SlideShare ist ein Scribd-Unternehmen logo
1 von 25
Vector Calculus
Vector Calculus

      COORDINATE SYSTEMS

• RECTANGULAR or Cartesian
  • CYLINDRICAL                  Choice is based on
  • SPHERICAL                    symmetry of
                                 problem

     Examples:
    Sheets - RECTANGULAR
    Wires/Cables - CYLINDRICAL
    Spheres - SPHERICAL
Cylindrical Symmetry   Spherical Symmetry
Cartesian Coordinates Or Rectangular Coordinates


         P (x, y,                              z
         z)
        −∞ < x < ∞                                       P(x,y,z)
        −∞ < y < ∞
                                                               y
        −∞ < z < ∞
                                           x
  A vector A in Cartesian coordinates can be written as

      ( Ax , Ay , Az )   or   Ax a x + Ay a y + Az a z
where ax,ay and az are unit vectors along x, y and z-directions.
Cylindrical Coordinates
                                                            z
 P (ρ, Φ, z)
                 0≤ρ <∞
                                                        z

                                                                    P(ρ, Φ, z)
                 0 ≤ φ < 2π
                 −∞ < z < ∞                         x       Φ
                                                                ρ         y



 A vector A in Cylindrical coordinates can be written as

      ( Aρ , Aφ , Az )    or   Aρ aρ + Aφ aφ + Az a z
where aρ,aΦ and az are unit vectors along ρ, Φ and z-directions.
               x= ρ cos Φ, y=ρ sin Φ,    z=z
                                         y
           ρ = x + y , φ = tan
                     2     2        −1
                                           ,z = z
                                         x
The relationships between (ax,ay, az) and (aρ,aΦ, az)are

              a x = cos φaρ − sin φaφ
              a y = sin φaρ − cos φaφ
              az = az
       or
              aρ = cos φa x + sin φa y
              aφ = − sin φa x + cos φa y
              az = az
Then the relationships between (Ax,Ay, Az) and (Aρ, AΦ, Az)are

A = ( Ax cos φ + Ay sin φ )aρ + (− Ax sin φ + Ay cos φ )aφ + Az a z
Aρ = Ax cos φ + Ay sin φ
              Aφ = − Ax sin φ + Ay cos φ
              Az = Az
In matrix form we can write

          Aρ   cos φ       sin φ   0  Ax 
          A  = − sin φ     cos φ   0  Ay 
          φ                          
          Az   0
                             0     1  Az 
                                        
Spherical Coordinates
                                                            z
   P (r, θ, Φ)    0≤r <∞                                          P(r, θ, Φ)
                                                            θ r
                  0 ≤θ ≤π
                  0 ≤ φ < 2π                      x     Φ
                                                                          y


A vector A in Spherical coordinates can be written as
       ( Ar , Aθ , Aφ )    or    Ar ar + Aθ aθ + Aφ aφ
 where ar, aθ, and aΦ are unit vectors along r, θ, and Φ-directions.
              x=r sin θ cos Φ, y=r sin θ sin Φ,   Z=r cos θ

                                          x2 + y2           −1 y
       r = x 2 + y 2 + z 2 , θ = tan −1           , φ = tan
                                            z                  x
The relationships between (ax,ay, az) and (ar,aθ,aΦ)are
         a x = sin θ cos φar + cos θ cos φaθ − sin φaφ
         a y = sin θ sin φar + cos θ sin φaθ + cos φaφ
         a z = cos θar − sin θaθ
   or
          ar = sin θ cos φa x + sin θ sin φa y + cos θa z
          aθ = cos θ cos φa x + cos θ sin φa y − sin θa z
          aφ = − sin φa x + cos φa y
Then the relationships between (Ax,Ay, Az) and (Ar, Aθ,and AΦ)are
        A = ( Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ )ar
        + ( Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ )aθ
        + (− Ax sin φ + Ay cos φ )aφ
Ar = Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ
       Aθ = Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ
       Aφ = − Ax sin φ + Ay cos φ
In matrix form we can write

