aceleración promedio así como la velocidad y
aceleración instantánea, aplicando la definición de razón de cambio
y reglas de derivación, con orden y seguridad mostrando una buena
presentación.
EL CINEMÓMETRO
Vea la infografía y responda si el cinemómetro mide
la velocidad instantánea de los vehículos
PENDIENTE DE LA TANGENTE
• Se quiere hallar la pendiente de la recta tangente a la
curva en el punto (a ; f(a))
2 4 6 8
2
4
6
x
y
a x
y = f(x)
(a;f(a))
2 4 6 8
2
4
6
x
y
a x
SE EMPIEZA POR LA SECANTE…
• Se toma un punto arbitrario (x ; f(x)) y se traza la recta
secante que pasa por esos dos puntos
(a; f(a))
(x; f(x))
f(x) f(a)
m
x a
SECANTE DE UNA RECTA A LA CURVA
2 4 6 8
2
4
6
x
y
f(x) - f(a)
x - a
a x
AHORA HAGAMOS QUE “X” APROXIME A “A”
2 4 6 8
2
4
6
x
y
f(x) - f(a)
x - a
a x
AHORA HAGAMOS QUE “X” APROXIME A “A”
2 4 6 8
2
4
6
x
y
f(x) - f(a)
x - a
a x
AHORA HAGAMOS QUE “X” APROXIME A “A”
2 4 6 8
2
4
6
x
y
a x
AHORA HAGAMOS QUE “X” APROXIME A “A”
2 4 6 8
2
4
6
x
y
a x
AHORA HAGAMOS QUE “X” APROXIME A “A”
2 4 6 8
2
4
6
x
y
ax
AHORA HAGAMOS QUE “X” APROXIME A “A”
2 4 6 8
2
4
6
x
y
ax
x a
f(x) f(a)
m lím
x a
h 0
f(a h) f(a)
m lím
h
O EN SU FORMA EQUIVALENTE, H=X-A
• La derivada de una función f en un número a, denotada
con f’(a), es:
• Si el límite existe.
h 0
f(a h) f(a)
f'(a) lím
h
INTERPRETACIÓN GEOMÉTRICA
• La derivada de una función f(x) en un número a es la
pendiente de la recta tangente a la gráfica de la función
en el punto (a; f(a)).
• La derivada también se puede interpretar como la razón
de cambio de una magnitud respecto de otra.
REGLA PARA ENCONTRAR DERIVADAS
dc
0
dx
n
n 1dx
nx
dx
d g h dg dh
dx dx dx
d g.h dg dh
h g
dx dx dx
2
dg dh
h gd g /h dx dx
dx h
n
n 1dh(x) dh
n h(x)
dx dx
HALLAR LAS DERIVADAS
2
f(x) 5x 7x 6
Dadas las funciones:
6 5 2
f(x) 4x 3x 10x
2 2
f(x) (8x 5x)(13x 4)
2
4 x
f(x)
3 x
2
f(x) (5x 4)
LA CINEMÁTICA Y EL MOVIMIENTO
El estudio de la cinemática comienza con la definición de posición.
La posición es una magnitud vectorial que determina la ubicación de un
punto material en el eje coordenado.
1x

2x

La partícula pasa de la posición x1 a la posición x2
0
eje x
MOVIMIENTO EN UNA DIMENSIÓN
El desplazamiento Δx en el movimiento rectilíneo está dado por el
cambio en la coordenada x en un intervalo de tiempo transcurrido Δt.
Desplazamiento x = x2 – x1
1x

2x

0
eje x
P1 P2
partida llegada
LA POSICIÓN COMO FUNCIÓN DEL TIEMPO
x(t) x(t1) x(t2) x(t3)
Gráfica x-t
p1 p2
Representación
gráfica de la
posición como
función del
tiempo
VELOCIDAD MEDIA
•La velocidad media es una
magnitud vectorial que se
define como la razón del
desplazamiento por unidad de
tiempo
med
x m
v
t s
0 5 107
x 2,0 m

