SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006
20
▲
▲
Recebido em 3/1/06; aceito em 23/3/06
Concepções sobre ligação química
O ALUNO EM FOCO
A seção “O aluno em foco” traz resultados de pesquisas sobre idéias informais dos estudantes, sugerindo formas de
levar essas idéias em consideração no ensino-aprendizagem de conceitos científicos. Neste número a seção apresenta
dois artigos.
A
compreensão do comporta-
mento das moléculas pas-
sa pelo entendimento da liga-
ção química (Hurst, 2002; Gagliardi e
Giordan, 1986). Ocorre, porém, que
para estudar as moléculas, os estu-
dantes têm de ser capazes de realizar
a passagem nada trivial que é a da
observação para a formulação de mo-
delos. Trabalhar com modelos é uma
parte intrínseca do conhecimento quí-
mico e, sem o uso deles, a Química
fica reduzida a uma mera descrição
de propriedades macroscópicas e
suas mudanças. Teoria atômica, fór-
mulas químicas, equações químicas,
teoria cinética, teoria de ácidos e
bases, reações redox e velocidades
de reação, todos recaem em modelos
para sua explicação (Harrison e Trea-
gust, 1996).
Mesmo após uma educação for-
mal em Química, os estudantes apre-
sentam falhas na compreensão dos
conceitos químicos e não conseguem
fazer relações importantes (Bodner,
1991; Nakhleh, 1992). Além disso,
deve-se ressaltar o fato há muito
conhecido de que os alunos apre-
sentam explicações para os fenôme-
nos muitas vezes diferentes daquelas
que seriam aceitáveis cientificamente
(concepções alternativas). Quando
essas idéias dos alu-
nos interagem com
as demonstrações
do professor, com a
linguagem científica,
com leis e teorias e
com as próprias ex-
periências dos alu-
nos, os estudantes
tentam reconciliar
seus modelos mentais com os con-
ceitos aceitos cientificamente. O re-
sultado dessa reconciliação pode ser
um conceito científico distorcido a
uma concepção alternativa (Driver e
Easley, 1978; Boo, 1998; Harrison e
Treagust, 1996). O tema ligação quí-
mica, por ser abstrato, longe das
experiências dos alunos, tem, conse-
qüentemente, grande potencial para
gerar concepções equivocadas por
parte dos estudantes.
Concepções dos estudantes sobre
ligações químicas
A partir da análise da literatura so-
bre esse tema, as principais concep-
ções sobre ligações químicas apre-
sentadas pelos estudantes podem
ser agrupadas nas seguintes catego-
rias: a) confusão en-
tre ligação iônica e
covalente; b) antro-
pomorfismos; c) re-
gra do octeto; d)
geometria das molé-
culas e polaridade;
e) energia nas liga-
ções químicas e f)
representação das
ligações. A seguir apresentaremos
cada uma delas.
Confusão entre ligação iônica e
covalente
Um dos maiores problemas com
o tópico “ligação química” é a confu-
são que vários alunos fazem entre
ligações covalentes e iônicas (Nicoll,
2001; Tan e Treagust, 1999; Posada,
1999). Para alguns, os compostos iô-
nicos existem como moléculas dis-
cretas assim como os compostos
covalentes e, portanto, as ligações iô-
nicas são entendidas como unidire-
cionais e sujeitas às mesmas regras
de comportamento que as ligações
covalentes (Barker e Millar, 2000). O
retículo cristalino não é uma represen-
tação comum para a maioria dos
Carmen Fernandez e Maria Eunice Ribeiro Marcondes
As dificuldades conceituais que alunos apresentam sobre o tema “ligações químicas” são atribuídas a problemas
mais básicos, como a compreensão da natureza de átomos e moléculas. Este artigo apresenta uma revisão da
literatura a respeito das concepções dos estudantes sobre esse tema, com o intuito de alertar os professores
sobre quais são as idéias mais comuns que surgem quando do estudo desse tópico. Sabendo de antemão quais
serão as dificuldades, fica mais fácil a proposição de metodologias específicas para tentar superá-las.
concepções dos estudantes, ligação química, átomo, molécula
Trabalhar com modelos é
uma parte intrínseca do
conhecimento químico e,
sem o uso deles, a Química
fica reduzida a uma mera
descrição de propriedades
macroscópicas e suas
mudanças
QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006
21
Concepções sobre ligação química
estudantes e muitos acreditam que o
cloreto de sódio existe como uma
entidade discreta (Tan e Treagust,
1999).
Para muitos estudantes, as liga-
ções covalentes são fracas, uma vez
que compostos covalentes apresen-
tam baixos pontos de
ebulição em geral
(Barker e Millar,
2000). Além disso,
têm a idéia de que “li-
gações covalentes
são rompidas quan-
do uma substância
muda de estado”
(Tan e Treagust,
1999). Muitos estu-
dantes pensam que
“todos os átomos co-
valentemente ligados formam macro-
moléculas” e se mostram confusos
em relação à diferença entre forças
intermoleculares e intramoleculares.
A idéia de compartilhamento pa-
rece pouco elaborada entre os estu-
dantes, pois alguns pensam que “os
pares de elétrons são compartilhados
igualmente nas ligações covalentes”
(Birk e Kurtz, 1999), enquanto outros
manifestam a idéia de que na ligação
covalente há o “compartilhamento de
um único elétron entre os dois áto-
mos” (Boo, 1998). Provavelmente, o
conceito de eletronegatividade não
está claro e, portanto, parece que não
há uma regra governando o processo
da ligação.
A ligação covalente tem um me-
lhor status para vários desses alunos
do que a ligação iônica ou a metálica,
a julgar pela frase: “ligações iônicas
e metálicas não são ligações de ver-
dade, no sentido de ligações cova-
lentes” (Boo, 1998). Para muitos alu-
nos, parece que o conceito de ligação
não está convenientemente diferen-
ciado. Idéias como “tanto metais
como compostos iônicos são mole-
culares por natureza”, ou “as ligações
covalentes envolvem uma transferên-
cia total de elétrons”, expressas por
estudantes (Coll e Treagust, 2001a),
corroboram essa hipótese.
A palavra “compartilhar” tem signi-
ficado muito específico em Química.
Um par de elétrons compartilhado
significa que o par de elétrons existe
em algum lugar entre os átomos na
molécula. Já na linguagem do dia-a-
dia, compartilhar significa possuir ou
usar conjuntamente. Tais palavras pa-
recem aumentar as concepções alter-
nativas nos estudantes, uma vez que
eles tentam construir significados de
um novo conceito
baseados em con-
ceitos já existentes
(Peterson et al.,
1989).
Os modelos de li-
gação iônica que os
estudantes apresen-
tam parecem estar
fundamentados em
três suposições. A
primeira delas é a
conjectura da valên-
cia, segundo a qual a configuração
eletrônica é que determinaria o núme-
ro de ligações iônicas formadas. Por
exemplo, o átomo de sódio pode doar
um elétron, logo ele só é capaz de
fazer uma ligação iônica com um áto-
mo de cloro. A segunda é a conjec-
tura da história, ou seja, as ligações
seriam formadas apenas entre os áto-
mos que doaram e aceitaram elé-
trons. Por exemplo, no cloreto de
sódio, o íon cloreto é ligado àquele
sódio específico que
doou o elétron para