   Ar   sin θ cos φ        sin θ sin φ   cos θ   Ax 
    
   Aθ  = cos θ cos φ       cos θ sin φ   − sin θ   Ay 
                                                     
   Aφ   − sin φ               cos φ         0   Az 
                                                  
z                                                            z
                  P(r, θ, Φ)
                               Cartesian Coordinates                         P(x,y,z)
            θ r                       P(x, y, z)                                   y

                          y                                       x
x       Φ




    Spherical Coordinates                               Cylindrical Coordinates
          P(r, θ, Φ)                                z          P(ρ, Φ, z)

                                                z
                                                            P(ρ, Φ, z)



                                                        r         y
                                            x       Φ
Differential Length, Area and Volume
                    Cartesian Coordinates

Differential displacement
dl = dxa x + dya y + dza z



Differential area

  dS = dydza x = dxdza y = dxdya z
 Differential Volume
                          dV = dxdydz
Cylindrical Coordinates



                      ρ ρ

           ρ                             ρ

                                     ρ


                            ρ   ρρ




      ρ

           ρ      ρ
Differential Length, Area and Volume

                    Cylindrical Coordinates
Differential displacement
                dl = dρa ρ + ρdφaφ + dza z

Differential area

          dS = ρdφdza ρ = dρdzaφ = ρdρdφa z
 Differential Volume
                         dV = ρdρdφdz
Spherical Coordinates
Differential Length, Area and Volume

                    Spherical Coordinates
Differential displacement
               dl = drar + rdθaθ + r sin θdφaφ

Differential area

   dS = r sin θdθdφar = r sin θdrdφaθ = rdrdθaφ
           2


 Differential Volume

                      dV = r sin θdrdθdφ
                             2
Line, Surface and Volume Integrals

Line Integral

                      ∫ A.dl
                       L


Surface Integral
                   ψ = ∫ A.dS
                           S


 Volume Integral

                      ∫ p dv
                      V
                               v
Gradient, Divergence and Curl

  The Del Operator

• Gradient of a scalar function is a
  vector quantity.
                                       ∇f     Vector


• Divergence of a vector is a scalar
                                       ∇. A
  quantity.
• Curl of a vector is a vector
                                       ∇× A
  quantity.
• The Laplacian of a scalar A          ∇ A
                                        2
Del Operator

Cartesian Coordinates
                               ∂    ∂     ∂
                            ∇ = ax + a y + az
                               ∂x   ∂y    ∂z
Cylindrical Coordinates
                              ∂      1 ∂      ∂
                          ∇=    aρ +      aφ + a z
                             ∂ρ      ρ ∂φ     ∂z
Spherical Coordinates

                      ∂     1 ∂          1     ∂
                   ∇ = ar +      aθ +            aφ
                      ∂r    r ∂θ      r sin θ ∂φ
Gradient of a Scalar

The gradient of a scalar field V is a vector that represents
both the magnitude and the direction of the maximum space
rate of increase of V.
                   ∂V      ∂V      ∂V
              ∇V =    ax +    ay +    az
                   ∂x      ∂y      ∂z
                  ∂V      1 ∂V      ∂V
             ∇V =    aρ +      aφ +    az
                  ∂ρ      ρ ∂φ      ∂z
                ∂V      1 ∂V         1 ∂V
           ∇V =    ar +      aθ +            aφ
                ∂r      r ∂θ      r sin θ ∂φ
Divergence of a Vector
The divergence of A at a given point P is the outward flux per
unit volume as the volume shrinks about P.
                                                 ∫ A.dS
                         divA = ∇. A = lim       S
                                         ∆v →0       ∆v
                    ∂A ∂A ∂A
             ∇. A =   +  +
                    ∂x ∂y ∂z
                  1 ∂            1 ∂Aφ ∂Az
           ∇. A =      ( ρAρ ) +      +
                  ρ ∂ρ           ρ ∂φ   ∂z
Curl of a Vector

The curl of A is an axial vector whose magnitude is the
maximum circulation of A per unit area tends to zero and
whose direction is the normal direction of the area when the
area is oriented to make the circulation maximum.
                                   A.dl 
                                  ∫ 
            curlA = ∇ × A =  lim L       an
                             ∆s →0 ∆S 
                                        