med
2,0m m
v 0,10
2,0 s s
t 2,0 s
x (m)
VELOCIDAD INSTANTÁNEA
• La velocidad instantánea se
define como el límite de la
velocidad media.
• Que a su vez,
matemáticamente, es la
derivada de la posición
respecto del tiempo y se
representa gráficamente como
la pendiente de la tangente a
la curva posición-tiempo.
t 0
x
v lim
t
dx
v
dt
EJERCICIO
• Un Honda Civic viaja en línea recta en carretera. Su distancia x de
un letrero de alto está dada en función de t por:
• Donde a =1,50 m/s2 y b=0,0500 m/s3.
• Calcule la velocidad media del auto para el intervalo de 0 a 2,00 s;
• Calcule la velocidad instantánea en t=0 y t=2,00 s.
2 3
x(t) t t
ACELERACIÓN MEDIA
La aceleración media es la razón de cambio de la velocidad en
un intervalo de tiempo t.
v2– velocidad final
v1 – velocidad inicial
t – intervalo de tiempo
2x 1x
med x
2 1
v v
a
t t
P1
1v

P2
2v

0
ACELERACIÓN INSTANTÁNEA
• Es el límite de la aceleración media cuando el intervalo de
tiempo se acerca a cero.
x x
x
t 0
v dv
a lim
t dt
P1
1v

P2
2v

0
x 0
EJERCICIO
• La gráfica de la figura
muestra la velocidad de un
policía en motocicleta en
función del tiempo. A)
Calcule la aceleración
instantánea en: t =3 s, t = 7
s y t = 11 s. ¿Qué distancia
cubre el policía los primeros
6 s? ¿Los primeros 9 s?
¿Cuál es el desplazamiento
del policía a los 13 s?
ACELERACIÓN, VELOCIDAD Y POSICIÓN
x(t)
v(t)
a(t)
x(t)
v(t)
a(t)
d
dt
d
dt
2
2
d
dt
2
1
t
t
dt
2
1
t
t
dt
PROBLEMAS
3
0
3
1
x x t 4,40 t
6
1
x 1,40 4,40t 1,2 t
6
La aceleración de un camión está dada por ax(t)=at, donde a =1,2 m/s3. a)
Si la rapidez del camión en 1,0 s es 5,0 m/s, ¿cuál será en t=2,0 s? b) Si la
posición del camión en 1,0 s es 6,0 m, ¿cuál será en 2,0 s? Dibuje todas
las gráficas para este movimiento.
Solución
1 2 3 4
5
10
15
20
25
30
x
t
2 2
x x
1 1
v t C v 4,40 1,2 t
2 2
x(2) 10,4m
2 4 6 8 10
20
40
60
80
100
120
v
t
MOVIMIENTO RECTILÍNEO UNIFORME
• Es aquel movimiento en el
que la velocidad del móvil
en cualquier instante
permanece constante.
• Es decir, el móvil se mueve
en línea recta, en una sola
dirección y con
desplazamientos iguales en
intervalos de tiempo
iguales.
• Debido a que la velocidad
no cambia, la aceleración
en este tipo de movimiento
es nula.
x
dx
v
dt
xx v dt
0 xx x v t
EJERCICIOS
• Ejercicio. Un vehículo parte de la posición -25,0 metros. Al cabo de
70,0 s se encuentra en la posición 245,0 metros. ¿Cuál ha sido el
valor de su velocidad si se sabe que realizó un MRU?
• Solución
• x1 = -25,0 m
• x2 = 245,0 m
• t = 70,0 s
245,0 ( 25,0)m
v
70,0 s
m
v 3,86
s
MOVIMIENTO CON ACELERACIÓN CONSTANTE
• En el movimiento rectilíneo
uniformemente variado se
cumple que la aceleración
es constante.
• Integrando la aceleración
se obtiene la expresión de
la velocidad.
• Antiderivando la velocidad
del paso anterior se obtiene
la expresión de la posición
instantánea del móvil.
0v v at
0x (v at)dt
2
0 0
1
x x v t at
2
0Si t 0, v v
0Si t 0, x x
CAÍDA LIBRE
g g j
•En el caso de la caída libre
(caída de un cuerpo cerca de la
superficie terrestre), se
considera que
g = 9,8 m/s2
•Eso significa que TODOS los
cuerpos, cerca de la superficie
terrestre, caen con la misma
aceleración.
0v v at
2
0
1
x x vt at
2
0v v gt
2
0
1
y y vt gt
2
EJERCICIOS
• Se deja caer un tabique (rapidez inicial cero) desde la
azotea de un edificio. El tabique choca con el piso 2,50 s
después. Se puede despreciar la resistencia del aire, así
que el tabique está en caída libre. a) ¿Qué altura tiene el
edificio? b) ¿Qué magnitud tiene la velocidad del tabique
justo antes de tocar el suelo? c) dibuje las gráficas ay-t,
vy-t y y-t para el movimiento.
2( 9,81)
0 H 0(2,50) (2,50)
2
y 2
o oy
a
y(t) y v t t
2
H 30,7m

Weitere ähnliche Inhalte

Was ist angesagt?