aquele ânion, e vice-
versa. A terceira é a
de “apenas forças”,
em que os íons inte-
ragem com os con-
tra-íons ao seu redor,
mas para aqueles
não ionicamente li-
gados, essas intera-
ções são apenas fo-
rças. Por exemplo,
no cloreto de sódio,
o íon cloreto estaria ligado a apenas
um íon sódio e seria atraído pelos
demais cinco íons de sódio, mas
apenas por forças, não por ligações
(Taber, 1994).
Antropomorfismos
Muitas explicações dos alunos pa-
ra justificar a ligação revelam aspec-
tos antropomórficos como, por exem-
plo, “...o carbono quer fazer quatro
ligações” (Barker e Millar, 2000); “áto-
mos necessitam de camadas preen-
chidas”; “a razão para os elétrons se-
rem transferidos é a obtenção de uma
camada completa” (Taber, 1998).
Regra do octeto
Os estudantes usam a regra do
octeto como base para explicar as
reações e as ligações químicas. As
idéias mais comuns são: “uma liga-
ção covalente mantém os átomos
unidos porque a ligação está com-
partilhando elétrons”; “ligações iôni-
cas são a transferência de elétrons”,
ao invés de as atrações dos íons que
resultam da transferência de elétrons
(Taber, 1998). Parece que a razão pa-
ra os elétrons serem transferidos é a
obtenção de uma camada completa.
Para muito alunos, “o sódio reage
com o cloreto, pois, a regra do octeto
faz com que as reações químicas
ocorram” (Bodner, 1991). Mortimer et
al. (1994) evidenciaram que alunos
que já haviam concluído o Ensino
Médio tiveram dificuldade em reco-
nhecer alguns resultados empíricos
como conflitantes com a explicação
da estabilidade do cloreto de sódio
baseada na regra do octeto. Parece
haver uma tendência generalizada no
ensino de Química de atribuir a esta-
bilidade das subs-
tâncias à formação
do octeto eletrônico
e que esta “crença”
não é abalada facil-
mente nos alunos
por evidências expe-
rimentais. Os autores
alertam para o pro-
blema da ênfase no
conhecimento ritua-
lístico em detrimento
do conhecimento de
princípios químicos.
Geometria das moléculas e
polaridade
A maioria das concepções dos
estudantes com relação à geometria
e à polaridade das moléculas advém
de dificuldades de visualização tridi-
mensional e da falta de pré-requisitos
para esse conhecimento. Os alunos
confundem o arranjo dos pares de
elétrons e geometria molecular. As-
sim, por exemplo, os alunos afirmam
A palavra “compartilhar”
tem significado muito
específico em Química. Um
par de elétrons
compartilhado significa que
o par de elétrons existe em
algum lugar entre os
átomos na molécula. Já na
linguagem do dia-a-dia,
compartilhar significa
possuir ou usar
conjuntamente
A maioria das concepções
dos estudantes com
relação à geometria e à
polaridade das moléculas
advém de dificuldades de
visualização tridimensional
e da falta de pré-requisitos
para esse conhecimento.
Eles confundem o arranjo
dos pares de elétrons e
geometria molecular
QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006
22
Concepções sobre ligação química
que a geometria das moléculas é
devida apenas “a uma repulsão igua-
litária entre as ligações e a polaridade
da ligação determina a geometria da
molécula” (Peterson et al., 1989; Pe-
terson e Treagust, 1989) e que a “geo-
metria da molécula é devida somente
à repulsão entre os
pares de elétrons li-
gantes” (Birk e Kurtz,
1999).
Em termos da
polaridade da liga-
ção, é idéia corrente
que “ocorre o com-
partilhamento iguali-
tário dos elétrons em
todas as ligações
covalentes”, que “a
polaridade de uma ligação é depen-
dente do número de elétrons de va-
lência em cada átomo envolvido na
ligação” e que “a carga iônica deter-
mina a polaridade da ligação” (Pe-
terson et al., 1989; Peterson e Trea-
gust, 1989). Alguns estudantes expli-
cam o conceito de polaridade sem
mencionar a idéia de eletronegati-
vidade (Nicoll, 2001).
Aparentemente o conceito de po-
laridade é muito mais difícil de ensi-
nar do que o de geometria molecu-
lar. Algumas concepções sobre
polaridade da molécula são devidas
a um reducionismo: os alunos ou
consideram a polaridade da ligação
como variável, mas não consideram
a influência da geometria molecular,
ou o contrário (Furió e Calatayud,
1996).
Energia nas ligações químicas
Em relação à energia envolvida
nas ligações, na mente de alguns es-
tudantes “a ligação química é inter-
pretada como se fosse uma mola e
que, liberaria energia quando rom-
pida” (Hapkiewicz, 1991). A quebra
da ligação seria análoga àquele
brinquedo de criança em que um pa-
lhaço fica preso dentro de uma caixa
e quando esta é aberta leva-se um
susto. Os alunos têm a idéia de que
“a ligação segura os átomos juntos
e libera energia quando é rompida”
(Hapkiewicz, 1991).
Muitos alunos enxergam a “liga-
ção química como uma entidade
física”. Essa noção parece estar co-
nectada à noção do dia-a-dia de que
para construir qualquer estrutura é
necessária energia e que, o contrá-
rio, a destruição libera energia. Logo,
para os estudantes, a formação da
ligação requer energia e sua quebra
libera energia. Essa
concepção pode re-
sultar de uma extra-
polação sobre os
eventos do nível
observável para o ní-
vel microscópico.
Somam-se a essa
concepção idéias
advindas da Biolo-
gia, em que os ali-
mentos armazenam
energia química, e isso leva à idéia
errônea de que o oxigênio não possui
energia química e que a energia viria
somente do alimento (Boo, 1998). Os
estudantes acham também que “to-
das as reações são mais favoráveis
em altas temperaturas”; “todas as
reações exotérmicas são espontâ-
neas”; “a energia é estocada nas li-
gações (da comida, do ATP) e é libe-
rada nos processos químicos”
(Teichert e Stacy, 2002). Também, “a
quebra das ligações H-H e O-O libera
energia” (Mulford e
Robinson, 2002) e
“somente as liga-
ções iônicas fracas
podem ser rompidas
em processos de
dissolução”. Para vá-
rios alunos “uma rea-
ção ocorre pois um
dos reagentes é
mais reativo que o
outro” e ele seria a
mola propulsora pa-
ra a reação ocorrer (Boo, 1998). E “o
calor causa expansão das moléculas
e causa um rompimento das molé-
culas de água” (Griffiths e Preston,
1992).
Representação das ligações
Num artigo clássico, Ben-Zvi et al.
(1987) descrevem problemas com as
idéias dos estudantes ao visualizar
uma reação química. Aproximada-
mente 25% dos alunos investigados
possuíam uma idéia aditiva ao invés
de interativa das substâncias. Por
exemplo, eles representavam o com-
posto Cl2
O como sendo constituído
por dois fragmentos: um de Cl2
e
outro de O. As representações de
modelos apresentadas em livros tex-
tos podem levar a interpretações
errôneas por parte dos estudantes.
Por exemplo, a formação do NaCl(s)
é muitas vezes representada nos
livros por:
Essa representação pode levar o
aluno a pensar que um único átomo
de sódio reage com um único átomo
de cloro formando um único par iôni-
co de NaCl, não levando em consi-
deração a rede cristalina formada