                                         max
Where ΔS is the area bounded by the curve L and an is the unit
vector normal to the surface ΔS
 ax   ay   az               aρ      ρaφ   az 
       ∂     ∂    ∂             1∂          ∂    ∂
∇× A =                    ∇× A =                    
        ∂x   ∂y   ∂z            ρ  ∂ρ      ∂φ    ∂z 
        Ax
             Ay   Az 
                                    Aρ
                                             ρAφ   Az 
                                                       
 Cartesian Coordinates          Cylindrical Coordinates

                      ar     raθ   r sin θaφ 
                1 ∂           ∂         ∂ 
       ∇× A = 2                              
             r sin θ  ∂r     ∂θ        ∂φ 
                      Ar
                             rAθ   r sin θAφ 
                                              
                   Spherical Coordinates
Divergence or Gauss’
                     Theorem
The divergence theorem states that the total outward flux of
a vector field A through the closed surface S is the same as the
volume integral of the divergence of A.


                    ∫ A.dS = ∫ ∇. Adv
                              V
Stokes’ Theorem

Stokes’s theorem states that the circulation of a vector field A around a
closed path L is equal to the surface integral of the curl of A over the open
surface S bounded by L, provided A and × A
                                     ∇            are continuous on S



                       ∫ A.dl = ∫ (∇ × A).dS
                       L         S

Weitere ähnliche Inhalte

Was ist angesagt?

Complex analysis
Complex analysisComplex analysis
Complex analysissujathavvv
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODEkishor pokar
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence TheromVC Infotech
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace Manikanta satyala
 
Gaussian Elimination Method
Gaussian Elimination MethodGaussian Elimination Method
Gaussian Elimination MethodAndi Firdaus
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.pptRaj Parekh
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformNimithaSoman
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matricesStudent
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectorsRakib Hossain
 
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1Mishal Chauhan
 

Was ist angesagt? (20)

Vector analysis
Vector analysisVector analysis
Vector analysis
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence Therom
 
Vector analysis
Vector analysisVector analysis
Vector analysis
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
Gaussian Elimination Method
Gaussian Elimination MethodGaussian Elimination Method
Gaussian Elimination Method
 
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuriLINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Vector space
Vector spaceVector space
Vector space
 
Application of Matrices
Application of MatricesApplication of Matrices
Application of Matrices
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectors
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Functional analysis
Functional analysis Functional analysis
Functional analysis
 
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
 

Andere mochten auch

Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus garghanish
 
Application of vector integration
Application of vector integration Application of vector integration
Application of vector integration Varuna Kapuge
 
Green's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamicsGreen's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamicsCorneliu Sochichiu
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremSamiul Ehsan
 
Application of coordinate system and vectors in the real life
Application of coordinate system and vectors in the real lifeApplication of coordinate system and vectors in the real life
Application of coordinate system and vectors in the real lifeАлиакбар Рахимов
 
Applications of analytic functions and vector calculus
Applications of analytic functions and vector calculusApplications of analytic functions and vector calculus
Applications of analytic functions and vector calculusPoojith Chowdhary
 
vector application
vector applicationvector application
vector applicationrajat shukla
 
Calculus in real life
Calculus in real lifeCalculus in real life
Calculus in real lifeSamiul Ehsan
 
Cylindrical co ordinate system
Cylindrical co ordinate systemCylindrical co ordinate system
Cylindrical co ordinate systemNisarg Amin
 
18 directional derivatives and gradient
18 directional  derivatives and gradient18 directional  derivatives and gradient
18 directional derivatives and gradientmath267
 
presentation strategies
presentation strategiespresentation strategies
presentation strategiesKunj Patel
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vectorJobins George
 

Andere mochten auch (20)

Vector Calculus.
Vector Calculus.Vector Calculus.
Vector Calculus.
 
Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus Coordinate systems (and transformations) and vector calculus
Coordinate systems (and transformations) and vector calculus
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Application of vector integration
Application of vector integration Application of vector integration
Application of vector integration
 
Green's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamicsGreen's theorem in classical mechanics and electrodynamics
Green's theorem in classical mechanics and electrodynamics
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes Theorem
 
Application of coordinate system and vectors in the real life
Application of coordinate system and vectors in the real lifeApplication of coordinate system and vectors in the real life
Application of coordinate system and vectors in the real life
 
Applications of analytic functions and vector calculus
Applications of analytic functions and vector calculusApplications of analytic functions and vector calculus
Applications of analytic functions and vector calculus
 
vector application
vector applicationvector application
vector application
 
Vectors
Vectors Vectors
Vectors
 
Calculus in real life
Calculus in real lifeCalculus in real life
Calculus in real life
 
Cylindrical co ordinate system
Cylindrical co ordinate systemCylindrical co ordinate system
Cylindrical co ordinate system
 
Directional derivative and gradient
Directional derivative and gradientDirectional derivative and gradient
Directional derivative and gradient
 
18 directional derivatives and gradient
18 directional  derivatives and gradient18 directional  derivatives and gradient
18 directional derivatives and gradient
 
presentation strategies
presentation strategiespresentation strategies
presentation strategies
 
Vcla 1
Vcla 1Vcla 1
Vcla 1
 
vcla
vclavcla
vcla
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vector
 
Power point vector
Power point vectorPower point vector
Power point vector
 
Gps and planimeter
Gps and planimeterGps and planimeter
Gps and planimeter
 

Ähnlich wie Vector calculus

11 equations of planes
11 equations of planes11 equations of planes
11 equations of planesmath267
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinatemath267
 
21 lagrange multipliers
21 lagrange multipliers21 lagrange multipliers
21 lagrange multipliersmath267
 
2 polar graphs
2 polar graphs2 polar graphs
2 polar graphsmath267
 
Cylinderical Coordinate System.pptx
Cylinderical Coordinate System.pptxCylinderical Coordinate System.pptx
Cylinderical Coordinate System.pptxAliHassan830347
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinatesmath267
 
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdfMathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf9866560321sv
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxvoversbyobersby
 
3 polar equations
3 polar equations3 polar equations
3 polar equationsmath267
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphsmath267
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 
11. polar equations and graphs x
11. polar equations and graphs x11. polar equations and graphs x
11. polar equations and graphs xharbormath240
 
20 polar equations and graphs x
20 polar equations and graphs x20 polar equations and graphs x
20 polar equations and graphs xmath267
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdfMamadArip
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinatesmath267
 
19 polar equations and graphs x
19 polar equations and graphs x19 polar equations and graphs x
19 polar equations and graphs xmath260
 
Algesikum
AlgesikumAlgesikum
AlgesikumJ00MZ
 

Ähnlich wie Vector calculus (20)

11 equations of planes
11 equations of planes11 equations of planes
11 equations of planes
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinate
 
21 lagrange multipliers
21 lagrange multipliers21 lagrange multipliers
21 lagrange multipliers
 
2 polar graphs
2 polar graphs2 polar graphs
2 polar graphs
 
Cylinderical Coordinate System.pptx
Cylinderical Coordinate System.pptxCylinderical Coordinate System.pptx
Cylinderical Coordinate System.pptx
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinates
 
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdfMathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
 
3 polar equations
3 polar equations3 polar equations
3 polar equations
 
Curve sketching
Curve sketchingCurve sketching
Curve sketching
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphs
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
1523 double integrals
1523 double integrals1523 double integrals
1523 double integrals
 
11. polar equations and graphs x
11. polar equations and graphs x11. polar equations and graphs x
11. polar equations and graphs x
 
20 polar equations and graphs x
20 polar equations and graphs x20 polar equations and graphs x
20 polar equations and graphs x
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
 
27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates27 triple integrals in spherical and cylindrical coordinates
27 triple integrals in spherical and cylindrical coordinates
 