Sistema críticamente amortiguado
Sistema críticamente amortiguadoSistema críticamente amortiguado
Sistema críticamente amortiguado
josemanuelaz77
 
Trabajo ecuaciones
Trabajo ecuacionesTrabajo ecuaciones
Trabajo ecuaciones
Miguel Doria
 
Capitulo4 centro de masa y teorema de pappus
Capitulo4 centro de masa y teorema de pappusCapitulo4 centro de masa y teorema de pappus
Capitulo4 centro de masa y teorema de pappus
Nicolás Carrasco Barrera
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9
Xavier Davias
 
Metodo de simpsons y de los trapecios
Metodo de simpsons y de los trapeciosMetodo de simpsons y de los trapecios
Metodo de simpsons y de los trapecios
Franklin Gualán
 

Was ist angesagt? (20)

Taller 1 ONDAS MAS
Taller 1 ONDAS MASTaller 1 ONDAS MAS
Taller 1 ONDAS MAS
 
Dinamica de cuerpo rigido
Dinamica de cuerpo rigidoDinamica de cuerpo rigido
Dinamica de cuerpo rigido
 
Problemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newtonProblemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newton
 
Semana 6 cantidad de movimiento
Semana 6 cantidad de movimientoSemana 6 cantidad de movimiento
Semana 6 cantidad de movimiento
 
Determinar el coeficiente de friccion cinetico en un plano inclinado
Determinar el coeficiente de friccion cinetico en un plano inclinadoDeterminar el coeficiente de friccion cinetico en un plano inclinado
Determinar el coeficiente de friccion cinetico en un plano inclinado
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Sistema críticamente amortiguado
Sistema críticamente amortiguadoSistema críticamente amortiguado
Sistema críticamente amortiguado
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Trabajo ecuaciones
Trabajo ecuacionesTrabajo ecuaciones
Trabajo ecuaciones
 
Capitulo4 centro de masa y teorema de pappus
Capitulo4 centro de masa y teorema de pappusCapitulo4 centro de masa y teorema de pappus
Capitulo4 centro de masa y teorema de pappus
 
Upn moo s09
Upn moo s09Upn moo s09
Upn moo s09
 
Algunos resueltos de capítulo 13 sears
Algunos resueltos de capítulo 13 searsAlgunos resueltos de capítulo 13 sears
Algunos resueltos de capítulo 13 sears
 
Diferenciación numérica Metodos Numericos
Diferenciación numérica Metodos NumericosDiferenciación numérica Metodos Numericos
Diferenciación numérica Metodos Numericos
 
Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9Metodos numericos-3-1212530740013750-9
Metodos numericos-3-1212530740013750-9
 
Transformada de una Derivada
Transformada de una DerivadaTransformada de una Derivada
Transformada de una Derivada
 
Cinematica de una particula
Cinematica de una particulaCinematica de una particula
Cinematica de una particula
 
Serie de-taylor-y-maclaurin
Serie de-taylor-y-maclaurinSerie de-taylor-y-maclaurin
Serie de-taylor-y-maclaurin
 
Oscilaciones
OscilacionesOscilaciones
Oscilaciones
 
Capítulo i
Capítulo iCapítulo i
Capítulo i
 
Metodo de simpsons y de los trapecios
Metodo de simpsons y de los trapeciosMetodo de simpsons y de los trapecios
Metodo de simpsons y de los trapecios
 

Andere mochten auch

Andere mochten auch (6)