(Ben Zvi et al., 1987).
Muitos alunos preferem modelos
de átomos e moléculas que repre-
sentam essas entidades como estru-
turas discretas e concretas e, tam-
bém, vários parecem confundir
átomos com células. Vários estu-
dantes concluíram que “átomos po-
dem se reproduzir e crescer e que o
núcleo atômico é capaz de se dividir”.
“As camadas eletrônicas são visua-
lizadas como conchas que encapsu-
lam e protegem os átomos”, enquan-
to que as “nuvens
eletrônicas forma-
riam estruturas nas
quais os elétrons es-
tariam embebidos”
(Harrison e Treagust,
1996).
Vários alunos,
tanto das séries ini-
ciais como aqueles
que estavam no final
do curso, acreditam
que “os elétrons nu-
ma ligação não se movem”, que “os
elétrons envolvidos numa ligação pi
se movimentam realizando uma
figura de um oito ao redor do núcleo”,
vários “fazem confusão entre cama-
das e orbitais” e, também, têm “fa-
lhas nas representações microscó-
picas de átomos e moléculas” (Nicoll,
2001).
Alguns alunos apresentam idéias
alternativas para representar a molé-
cula de água: “a molécula de água
se assemelha a uma figura fechada
Em relação à energia
envolvida nas ligações, na
mente de alguns estudantes
“a ligação química é
interpretada como se fosse
uma mola e que, liberaria
energia quando rompida” .
Os alunos têm a idéia de
que “a ligação segura os
átomos juntos e libera
energia quando é rompida”
Alunos acreditam que “os
elétrons numa ligação não
se movem”, que “os
elétrons envolvidos numa
ligação pi se movimentam
realizando uma figura de
um oito ao redor do
núcleo” e vários “fazem
confusão entre camadas e
orbitais”
QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006
23
Concepções sobre ligação química
com nenhuma forma definida”, “é
esférica com partículas espalhadas
através dela” e, também, “as molé-
culas de água são compostas de
duas ou mais esferas sólidas”. Adicio-
nalmente, um grande número de
alunos imagina que
“as moléculas de
água no gelo se to-
cam umas às outras
continuamente não
deixando nenhum
espaço entre elas”,
ou que “no gelo as
moléculas de água
não são ligadas em
nenhum padrão”
(Griffiths e Preston,
1992).
Um outro problema que deve ser
considerado é que, tanto nos textos
como em sala de aula, os átomos e
as moléculas são representados de
muitas maneiras: como círculos, bo-
las, núcleo e camadas, bolas sepa-
radas ou juntas etc. Os autores des-
ses textos e os professores provavel-
mente supõem que os alunos com-
preendem facilmente o que isso signi-
fica (diferentes modelos com diferen-
tes propósitos). Muitas vezes o que
se quer destacar são as ligações,
outras a estrutura dos cristais, outras
que os átomos são os mesmos de-
pois das reações. Porém, os modelos
diferentes, usados sem explicação,
podem confundir os alunos cuja
tendência básica é tratar os átomos
e as moléculas como se fossem subs-
tâncias (Blanco e Prieto, 1996). Se-
gundo Blanco e Prieto (1996), em
Química é necessário decidir em que
momento se tem de introduzir uma
determinada idéia ou nível de expli-
cação e os professores têm de ter
certeza que as experiências prévias
dos alunos ajudam que eles vejam as
vantagens desse ou daquele modelo
de partículas. Deve-se considerar que
o abandono da idéia de continuidade
é particularmente difícil, pois supõe
renunciar em grande parte às idéias
advindas dos sentidos, em direção a
um pensamento mais abstrato, mo-
delizado e coerente. Para alguns alu-
nos o mundo microscópico tem as
mesmas características que o ma-
croscópico, só que apresenta tama-
nho reduzido (Posada, 1993).
Alguns autores colocam em
questão a utilidade de se ensinar mo-
delos mentais sofisticados para o
conceito de ligação
química, uma vez
que, apesar da com-
petência dos estu-
dantes de nível supe-
rior em utilizar tais
modelos, todos eles
preferiram os mode-
los mais simples e
revelaram os mode-
los mais complexos
somente em contex-
tos de testes e exames (Coll e Trea-
gust, 2001b).
Conclusões
Alguns instrumentos pedagógi-
cos permitem identificar as concep-
ções dos estudantes em diferentes
temas. Sabendo da possibilidade
dessas concepções, é mais fácil para
o professor em sala de aula procurar
evitar o seu aparecimento, utilizando
metodologias diferenciadas e dedi-
cando mais tempo ao tópico proble-
ma. As principais
concepções dos es-
tudantes sobre liga-
ções químicas apre-
sentadas são:
• confusão entre
a ligação covalente
e iônica;
• compostos iô-
nicos vistos como
entidades discretas,
sem retículo crista-
lino;
• ligações cova-
lentes são fracas;
• elétrons são compartilhados
igualmente na ligação covalente;
• confusão entre ligação covalen-
te e forças inter e intramoleculares;
• as ligações seriam formadas
apenas para satisfazer a regra do
octeto;
• ligações covalentes são rompi-
das durante uma mudança de estado
físico;
• os elétrons são igualmente
compartilhados em todas as ligações
covalentes;
• a ligação química pensada co-
mo entidade física;
• a formação da ligação requer
energia e sua quebra libera energia;
• as reações ocorrem pois um
dos reagentes é mais reativo que o
outro;
• reações exotérmicas são es-
pontâneas;
• as moléculas se expandem com
o calor;
• idéias aditivas dos compostos
químicos;
• confusão entre átomos e célu-
las;
• não há movimento dos elétrons
numa ligação;
• elétrons de uma ligação pi se
movimentam realizando uma figura
de um oito ao redor do núcleo;
• a matéria é contínua;
• propriedades macroscópicas
atribuídas ao mundo submicros-
cópico.
Tomando ciência desses pontos
frágeis, o professor pode ficar atento
e diagnosticar os conceitos desen-
volvidos pelos seus alunos sobre
ligação química e
planejar suas ações
pedagógicas de for-
ma a tentar superá-
los. Assim, alunos
poderão ter mais
chances de compre-
ender alguns dos
modelos que procu-
ram explicar a natu-
reza e as proprie-
dades da matéria, e
outros conhecimen-
tos químicos pode-
rão ser ancorados
nessas idéias, tornando-se signifi-
cativos para eles.
Carmen Fernandez (carmen@iq.usp.br), licenciada
e bacharel em Química, mestre em Química Orgâ-
nica e doutora em Ciências (Química Orgânica)
pela USP, é docente do Instituto de Química da
USP. Maria Eunice Ribeiro Marcondes
(mermarco@iq.usp.br), bacharel e licenciada em
Química, doutora em Ciências (Química Orgânica)
pela USP, é docente do Instituto de Química da
USP.
Um outro problema que
deve ser considerado é
que, tanto nos textos como
em sala de aula, os átomos
e as moléculas são
representados de muitas
maneiras. Os autores e os
professores provavelmente
supõem que os alunos
compreendem facilmente o
que isso significa
(diferentes modelos com
diferentes propósitos)
Tomando ciência das
principais concepções dos
alunos sobre ligações
químicas, o professor pode
ficar atento e diagnosticar
os conceitos desenvolvidos
pelos seus alunos sobre
ligação química e planejar
suas ações pedagógicas de
forma a tentar superá-los
QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006
24
Concepções sobre ligação química
Abstract: Students’ Conceptions on Chemical Bond – The conceptual difficulties that students present on the theme “chemical bonds” are attributed to more basic problems, such as the
understanding of the nature of atoms and molecules. This paper presents a review of the literature about students’ conceptions on this theme, aiming at warning teachers about what are the most
common ideas that emerge when studying this topic. Knowing before hand what will be the difficulties, the proposition of specific methodologies to try to overcome them becomes easier.
Keywords: students’ conceptions, chemical bond, atom, molecule
Referências bibliográficas
BARKER, V. e MILLAR, R. Students’s
reasoning about basic chemical thermo-
dynamics and chemical bonding: What
changes occur during a context-based
post-16 chemistry course? International
Journal of Science Education v. 22, p.
1171-1200, 2000.
BEN-ZVI, R.; EYLON, B.S. e SILBERS-
TEIN, J. Students’ visualisation of a che-
mical reaction. Education in Chemistry,
v. 24, n.4, p. 117-120, 1987.
BIRK, J.P. e KURTZ, M.J. Effect of ex-
perience on retention and elimination of
misconceptions about molecular struc-
ture and bonding. Journal of Chemical
Education, v. 76, p. 124-128, 1999.
BLANCO, A. e PRIETO, T. Algunas
cuestiones sobre la comprensión de la
Química desde la perspectiva de las
“ideas de los alumnos”. Investigación en
la Escuela, n. 28, p. 69-78, 1996.
BODNER, G.M. I have found you an
argument. Journal of Chemical Educa-
tion, v. 68, p. 385-388, 1991.
BOO, H.K. Students’ understandings
of chemical bonds and the energetics
of chemical reactions. Journal of Re-
search in Science Teaching, v. 35, p. 569-
581, 1998.
COLL, R.K. e TREAGUST, D.F. Investi-
gation of secondary school, undergradu-
ate, and graduate learners’ mental mod-
els of ionic bonding. Journal of Research
in Science Teaching, v. 40, p. 464-486,
2003.
COLL, R.K. e TREAGUST, D.F. Learn-
ers’ use of analogy and alternative con-
ceptions for chemical bonding: A cross-
age study. Australian Science Teachers
Journal, v. 48, p. 24-32, 2001a.
COLL, R.K. e TREAGUST, D.F. Learn-
ers’ mental models of chemical bond-
ing. Research in Science Education, v.
31, p. 357-382, 2001b.
DRIVER, R. e EASLEY, J. Pupils and
paradigms: A review of literature related
to concept development in adolescent
science students. Studies in Science
Education, v. 5, p.61-84, 1978.
FURIÓ, C. e CALATAYUD, M.L. Diffi-
culties with the geometry and polarity of
molecules: Beyond misconceptions.
Journal of Chemical Education, v. 73, p.
36-41, 1996.
GAGLIARDI, P.J. e GIORDAN, A. La
Historia de las Ciencias: Una herra-
mienta para la enseñanza. Enseñanza de
las Ciencias, v. 4, p. 253-258, 1986.
GRIFFITHS, A.K. e PRESTON, K.R.
Grade-12 students’ misconceptions relat-
ing to fundamental characteristics of at-
oms and molecules. Journal of Research
in Science Teaching, v. 29, p. 611-628,
1992.
HAPKIEWICZ, A. Clarifying chemical
bonding: Overcoming our misconcep-
tions. The Science Teacher, v. 58, n. 3, p.
24-27, 1991.
HARRISON, A.G. e TREAGUST, D.F.
Learning about atoms, molecules, and
chemical bonds: A case study of multiple-
model use in grade 11 chemistry. Science
Education, v. 84, p. 352-381, 2000.
HARRISON, A.G. e TREAGUST, D.F. Se-
condary students’ mental models of atoms
and molecules: Implications for teaching
chemistry. Science Education, v. 80, p.
509-534, 1996.
HURST, M.O. How we teach molecular
structure to freshmen. Journal of Chemical
Education, v. 79, p. 763-764, 2002.
MORTIMER, E.F.; MOL, G. e DUARTE,
L.P. Regra do octeto e teoria da ligação
química no Ensino Médio: Dogma ou ciên-
cia? Química Nova, v. 17, p. 243-252,
1994.
MULFORD, D.R. e ROBINSON, W.R. An
inventory for alternate conceptions among
first-semester general chemistry students
Journal of Chemical Education, v. 79, p.
739-744, 2002.
NAKHLEH, M.B. Why some students
don’t learn chemistry. Journal of Chemi-
cal Education, v. 69, p. 191-196, 1992.
NICOLL, G. A report of undergraduates’
bonding misconceptions. International
Journal of Science Education, v. 23, p. 707-
730, 2001.
PETERSON, R.F. e TREAGUST, D.F.
Grade-12 students’ misconceptions of co-
valent bonding and structure. Journal of
Chemical Education, v. 66, p. 459-460,
1989.
PETERSON, R.F.; TREAGUST, D.F. e
GARNETT, P. Development and applica-
tion of a diagnostic instrument to evalu-
ate grade-11 and -12 students’ concepts
of covalent bonding and structure follow-
ing a course of instruction. Journal of Re-
search in Science Teaching, v. 26, p. 301-
314, 1989.
POSADA, J.M. Concepciones de los
alumnos de 15-18 años sobre la estruc-
tura interna de la materia en el estado
sólido. Enseñanza de las Ciencias v. 11,
p. 12-19, 1993.
POSADA, J.M. Concepciones de los
alumnos sobre el enlace químico antes,
durante y después de la enseñanza for-
mal. Problemas de aprendizaje. Ense-
ñanza de las Ciencias, v. 17, p. 227-245,
1999.
TABER, K.S. Misunderstanding the
ionic bond. Education in Chemistry, v. 31,
n. 4, p. 100-102, 1994.
TABER, K.S. An alternative conceptual
framework from chemistry education. In-
ternational Journal of Science Education,
v. 20, p. 597-608, 1998.
TAN, K.C.D. e TREAGUST, D.F. Evalu-
ating students’ understanding of chemi-
cal bonding. School Science Review, v.
81, n. 294, p. 75-83, 1999.
TEICHERT, M.A. e STACY, A.M. Pro-
moting understanding of chemical bond-
ing and spontaneity through student ex-
planation and integration of ideas. Jour-
nal of Research in Science Teaching, v.
39, p. 464-496, 2002.
Para saber mais
DUARTE, H.A. Ligações químicas:
Iônica, covalente e metálica. Em: AMA-
RAL, L.O.F e ALMEIDA, W.B. de (Orgs.).
Cadernos Temáticos de Química Nova
na Escola, n. 4, p. 14-23, 2001.
BADILLO, R.G. e MIRANDA, R.P. El
problema del cambio en las concepcio-
nes de estudiantes de formación avan-
zada. Enseñanza de las Ciencias, v. 20,
p. 401-414, 2002.
LOGAN, S.R. The role of Lewis struc-
tures in teaching covalent bonding. Jour-
nal of Chemical Education, v. 78, p. 1457-
1458, 2001.
NIAZ, M. A rational reconstruction of
the origin of the covalent bond and its
implications for general chemistry text-
books. International Journal of Science
Education, v. 23, p. 623-641, 2001.
OGILVIE, J.F. The nature of the chemi-
cal bond - 1990: There are no such
things as orbitals. Journal of Chemical
Education, v. 67, p. 280-289, 1990.
OLIVA MARTINÉZ, J.M. Ideas para la
discusión sobre las concepciones de
cambio conceptual. Enseñanza de las
Ciencias, v. 17, p. 115-117, 1999.
POZO, J.I. Más allá del cambio con-
ceptual: El aprendizage de la ciencia co-
mo cambio representacional. Enseñanza
de las Ciencias, v. 17, p. 513-520, 1999.
TOMA, H.E. Ligação química: Abor-
dagem clássica ou quântica? Química
Nova na Escola, n. 6, p. 8-12, 1997.