19 polar equations and graphs x
19 polar equations and graphs x19 polar equations and graphs x
19 polar equations and graphs x
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Algesikum
AlgesikumAlgesikum
Algesikum
 

Mehr von Kumar

Graphics devices
Graphics devicesGraphics devices
Graphics devicesKumar
 
Fill area algorithms
Fill area algorithmsFill area algorithms
Fill area algorithmsKumar
 
region-filling
region-fillingregion-filling
region-fillingKumar
 
Bresenham derivation
Bresenham derivationBresenham derivation
Bresenham derivationKumar
 
Bresenham circles and polygons derication
Bresenham circles and polygons dericationBresenham circles and polygons derication
Bresenham circles and polygons dericationKumar
 
Introductionto xslt
Introductionto xsltIntroductionto xslt
Introductionto xsltKumar
 
Extracting data from xml
Extracting data from xmlExtracting data from xml
Extracting data from xmlKumar
 
Xml basics
Xml basicsXml basics
Xml basicsKumar
 
XML Schema
XML SchemaXML Schema
XML SchemaKumar
 
Publishing xml
Publishing xmlPublishing xml
Publishing xmlKumar
 
Applying xml
Applying xmlApplying xml
Applying xmlKumar
 
Introduction to XML
Introduction to XMLIntroduction to XML
Introduction to XMLKumar
 
How to deploy a j2ee application
How to deploy a j2ee applicationHow to deploy a j2ee application
How to deploy a j2ee applicationKumar
 
JNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLJNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLKumar
 
EJB Fundmentals
EJB FundmentalsEJB Fundmentals
EJB FundmentalsKumar
 
JSP and struts programming
JSP and struts programmingJSP and struts programming
JSP and struts programmingKumar
 
java servlet and servlet programming
java servlet and servlet programmingjava servlet and servlet programming
java servlet and servlet programmingKumar
 
Introduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversIntroduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversKumar
 
Introduction to J2EE
Introduction to J2EEIntroduction to J2EE
Introduction to J2EEKumar
 

Mehr von Kumar (20)

Graphics devices
Graphics devicesGraphics devices
Graphics devices
 
Fill area algorithms
Fill area algorithmsFill area algorithms
Fill area algorithms
 
region-filling
region-fillingregion-filling
region-filling
 
Bresenham derivation
Bresenham derivationBresenham derivation
Bresenham derivation
 
Bresenham circles and polygons derication
Bresenham circles and polygons dericationBresenham circles and polygons derication
Bresenham circles and polygons derication
 
Introductionto xslt
Introductionto xsltIntroductionto xslt
Introductionto xslt
 
Extracting data from xml
Extracting data from xmlExtracting data from xml
Extracting data from xml
 
Xml basics
Xml basicsXml basics
Xml basics
 
XML Schema
XML SchemaXML Schema
XML Schema
 
Publishing xml
Publishing xmlPublishing xml
Publishing xml
 
DTD
DTDDTD
DTD
 
Applying xml
Applying xmlApplying xml
Applying xml
 
Introduction to XML
Introduction to XMLIntroduction to XML
Introduction to XML
 
How to deploy a j2ee application
How to deploy a j2ee applicationHow to deploy a j2ee application
How to deploy a j2ee application
 
JNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLJNDI, JMS, JPA, XML
JNDI, JMS, JPA, XML
 
EJB Fundmentals
EJB FundmentalsEJB Fundmentals
EJB Fundmentals
 
JSP and struts programming
JSP and struts programmingJSP and struts programming
JSP and struts programming
 
java servlet and servlet programming
java servlet and servlet programmingjava servlet and servlet programming
java servlet and servlet programming
 
Introduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversIntroduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC Drivers
 
Introduction to J2EE
Introduction to J2EEIntroduction to J2EE
Introduction to J2EE
 

Kürzlich hochgeladen

WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 

Kürzlich hochgeladen (20)

WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 

Vector calculus

  • 2. Vector Calculus COORDINATE SYSTEMS • RECTANGULAR or Cartesian • CYLINDRICAL Choice is based on • SPHERICAL symmetry of problem Examples: Sheets - RECTANGULAR Wires/Cables - CYLINDRICAL Spheres - SPHERICAL
  • 3. Cylindrical Symmetry Spherical Symmetry
  • 4. Cartesian Coordinates Or Rectangular Coordinates P (x, y, z z) −∞ < x < ∞ P(x,y,z) −∞ < y < ∞ y −∞ < z < ∞ x A vector A in Cartesian coordinates can be written as ( Ax , Ay , Az ) or Ax a x + Ay a y + Az a z where ax,ay and az are unit vectors along x, y and z-directions.
  • 5. Cylindrical Coordinates z P (ρ, Φ, z) 0≤ρ <∞ z P(ρ, Φ, z) 0 ≤ φ < 2π −∞ < z < ∞ x Φ ρ y A vector A in Cylindrical coordinates can be written as ( Aρ , Aφ , Az ) or Aρ aρ + Aφ aφ + Az a z where aρ,aΦ and az are unit vectors along ρ, Φ and z-directions. x= ρ cos Φ, y=ρ sin Φ, z=z y ρ = x + y , φ = tan 2 2 −1 ,z = z x
  • 6. The relationships between (ax,ay, az) and (aρ,aΦ, az)are a x = cos φaρ − sin φaφ a y = sin φaρ − cos φaφ az = az or aρ = cos φa x + sin φa y aφ = − sin φa x + cos φa y az = az Then the relationships between (Ax,Ay, Az) and (Aρ, AΦ, Az)are A = ( Ax cos φ + Ay sin φ )aρ + (− Ax sin φ + Ay cos φ )aφ + Az a z
  • 7. Aρ = Ax cos φ + Ay sin φ Aφ = − Ax sin φ + Ay cos φ Az = Az In matrix form we can write  Aρ   cos φ sin φ 0  Ax   A  = − sin φ cos φ 0  Ay   φ     Az   0    0 1  Az   
  • 8. Spherical Coordinates z P (r, θ, Φ) 0≤r <∞ P(r, θ, Φ) θ r 0 ≤θ ≤π 0 ≤ φ < 2π x Φ y A vector A in Spherical coordinates can be written as ( Ar , Aθ , Aφ ) or Ar ar + Aθ aθ + Aφ aφ where ar, aθ, and aΦ are unit vectors along r, θ, and Φ-directions. x=r sin θ cos Φ, y=r sin θ sin Φ, Z=r cos θ x2 + y2 −1 y r = x 2 + y 2 + z 2 , θ = tan −1 , φ = tan z x
  • 9. The relationships between (ax,ay, az) and (ar,aθ,aΦ)are a x = sin θ cos φar + cos θ cos φaθ − sin φaφ a y = sin θ sin φar + cos θ sin φaθ + cos φaφ a z = cos θar − sin θaθ or ar = sin θ cos φa x + sin θ sin φa y + cos θa z aθ = cos θ cos φa x + cos θ sin φa y − sin θa z aφ = − sin φa x + cos φa y Then the relationships between (Ax,Ay, Az) and (Ar, Aθ,and AΦ)are A = ( Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ )ar + ( Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ )aθ + (− Ax sin φ + Ay cos φ )aφ
  • 10. Ar = Ax sin θ cos φ + Ay sin θ sin φ + Az cos θ Aθ = Ax cos θ cos φ + Ay cos θ sin φ − Az sin θ Aφ = − Ax sin φ + Ay cos φ In matrix form we can write  Ar   sin θ cos φ sin θ sin φ cos θ   Ax      Aθ  = cos θ cos φ cos θ sin φ − sin θ   Ay     Aφ   − sin φ cos φ 0   Az      
  • 11. z z P(r, θ, Φ) Cartesian Coordinates P(x,y,z) θ r P(x, y, z) y y x x Φ Spherical Coordinates Cylindrical Coordinates P(r, θ, Φ) z P(ρ, Φ, z) z P(ρ, Φ, z) r y x Φ
  • 12. Differential Length, Area and Volume Cartesian Coordinates Differential displacement dl = dxa x + dya y + dza z Differential area dS = dydza x = dxdza y = dxdya z Differential Volume dV = dxdydz