C E09 S02 D C
C E09  S02  D CC E09  S02  D C
C E09 S02 D C
 
Ejercicio 2.3
Ejercicio 2.3Ejercicio 2.3
Ejercicio 2.3
 
Ejercicio 2.5
Ejercicio 2.5Ejercicio 2.5
Ejercicio 2.5
 
Semana 3mod
Semana 3modSemana 3mod
Semana 3mod
 
Ejercicio 2.1
Ejercicio 2.1Ejercicio 2.1
Ejercicio 2.1
 
Grupo 3 dinamica-ejercicios
Grupo 3 dinamica-ejerciciosGrupo 3 dinamica-ejercicios
Grupo 3 dinamica-ejercicios
 

Ähnlich wie Cinemática

2. SEMANA N° 02 CINEMATICA DE UNA PARTICULA (1).pptx
2. SEMANA N° 02 CINEMATICA DE UNA PARTICULA (1).pptx2. SEMANA N° 02 CINEMATICA DE UNA PARTICULA (1).pptx
2. SEMANA N° 02 CINEMATICA DE UNA PARTICULA (1).pptx
AlessanderCabrera
 
CAPITULO III : CINEMÁTICA
CAPITULO III : CINEMÁTICACAPITULO III : CINEMÁTICA
CAPITULO III : CINEMÁTICA
Carlos Levano
 
Movimiento uniformemente acelerado (1) laboratorio física 1
Movimiento uniformemente acelerado (1) laboratorio física 1Movimiento uniformemente acelerado (1) laboratorio física 1
Movimiento uniformemente acelerado (1) laboratorio física 1
edge1992
 
Interpretacioncinematica
InterpretacioncinematicaInterpretacioncinematica
Interpretacioncinematica
uneve
 
77deb2 fisica y quimica fisica y quimica bup
77deb2 fisica y quimica   fisica y quimica bup77deb2 fisica y quimica   fisica y quimica bup
77deb2 fisica y quimica fisica y quimica bup
Jose FL
 

Ähnlich wie Cinemática (20)

_PPT_01.pdf
_PPT_01.pdf_PPT_01.pdf
_PPT_01.pdf
 
La cinemática de la partícula
La cinemática de la partículaLa cinemática de la partícula
La cinemática de la partícula
 
2. SEMANA N° 02 CINEMATICA DE UNA PARTICULA (1).pptx
2. SEMANA N° 02 CINEMATICA DE UNA PARTICULA (1).pptx2. SEMANA N° 02 CINEMATICA DE UNA PARTICULA (1).pptx
2. SEMANA N° 02 CINEMATICA DE UNA PARTICULA (1).pptx
 
Capitulo iii cinematica de una particula(1)
Capitulo iii cinematica de una particula(1)Capitulo iii cinematica de una particula(1)
Capitulo iii cinematica de una particula(1)
 
CAPITULO III : CINEMÁTICA
CAPITULO III : CINEMÁTICACAPITULO III : CINEMÁTICA
CAPITULO III : CINEMÁTICA
 
CAPITULO III: CINEMATICA
CAPITULO III: CINEMATICACAPITULO III: CINEMATICA
CAPITULO III: CINEMATICA
 
05 fundamentos de cinemática
05 fundamentos de cinemática05 fundamentos de cinemática
05 fundamentos de cinemática
 
CINEMÁTICA RECTILÍNEA.ppt
CINEMÁTICA RECTILÍNEA.pptCINEMÁTICA RECTILÍNEA.ppt
CINEMÁTICA RECTILÍNEA.ppt
 
Cinemática, Física A
Cinemática, Física ACinemática, Física A
Cinemática, Física A
 
Cinemática
CinemáticaCinemática
Cinemática
 
Sesión 1 - DINAMICA .pptx
Sesión 1 - DINAMICA .pptxSesión 1 - DINAMICA .pptx
Sesión 1 - DINAMICA .pptx
 
MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO.pptx
MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO.pptxMOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO.pptx
MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO.pptx
 
2 cinematica
2  cinematica2  cinematica
2 cinematica
 
Mec lab03
Mec lab03Mec lab03
Mec lab03
 
Movimiento uniformemente acelerado (1) laboratorio física 1
Movimiento uniformemente acelerado (1) laboratorio física 1Movimiento uniformemente acelerado (1) laboratorio física 1
Movimiento uniformemente acelerado (1) laboratorio física 1
 
Interpretacioncinematica
InterpretacioncinematicaInterpretacioncinematica
Interpretacioncinematica
 