Weitere ähnliche Inhalte

Ähnlich wie Af1

CNT - 1ª série - Apostila 3º bimestre Professor.pdf
CNT - 1ª série - Apostila 3º bimestre Professor.pdfCNT - 1ª série - Apostila 3º bimestre Professor.pdf
CNT - 1ª série - Apostila 3º bimestre Professor.pdfGernciadeProduodeMat
 
Aula materiais de construção aula 1 (1)
Aula materiais de construção aula 1 (1)Aula materiais de construção aula 1 (1)
Aula materiais de construção aula 1 (1)Larissa Freire
 
Bibliog estereoquimica-e-reatividade-de-compostos-organicos
Bibliog  estereoquimica-e-reatividade-de-compostos-organicosBibliog  estereoquimica-e-reatividade-de-compostos-organicos
Bibliog estereoquimica-e-reatividade-de-compostos-organicosPablo Rodrigues
 
Estrutura Atômica e Ligações Químicas
Estrutura Atômica e Ligações QuímicasEstrutura Atômica e Ligações Químicas
Estrutura Atômica e Ligações QuímicasMihCristina1
 
ligacoes quimicas
ligacoes quimicasligacoes quimicas
ligacoes quimicasnanasimao
 
Apres geometriamolecular
Apres geometriamolecularApres geometriamolecular
Apres geometriamolecularjds200
 
Planejamento do 1º semestre de Ciências 2024 9º ano.pdf
Planejamento do 1º semestre  de Ciências 2024 9º ano.pdfPlanejamento do 1º semestre  de Ciências 2024 9º ano.pdf
Planejamento do 1º semestre de Ciências 2024 9º ano.pdfJanielleCristina1
 
2021_EnsMedio_Química_1ªSérie_Slides_Aula 34.pptx
2021_EnsMedio_Química_1ªSérie_Slides_Aula 34.pptx2021_EnsMedio_Química_1ªSérie_Slides_Aula 34.pptx
2021_EnsMedio_Química_1ªSérie_Slides_Aula 34.pptxFranciscoFlorencio6
 
Introducao e conteudo_ceramicos_v02
Introducao e conteudo_ceramicos_v02Introducao e conteudo_ceramicos_v02
Introducao e conteudo_ceramicos_v02Priscila Praxedes
 
Estereoquimica(2011).pdf
Estereoquimica(2011).pdfEstereoquimica(2011).pdf
Estereoquimica(2011).pdflukevk
 
Aula i fbaiano_ligações químicas
Aula i fbaiano_ligações químicasAula i fbaiano_ligações químicas
Aula i fbaiano_ligações químicasSaulo Luis Capim
 
Tecnologia dos materiais apostila completa
Tecnologia dos materiais apostila completaTecnologia dos materiais apostila completa
Tecnologia dos materiais apostila completaGuilhermeFerreiraCru1
 
Ligações covalentes trabalho de quimica
Ligações covalentes trabalho de quimicaLigações covalentes trabalho de quimica
Ligações covalentes trabalho de quimicaslidesescolares
 
Questionário 1 materiais
Questionário 1 materiaisQuestionário 1 materiais
Questionário 1 materiaisJoilson Pinho
 
Ligação covalente e geometria molecular
Ligação covalente e geometria molecularLigação covalente e geometria molecular
Ligação covalente e geometria molecularAntónio Gonçalves
 

Ähnlich wie Af1 (20)

CNT - 1ª série - Apostila 3º bimestre Professor.pdf
CNT - 1ª série - Apostila 3º bimestre Professor.pdfCNT - 1ª série - Apostila 3º bimestre Professor.pdf
CNT - 1ª série - Apostila 3º bimestre Professor.pdf
 
Slide projeto
Slide projetoSlide projeto
Slide projeto
 
Aula materiais de construção aula 1 (1)
Aula materiais de construção aula 1 (1)Aula materiais de construção aula 1 (1)
Aula materiais de construção aula 1 (1)
 
Bibliog estereoquimica-e-reatividade-de-compostos-organicos
Bibliog  estereoquimica-e-reatividade-de-compostos-organicosBibliog  estereoquimica-e-reatividade-de-compostos-organicos
Bibliog estereoquimica-e-reatividade-de-compostos-organicos
 
Cbc novo
 Cbc novo Cbc novo
Cbc novo
 
Estrutura Atômica e Ligações Químicas
Estrutura Atômica e Ligações QuímicasEstrutura Atômica e Ligações Químicas
Estrutura Atômica e Ligações Químicas
 
ligacoes quimicas
ligacoes quimicasligacoes quimicas
ligacoes quimicas
 
Apres geometriamolecular
Apres geometriamolecularApres geometriamolecular
Apres geometriamolecular
 
Captulo iii ligaes qumicas
Captulo iii ligaes qumicasCaptulo iii ligaes qumicas
Captulo iii ligaes qumicas
 
Planejamento do 1º semestre de Ciências 2024 9º ano.pdf
Planejamento do 1º semestre  de Ciências 2024 9º ano.pdfPlanejamento do 1º semestre  de Ciências 2024 9º ano.pdf
Planejamento do 1º semestre de Ciências 2024 9º ano.pdf
 
2021_EnsMedio_Química_1ªSérie_Slides_Aula 34.pptx
2021_EnsMedio_Química_1ªSérie_Slides_Aula 34.pptx2021_EnsMedio_Química_1ªSérie_Slides_Aula 34.pptx
2021_EnsMedio_Química_1ªSérie_Slides_Aula 34.pptx
 
Introducao e conteudo_ceramicos_v02
Introducao e conteudo_ceramicos_v02Introducao e conteudo_ceramicos_v02
Introducao e conteudo_ceramicos_v02
 