  • 13. Cylindrical Coordinates ρ ρ ρ ρ ρ ρ ρρ ρ ρ ρ
  • 14. Differential Length, Area and Volume Cylindrical Coordinates Differential displacement dl = dρa ρ + ρdφaφ + dza z Differential area dS = ρdφdza ρ = dρdzaφ = ρdρdφa z Differential Volume dV = ρdρdφdz
  • 16. Differential Length, Area and Volume Spherical Coordinates Differential displacement dl = drar + rdθaθ + r sin θdφaφ Differential area dS = r sin θdθdφar = r sin θdrdφaθ = rdrdθaφ 2 Differential Volume dV = r sin θdrdθdφ 2
  • 17. Line, Surface and Volume Integrals Line Integral ∫ A.dl L Surface Integral ψ = ∫ A.dS S Volume Integral ∫ p dv V v
  • 18. Gradient, Divergence and Curl The Del Operator • Gradient of a scalar function is a vector quantity. ∇f Vector • Divergence of a vector is a scalar ∇. A quantity. • Curl of a vector is a vector ∇× A quantity. • The Laplacian of a scalar A ∇ A 2
  • 19. Del Operator Cartesian Coordinates ∂ ∂ ∂ ∇ = ax + a y + az ∂x ∂y ∂z Cylindrical Coordinates ∂ 1 ∂ ∂ ∇= aρ + aφ + a z ∂ρ ρ ∂φ ∂z Spherical Coordinates ∂ 1 ∂ 1 ∂ ∇ = ar + aθ + aφ ∂r r ∂θ r sin θ ∂φ
  • 20. Gradient of a Scalar The gradient of a scalar field V is a vector that represents both the magnitude and the direction of the maximum space rate of increase of V. ∂V ∂V ∂V ∇V = ax + ay + az ∂x ∂y ∂z ∂V 1 ∂V ∂V ∇V = aρ + aφ + az ∂ρ ρ ∂φ ∂z ∂V 1 ∂V 1 ∂V ∇V = ar + aθ + aφ ∂r r ∂θ r sin θ ∂φ
  • 21. Divergence of a Vector The divergence of A at a given point P is the outward flux per unit volume as the volume shrinks about P. ∫ A.dS divA = ∇. A = lim S ∆v →0 ∆v ∂A ∂A ∂A ∇. A = + + ∂x ∂y ∂z 1 ∂ 1 ∂Aφ ∂Az ∇. A = ( ρAρ ) + + ρ ∂ρ ρ ∂φ ∂z
  • 22. Curl of a Vector The curl of A is an axial vector whose magnitude is the maximum circulation of A per unit area tends to zero and whose direction is the normal direction of the area when the area is oriented to make the circulation maximum.  A.dl   ∫  curlA = ∇ × A =  lim L  an  ∆s →0 ∆S      max Where ΔS is the area bounded by the curve L and an is the unit vector normal to the surface ΔS
  • 23.  ax ay az   aρ ρaφ az  ∂ ∂ ∂ 1∂ ∂ ∂ ∇× A =   ∇× A =    ∂x ∂y ∂z  ρ  ∂ρ ∂φ ∂z   Ax  Ay Az    Aρ  ρAφ Az   Cartesian Coordinates Cylindrical Coordinates  ar raθ r sin θaφ  1 ∂ ∂ ∂  ∇× A = 2   r sin θ  ∂r ∂θ ∂φ   Ar  rAθ r sin θAφ   Spherical Coordinates
  • 24. Divergence or Gauss’ Theorem The divergence theorem states that the total outward flux of a vector field A through the closed surface S is the same as the volume integral of the divergence of A. ∫ A.dS = ∫ ∇. Adv V
  • 25. Stokes’ Theorem Stokes’s theorem states that the circulation of a vector field A around a closed path L is equal to the surface integral of the curl of A over the open surface S bounded by L, provided A and × A ∇ are continuous on S ∫ A.dl = ∫ (∇ × A).dS L S