77deb2 fisica y quimica fisica y quimica bup
77deb2 fisica y quimica   fisica y quimica bup77deb2 fisica y quimica   fisica y quimica bup
77deb2 fisica y quimica fisica y quimica bup
 
Cinematica
CinematicaCinematica
Cinematica
 
CINEMATICA DE LA PARTICULA SEMANA 1-3.pdf
CINEMATICA DE LA PARTICULA SEMANA 1-3.pdfCINEMATICA DE LA PARTICULA SEMANA 1-3.pdf
CINEMATICA DE LA PARTICULA SEMANA 1-3.pdf
 
Calculo u2
Calculo u2Calculo u2
Calculo u2
 

Mehr von Yuri Milachay

Cifras singificativas
Cifras singificativasCifras singificativas
Cifras singificativas
Yuri Milachay
 

Mehr von Yuri Milachay (20)

Satélites del Perú
Satélites del PerúSatélites del Perú
Satélites del Perú
 
Biopirateria. Cómo se defiende el Perú contra este mal.
Biopirateria. Cómo se defiende el Perú contra este mal.Biopirateria. Cómo se defiende el Perú contra este mal.
Biopirateria. Cómo se defiende el Perú contra este mal.
 
Cinemática del punto material
Cinemática del punto materialCinemática del punto material
Cinemática del punto material
 
Campos Escalares y Vectoriales
Campos Escalares y VectorialesCampos Escalares y Vectoriales
Campos Escalares y Vectoriales
 
Vectores. Álgebra vectorial
Vectores. Álgebra vectorialVectores. Álgebra vectorial
Vectores. Álgebra vectorial
 
Ley de Coulomb
Ley de CoulombLey de Coulomb
Ley de Coulomb
 
Magnitudes. Sistemas de Unidades
Magnitudes. Sistemas de UnidadesMagnitudes. Sistemas de Unidades
Magnitudes. Sistemas de Unidades
 
Upn moo s06
Upn moo s06Upn moo s06
Upn moo s06
 
Upn moo s04
Upn moo s04Upn moo s04
Upn moo s04
 
Upn moo s03
Upn moo s03Upn moo s03
Upn moo s03
 
Upn moo s02
Upn moo s02Upn moo s02
Upn moo s02
 
Upn moo s01
Upn moo s01Upn moo s01
Upn moo s01
 
Upn moo s07
Upn moo s07Upn moo s07
Upn moo s07
 
Diagramas de Cuerpo Libre. Equilibrio
Diagramas de Cuerpo Libre. EquilibrioDiagramas de Cuerpo Libre. Equilibrio
Diagramas de Cuerpo Libre. Equilibrio
 
Ondas mecánicas
Ondas mecánicasOndas mecánicas
Ondas mecánicas
 
Oscilaciones forzadas y Resonancia
Oscilaciones forzadas y ResonanciaOscilaciones forzadas y Resonancia
Oscilaciones forzadas y Resonancia
 
Energía del MAS. Oscilaciones Amortiguadas
Energía del MAS. Oscilaciones AmortiguadasEnergía del MAS. Oscilaciones Amortiguadas
Energía del MAS. Oscilaciones Amortiguadas
 
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEOCURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
 
Urp fb s03
Urp fb s03Urp fb s03
Urp fb s03
 
Cifras singificativas
Cifras singificativasCifras singificativas
Cifras singificativas
 

Kürzlich hochgeladen

La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
JonathanCovena1
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
UPTAIDELTACHIRA
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 

Kürzlich hochgeladen (20)

La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJOACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 