Sandrogreco Carga Nuclear Efetiva
Sandrogreco Carga Nuclear EfetivaSandrogreco Carga Nuclear Efetiva
Sandrogreco Carga Nuclear Efetiva
 
Estereoquimica(2011).pdf
Estereoquimica(2011).pdfEstereoquimica(2011).pdf
Estereoquimica(2011).pdf
 
Aula i fbaiano_ligações químicas
Aula i fbaiano_ligações químicasAula i fbaiano_ligações químicas
Aula i fbaiano_ligações químicas
 
Tecnologia dos materiais apostila completa
Tecnologia dos materiais apostila completaTecnologia dos materiais apostila completa
Tecnologia dos materiais apostila completa
 
Ligações covalentes trabalho de quimica
Ligações covalentes trabalho de quimicaLigações covalentes trabalho de quimica
Ligações covalentes trabalho de quimica
 
Questionário 1 materiais
Questionário 1 materiaisQuestionário 1 materiais
Questionário 1 materiais
 
Processos endo exo
Processos endo exoProcessos endo exo
Processos endo exo
 
Ligação covalente e geometria molecular
Ligação covalente e geometria molecularLigação covalente e geometria molecular
Ligação covalente e geometria molecular
 

Af1

  • 1. QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006 20 ▲ ▲ Recebido em 3/1/06; aceito em 23/3/06 Concepções sobre ligação química O ALUNO EM FOCO A seção “O aluno em foco” traz resultados de pesquisas sobre idéias informais dos estudantes, sugerindo formas de levar essas idéias em consideração no ensino-aprendizagem de conceitos científicos. Neste número a seção apresenta dois artigos. A compreensão do comporta- mento das moléculas pas- sa pelo entendimento da liga- ção química (Hurst, 2002; Gagliardi e Giordan, 1986). Ocorre, porém, que para estudar as moléculas, os estu- dantes têm de ser capazes de realizar a passagem nada trivial que é a da observação para a formulação de mo- delos. Trabalhar com modelos é uma parte intrínseca do conhecimento quí- mico e, sem o uso deles, a Química fica reduzida a uma mera descrição de propriedades macroscópicas e suas mudanças. Teoria atômica, fór- mulas químicas, equações químicas, teoria cinética, teoria de ácidos e bases, reações redox e velocidades de reação, todos recaem em modelos para sua explicação (Harrison e Trea- gust, 1996). Mesmo após uma educação for- mal em Química, os estudantes apre- sentam falhas na compreensão dos conceitos químicos e não conseguem fazer relações importantes (Bodner, 1991; Nakhleh, 1992). Além disso, deve-se ressaltar o fato há muito conhecido de que os alunos apre- sentam explicações para os fenôme- nos muitas vezes diferentes daquelas que seriam aceitáveis cientificamente (concepções alternativas). Quando essas idéias dos alu- nos interagem com as demonstrações do professor, com a linguagem científica, com leis e teorias e com as próprias ex- periências dos alu- nos, os estudantes tentam reconciliar seus modelos mentais com os con- ceitos aceitos cientificamente. O re- sultado dessa reconciliação pode ser um conceito científico distorcido a uma concepção alternativa (Driver e Easley, 1978; Boo, 1998; Harrison e Treagust, 1996). O tema ligação quí- mica, por ser abstrato, longe das experiências dos alunos, tem, conse- qüentemente, grande potencial para gerar concepções equivocadas por parte dos estudantes. Concepções dos estudantes sobre ligações químicas A partir da análise da literatura so- bre esse tema, as principais concep- ções sobre ligações químicas apre- sentadas pelos estudantes podem ser agrupadas nas seguintes catego- rias: a) confusão en- tre ligação iônica e covalente; b) antro- pomorfismos; c) re- gra do octeto; d) geometria das molé- culas e polaridade; e) energia nas liga- ções químicas e f) representação das ligações. A seguir apresentaremos cada uma delas. Confusão entre ligação iônica e covalente Um dos maiores problemas com o tópico “ligação química” é a confu- são que vários alunos fazem entre ligações covalentes e iônicas (Nicoll, 2001; Tan e Treagust, 1999; Posada, 1999). Para alguns, os compostos iô- nicos existem como moléculas dis- cretas assim como os compostos covalentes e, portanto, as ligações iô- nicas são entendidas como unidire- cionais e sujeitas às mesmas regras de comportamento que as ligações covalentes (Barker e Millar, 2000). O retículo cristalino não é uma represen- tação comum para a maioria dos Carmen Fernandez e Maria Eunice Ribeiro Marcondes As dificuldades conceituais que alunos apresentam sobre o tema “ligações químicas” são atribuídas a problemas mais básicos, como a compreensão da natureza de átomos e moléculas. Este artigo apresenta uma revisão da literatura a respeito das concepções dos estudantes sobre esse tema, com o intuito de alertar os professores sobre quais são as idéias mais comuns que surgem quando do estudo desse tópico. Sabendo de antemão quais serão as dificuldades, fica mais fácil a proposição de metodologias específicas para tentar superá-las. concepções dos estudantes, ligação química, átomo, molécula Trabalhar com modelos é uma parte intrínseca do conhecimento químico e, sem o uso deles, a Química fica reduzida a uma mera descrição de propriedades macroscópicas e suas mudanças
  • 2. QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006 21 Concepções sobre ligação química estudantes e muitos acreditam que o cloreto de sódio existe como uma entidade discreta (Tan e Treagust, 1999). Para muitos estudantes, as liga- ções covalentes são fracas, uma vez que compostos covalentes apresen- tam baixos pontos de ebulição em geral (Barker e Millar, 2000). Além disso, têm a idéia de que “li- gações covalentes são rompidas quan- do uma substância muda de estado” (Tan e Treagust, 1999). Muitos estu- dantes pensam que “todos os átomos co- valentemente ligados formam macro- moléculas” e se mostram confusos em relação à diferença entre forças intermoleculares e intramoleculares. A idéia de compartilhamento pa- rece pouco elaborada entre os estu- dantes, pois alguns pensam que “os pares de elétrons são compartilhados igualmente nas ligações covalentes” (Birk e Kurtz, 1999), enquanto outros manifestam a idéia de que na ligação covalente há o “compartilhamento de um único elétron entre os dois áto- mos” (Boo, 1998). Provavelmente, o conceito de eletronegatividade não está claro e, portanto, parece que não há uma regra governando o processo da ligação. A ligação covalente tem um me- lhor status para vários desses alunos do que a ligação iônica ou a metálica, a julgar pela frase: “ligações iônicas e metálicas não são ligações de ver- dade, no sentido de ligações cova- lentes” (Boo, 1998). Para muitos alu- nos, parece que o conceito de ligação não está convenientemente diferen- ciado. Idéias como “tanto metais como compostos iônicos são mole- culares por natureza”, ou “as ligações covalentes envolvem uma transferên- cia total de elétrons”, expressas por estudantes (Coll e Treagust, 2001a), corroboram essa hipótese. A palavra “compartilhar” tem signi- ficado muito específico em Química. Um par de elétrons compartilhado significa que o par de elétrons existe em algum lugar entre os átomos na molécula. Já na linguagem do dia-a- dia, compartilhar significa possuir ou usar conjuntamente. Tais palavras pa- recem aumentar as concepções alter- nativas nos estudantes, uma vez que eles tentam construir significados de um novo conceito baseados em con- ceitos já existentes (Peterson et al., 1989). Os modelos de li- gação iônica que os estudantes apresen- tam parecem estar fundamentados em três suposições. A primeira delas é a conjectura da valên- cia, segundo a qual a configuração eletrônica é que determinaria o núme- ro de ligações iônicas formadas. Por exemplo, o átomo de sódio pode doar um elétron, logo ele só é capaz de fazer uma ligação iônica com um áto- mo de cloro. A segunda é a conjec- tura da história, ou seja, as ligações seriam formadas apenas entre os áto- mos que doaram e aceitaram elé- trons. Por exemplo, no cloreto de sódio, o íon cloreto é ligado àquele sódio específico que doou o elétron para aquele ânion, e vice- versa. A terceira é a de “apenas forças”, em que os íons inte- ragem com os con- tra-íons ao seu redor, mas para aqueles não ionicamente li- gados, essas intera- ções são apenas fo- rças. Por exemplo, no cloreto de sódio, o íon cloreto estaria ligado a apenas um íon sódio e seria atraído pelos demais cinco íons de sódio, mas apenas por forças, não por ligações (Taber, 1994). Antropomorfismos Muitas explicações dos alunos pa- ra justificar a ligação revelam aspec- tos antropomórficos como, por exem- plo, “...o carbono quer fazer quatro ligações” (Barker e Millar, 2000); “áto- mos necessitam de camadas preen- chidas”; “a razão para os elétrons se- rem transferidos é a obtenção de uma camada completa” (Taber, 1998). Regra do octeto Os estudantes usam a regra do octeto como base para explicar as reações e as ligações químicas. As idéias mais comuns são: “uma liga- ção covalente mantém os átomos unidos porque a ligação está com- partilhando elétrons”; “ligações iôni- cas são a transferência de elétrons”, ao invés de as atrações dos íons que resultam da transferência de elétrons (Taber, 1998). Parece que a razão pa- ra os elétrons serem transferidos é a obtenção de uma camada completa. Para muito alunos, “o sódio reage com o cloreto, pois, a regra do octeto faz com que as reações químicas ocorram” (Bodner, 1991). Mortimer et al. (1994) evidenciaram que alunos que já haviam concluído o Ensino Médio tiveram dificuldade em reco- nhecer alguns resultados empíricos como conflitantes com a explicação da estabilidade do cloreto de sódio baseada na regra do octeto. Parece haver uma tendência generalizada no ensino de Química de atribuir a esta- bilidade das subs- tâncias à formação do octeto eletrônico e que esta “crença” não é abalada facil- mente nos alunos por evidências expe- rimentais. Os autores alertam para o pro- blema da ênfase no conhecimento ritua- lístico em detrimento do conhecimento de princípios químicos. Geometria das moléculas e polaridade A maioria das concepções dos estudantes com relação à geometria e à polaridade das moléculas advém de dificuldades de visualização tridi- mensional e da falta de pré-requisitos para esse conhecimento. Os alunos confundem o arranjo dos pares de elétrons e geometria molecular. As- sim, por exemplo, os alunos afirmam A palavra “compartilhar” tem significado muito específico em Química. Um par de elétrons compartilhado significa que o par de elétrons existe em algum lugar entre os átomos na molécula. Já na linguagem do dia-a-dia, compartilhar significa possuir ou usar conjuntamente A maioria das concepções dos estudantes com relação à geometria e à polaridade das moléculas advém de dificuldades de visualização tridimensional e da falta de pré-requisitos para esse conhecimento. Eles confundem o arranjo dos pares de elétrons e geometria molecular
  • 3. QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006 22 Concepções sobre ligação química que a geometria das moléculas é devida apenas “a uma repulsão igua- litária entre as ligações e a polaridade da ligação determina a geometria da molécula” (Peterson et al., 1989; Pe- terson e Treagust, 1989) e que a “geo- metria da molécula é devida somente à repulsão entre os pares de elétrons li- gantes” (Birk e Kurtz, 1999). Em termos da polaridade da liga- ção, é idéia corrente que “ocorre o com- partilhamento iguali- tário dos elétrons em todas as ligações covalentes”, que “a polaridade de uma ligação é depen- dente do número de elétrons de va- lência em cada átomo envolvido na ligação” e que “a carga iônica deter- mina a polaridade da ligação” (Pe- terson et al., 1989; Peterson e Trea- gust, 1989). Alguns estudantes expli- cam o conceito de polaridade sem mencionar a idéia de eletronegati- vidade (Nicoll, 2001). Aparentemente o conceito de po- laridade é muito mais difícil de ensi- nar do que o de geometria molecu- lar. Algumas concepções sobre polaridade da molécula são devidas a um reducionismo: os alunos ou consideram a polaridade da ligação como variável, mas não consideram a influência da geometria molecular, ou o contrário (Furió e Calatayud, 1996). Energia nas ligações químicas Em relação à energia envolvida nas ligações, na mente de alguns es- tudantes “a ligação química é inter- pretada como se fosse uma mola e que, liberaria energia quando rom- pida” (Hapkiewicz, 1991). A quebra da ligação seria análoga àquele brinquedo de criança em que um pa- lhaço fica preso dentro de uma caixa e quando esta é aberta leva-se um susto. Os alunos têm a idéia de que “a ligação segura os átomos juntos e libera energia quando é rompida” (Hapkiewicz, 1991). Muitos alunos enxergam a “liga- ção química como uma entidade física”. Essa noção parece estar co- nectada à noção do dia-a-dia de que para construir qualquer estrutura é necessária energia e que, o contrá- rio, a destruição libera energia. Logo, para os estudantes, a formação da ligação requer energia e sua quebra libera energia. Essa concepção pode re- sultar de uma extra- polação sobre os eventos do nível observável para o ní- vel microscópico. Somam-se a essa concepção idéias advindas da Biolo- gia, em que os ali- mentos armazenam energia química, e isso leva à idéia errônea de que o oxigênio não possui energia química e que a energia viria somente do alimento (Boo, 1998). Os estudantes acham também que “to- das as reações são mais favoráveis em altas temperaturas”; “todas as reações exotérmicas são espontâ- neas”; “a energia é estocada nas li- gações (da comida, do ATP) e é libe- rada nos processos químicos” (Teichert e Stacy, 2002). Também, “a quebra das ligações H-H e O-O libera energia” (Mulford e Robinson, 2002) e “somente as liga- ções iônicas fracas podem ser rompidas em processos de dissolução”. Para vá- rios alunos “uma rea- ção ocorre pois um dos reagentes é mais reativo que o outro” e ele seria a mola propulsora pa- ra a reação ocorrer (Boo, 1998). E “o calor causa expansão das moléculas e causa um rompimento das molé- culas de água” (Griffiths e Preston, 1992). Representação das ligações Num artigo clássico, Ben-Zvi et al. (1987) descrevem problemas com as idéias dos estudantes ao visualizar uma reação química. Aproximada- mente 25% dos alunos investigados possuíam uma idéia aditiva ao invés de interativa das substâncias. Por exemplo, eles representavam o com- posto Cl2 O como sendo constituído por dois fragmentos: um de Cl2 e outro