Cinemática

  • 1. CINEMÁTICA Repaso de derivadas e integrales de funciones polinómicas. Velocidad media. Velocidad instantánea. Aceleración media. Aceleración instantánea. MRU. MRUV.
  • 2. LOGROS • Al término de la sesión de aprendizaje el estudiante calcula la velocidad y aceleración promedio así como la velocidad y aceleración instantánea, aplicando la definición de razón de cambio y reglas de derivación, con orden y seguridad mostrando una buena presentación.
  • 3. EL CINEMÓMETRO Vea la infografía y responda si el cinemómetro mide la velocidad instantánea de los vehículos
  • 4. PENDIENTE DE LA TANGENTE • Se quiere hallar la pendiente de la recta tangente a la curva en el punto (a ; f(a)) 2 4 6 8 2 4 6 x y a x y = f(x) (a;f(a))
  • 5. 2 4 6 8 2 4 6 x y a x SE EMPIEZA POR LA SECANTE… • Se toma un punto arbitrario (x ; f(x)) y se traza la recta secante que pasa por esos dos puntos (a; f(a)) (x; f(x)) f(x) f(a) m x a
  • 6. SECANTE DE UNA RECTA A LA CURVA 2 4 6 8 2 4 6 x y f(x) - f(a) x - a a x
  • 7. AHORA HAGAMOS QUE “X” APROXIME A “A” 2 4 6 8 2 4 6 x y f(x) - f(a) x - a a x
  • 8. AHORA HAGAMOS QUE “X” APROXIME A “A” 2 4 6 8 2 4 6 x y f(x) - f(a) x - a a x
  • 9. AHORA HAGAMOS QUE “X” APROXIME A “A” 2 4 6 8 2 4 6 x y a x
  • 10. AHORA HAGAMOS QUE “X” APROXIME A “A” 2 4 6 8 2 4 6 x y a x
  • 11. AHORA HAGAMOS QUE “X” APROXIME A “A” 2 4 6 8 2 4 6 x y ax
  • 12. AHORA HAGAMOS QUE “X” APROXIME A “A” 2 4 6 8 2 4 6 x y ax x a f(x) f(a) m lím x a h 0 f(a h) f(a) m lím h
  • 13. O EN SU FORMA EQUIVALENTE, H=X-A • La derivada de una función f en un número a, denotada con f’(a), es: • Si el límite existe. h 0 f(a h) f(a) f'(a) lím h
  • 14. INTERPRETACIÓN GEOMÉTRICA • La derivada de una función f(x) en un número a es la pendiente de la recta tangente a la gráfica de la función en el punto (a; f(a)). • La derivada también se puede interpretar como la razón de cambio de una magnitud respecto de otra.
  • 15. REGLA PARA ENCONTRAR DERIVADAS dc 0 dx n n 1dx nx dx d g h dg dh dx dx dx d g.h dg dh h g dx dx dx 2 dg dh h gd g /h dx dx dx h n n 1dh(x) dh n h(x) dx dx
  • 16. HALLAR LAS DERIVADAS 2 f(x) 5x 7x 6 Dadas las funciones: 6 5 2 f(x) 4x 3x 10x 2 2 f(x) (8x 5x)(13x 4) 2 4 x f(x) 3 x 2 f(x) (5x 4)
  • 17. LA CINEMÁTICA Y EL MOVIMIENTO El estudio de la cinemática comienza con la definición de posición. La posición es una magnitud vectorial que determina la ubicación de un punto material en el eje coordenado. 1x  2x  La partícula pasa de la posición x1 a la posición x2 0 eje x
  • 18. MOVIMIENTO EN UNA DIMENSIÓN El desplazamiento Δx en el movimiento rectilíneo está dado por el cambio en la coordenada x en un intervalo de tiempo transcurrido Δt. Desplazamiento x = x2 – x1 1x  2x  0 eje x P1 P2 partida llegada
  • 19. LA POSICIÓN COMO FUNCIÓN DEL TIEMPO x(t) x(t1) x(t2) x(t3) Gráfica x-t p1 p2 Representación gráfica de la posición como función del tiempo
  • 20. VELOCIDAD MEDIA •La velocidad media es una magnitud vectorial que se define como la razón del desplazamiento por unidad de tiempo med x m v t s 0 5 107 x 2,0 m  med 2,0m m v 0,10 2,0 s s t 2,0 s x (m)
  • 21. VELOCIDAD INSTANTÁNEA • La velocidad instantánea se define como el límite de la velocidad media. • Que a su vez, matemáticamente, es la derivada de la posición respecto del tiempo y se representa gráficamente como la pendiente de la tangente a la curva posición-tiempo. t 0 x v lim t dx v dt
  • 22. EJERCICIO • Un Honda Civic viaja en línea recta en carretera. Su distancia x de un letrero de alto está dada en función de t por: • Donde a =1,50 m/s2 y b=0,0500 m/s3. • Calcule la velocidad media del auto para el intervalo de 0 a 2,00 s; • Calcule la velocidad instantánea en t=0 y t=2,00 s. 2 3 x(t) t t
  • 23. ACELERACIÓN MEDIA La aceleración media es la razón de cambio de la velocidad en un intervalo de tiempo t. v2– velocidad final v1 – velocidad inicial t – intervalo de tiempo 2x 1x med x 2 1 v v a t t P1 1v  P2 2v  0
  • 24. ACELERACIÓN INSTANTÁNEA • Es el límite de la aceleración media cuando el intervalo de tiempo se acerca a cero. x x x t 0 v dv a lim t dt P1 1v  P2 2v  0 x 0
  • 25. EJERCICIO • La gráfica de la figura muestra la velocidad de un policía en motocicleta en función del tiempo. A) Calcule la aceleración instantánea en: t =3 s, t = 7 s y t = 11 s. ¿Qué distancia cubre el policía los primeros 6 s? ¿Los primeros 9 s? ¿Cuál es el desplazamiento del policía a los 13 s?
  • 26. ACELERACIÓN, VELOCIDAD Y POSICIÓN x(t) v(t) a(t) x(t) v(t) a(t) d dt d dt 2 2 d dt 2 1 t t dt 2 1 t t dt
  • 27. PROBLEMAS 3 0 3 1 x x t 4,40 t 6 1 x 1,40 4,40t 1,2 t 6 La aceleración de un camión está dada por ax(t)=at, donde a =1,2 m/s3. a) Si la rapidez del camión en 1,0 s es 5,0 m/s, ¿cuál será en t=2,0 s? b) Si la posición del camión en 1,0 s es 6,0 m, ¿cuál será en 2,0 s? Dibuje todas las gráficas para este movimiento. Solución 1 2 3 4 5 10 15 20 25 30 x t 2 2 x x 1 1 v t C v 4,40 1,2 t 2 2 x(2) 10,4m 2 4 6 8 10 20 40 60 80 100 120 v t
  • 28. MOVIMIENTO RECTILÍNEO UNIFORME • Es aquel movimiento en el que la velocidad del móvil en cualquier instante permanece constante. • Es decir, el móvil se mueve en línea recta, en una sola dirección y con desplazamientos iguales en intervalos de tiempo iguales. • Debido a que la velocidad no cambia, la aceleración en este tipo de movimiento es nula. x dx v dt xx v dt 0 xx x v t
  • 29. EJERCICIOS • Ejercicio. Un vehículo parte de la posición -25,0 metros. Al cabo de 70,0 s se encuentra en la posición 245,0 metros. ¿Cuál ha sido el valor de su velocidad si se sabe que realizó un MRU? • Solución • x1 = -25,0 m • x2 = 245,0 m • t = 70,0 s 245,0 ( 25,0)m v 70,0 s m v 3,86 s
  • 30. MOVIMIENTO CON ACELERACIÓN CONSTANTE • En el movimiento rectilíneo uniformemente variado se cumple que la aceleración es constante. • Integrando la aceleración se obtiene la expresión de la velocidad. • Antiderivando la velocidad del paso anterior se obtiene la expresión de la posición instantánea del móvil. 0v v at 0x (v at)dt 2 0 0 1 x x v t at 2 0Si t 0, v v 0Si t 0, x x
  • 31. CAÍDA LIBRE g g j •En el caso de la caída libre (caída de un cuerpo cerca de la superficie terrestre), se considera que g = 9,8 m/s2 •Eso significa que TODOS los cuerpos, cerca de la superficie terrestre, caen con la misma aceleración. 0v v at 2 0 1 x x vt at 2 0v v gt 2 0 1 y y vt gt 2
  • 32. EJERCICIOS • Se deja caer un tabique (rapidez inicial cero) desde la azotea de un edificio. El tabique choca con el piso 2,50 s después. Se puede despreciar la resistencia del aire, así que el tabique está en caída libre. a) ¿Qué altura tiene el edificio? b) ¿Qué magnitud tiene la velocidad del tabique justo antes de tocar el suelo? c) dibuje las gráficas ay-t, vy-t y y-t para el movimiento. 2( 9,81) 0 H 0(2,50) (2,50) 2 y 2 o oy a y(t) y v t t 2 H 30,7m