de O. As representações de modelos apresentadas em livros tex- tos podem levar a interpretações errôneas por parte dos estudantes. Por exemplo, a formação do NaCl(s) é muitas vezes representada nos livros por: Essa representação pode levar o aluno a pensar que um único átomo de sódio reage com um único átomo de cloro formando um único par iôni- co de NaCl, não levando em consi- deração a rede cristalina formada (Ben Zvi et al., 1987). Muitos alunos preferem modelos de átomos e moléculas que repre- sentam essas entidades como estru- turas discretas e concretas e, tam- bém, vários parecem confundir átomos com células. Vários estu- dantes concluíram que “átomos po- dem se reproduzir e crescer e que o núcleo atômico é capaz de se dividir”. “As camadas eletrônicas são visua- lizadas como conchas que encapsu- lam e protegem os átomos”, enquan- to que as “nuvens eletrônicas forma- riam estruturas nas quais os elétrons es- tariam embebidos” (Harrison e Treagust, 1996). Vários alunos, tanto das séries ini- ciais como aqueles que estavam no final do curso, acreditam que “os elétrons nu- ma ligação não se movem”, que “os elétrons envolvidos numa ligação pi se movimentam realizando uma figura de um oito ao redor do núcleo”, vários “fazem confusão entre cama- das e orbitais” e, também, têm “fa- lhas nas representações microscó- picas de átomos e moléculas” (Nicoll, 2001). Alguns alunos apresentam idéias alternativas para representar a molé- cula de água: “a molécula de água se assemelha a uma figura fechada Em relação à energia envolvida nas ligações, na mente de alguns estudantes “a ligação química é interpretada como se fosse uma mola e que, liberaria energia quando rompida” . Os alunos têm a idéia de que “a ligação segura os átomos juntos e libera energia quando é rompida” Alunos acreditam que “os elétrons numa ligação não se movem”, que “os elétrons envolvidos numa ligação pi se movimentam realizando uma figura de um oito ao redor do núcleo” e vários “fazem confusão entre camadas e orbitais”
  • 4. QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006 23 Concepções sobre ligação química com nenhuma forma definida”, “é esférica com partículas espalhadas através dela” e, também, “as molé- culas de água são compostas de duas ou mais esferas sólidas”. Adicio- nalmente, um grande número de alunos imagina que “as moléculas de água no gelo se to- cam umas às outras continuamente não deixando nenhum espaço entre elas”, ou que “no gelo as moléculas de água não são ligadas em nenhum padrão” (Griffiths e Preston, 1992). Um outro problema que deve ser considerado é que, tanto nos textos como em sala de aula, os átomos e as moléculas são representados de muitas maneiras: como círculos, bo- las, núcleo e camadas, bolas sepa- radas ou juntas etc. Os autores des- ses textos e os professores provavel- mente supõem que os alunos com- preendem facilmente o que isso signi- fica (diferentes modelos com diferen- tes propósitos). Muitas vezes o que se quer destacar são as ligações, outras a estrutura dos cristais, outras que os átomos são os mesmos de- pois das reações. Porém, os modelos diferentes, usados sem explicação, podem confundir os alunos cuja tendência básica é tratar os átomos e as moléculas como se fossem subs- tâncias (Blanco e Prieto, 1996). Se- gundo Blanco e Prieto (1996), em Química é necessário decidir em que momento se tem de introduzir uma determinada idéia ou nível de expli- cação e os professores têm de ter certeza que as experiências prévias dos alunos ajudam que eles vejam as vantagens desse ou daquele modelo de partículas. Deve-se considerar que o abandono da idéia de continuidade é particularmente difícil, pois supõe renunciar em grande parte às idéias advindas dos sentidos, em direção a um pensamento mais abstrato, mo- delizado e coerente. Para alguns alu- nos o mundo microscópico tem as mesmas características que o ma- croscópico, só que apresenta tama- nho reduzido (Posada, 1993). Alguns autores colocam em questão a utilidade de se ensinar mo- delos mentais sofisticados para o conceito de ligação química, uma vez que, apesar da com- petência dos estu- dantes de nível supe- rior em utilizar tais modelos, todos eles preferiram os mode- los mais simples e revelaram os mode- los mais complexos somente em contex- tos de testes e exames (Coll e Trea- gust, 2001b). Conclusões Alguns instrumentos pedagógi- cos permitem identificar as concep- ções dos estudantes em diferentes temas. Sabendo da possibilidade dessas concepções, é mais fácil para o professor em sala de aula procurar evitar o seu aparecimento, utilizando metodologias diferenciadas e dedi- cando mais tempo ao tópico proble- ma. As principais concepções dos es- tudantes sobre liga- ções químicas apre- sentadas são: • confusão entre a ligação covalente e iônica; • compostos iô- nicos vistos como entidades discretas, sem retículo crista- lino; • ligações cova- lentes são fracas; • elétrons são compartilhados igualmente na ligação covalente; • confusão entre ligação covalen- te e forças inter e intramoleculares; • as ligações seriam formadas apenas para satisfazer a regra do octeto; • ligações covalentes são rompi- das durante uma mudança de estado físico; • os elétrons são igualmente compartilhados em todas as ligações covalentes; • a ligação química pensada co- mo entidade física; • a formação da ligação requer energia e sua quebra libera energia; • as reações ocorrem pois um dos reagentes é mais reativo que o outro; • reações exotérmicas são es- pontâneas; • as moléculas se expandem com o calor; • idéias aditivas dos compostos químicos; • confusão entre átomos e célu- las; • não há movimento dos elétrons numa ligação; • elétrons de uma ligação pi se movimentam realizando uma figura de um oito ao redor do núcleo; • a matéria é contínua; • propriedades macroscópicas atribuídas ao mundo submicros- cópico. Tomando ciência desses pontos frágeis, o professor pode ficar atento e diagnosticar os conceitos desen- volvidos pelos seus alunos sobre ligação química e planejar suas ações pedagógicas de for- ma a tentar superá- los. Assim, alunos poderão ter mais chances de compre- ender alguns dos modelos que procu- ram explicar a natu- reza e as proprie- dades da matéria, e outros conhecimen- tos químicos pode- rão ser ancorados nessas idéias, tornando-se signifi- cativos para eles. Carmen Fernandez (carmen@iq.usp.br), licenciada e bacharel em Química, mestre em Química Orgâ- nica e doutora em Ciências (Química Orgânica) pela USP, é docente do Instituto de Química da USP. Maria Eunice Ribeiro Marcondes (mermarco@iq.usp.br), bacharel e licenciada em Química, doutora em Ciências (Química Orgânica) pela USP, é docente do Instituto de Química da USP. Um outro problema que deve ser considerado é que, tanto nos textos como em sala de aula, os átomos e as moléculas são representados de muitas maneiras. Os autores e os professores provavelmente supõem que os alunos compreendem facilmente o que isso significa (diferentes modelos com diferentes propósitos) Tomando ciência das principais concepções dos alunos sobre ligações químicas, o professor pode ficar atento e diagnosticar os conceitos desenvolvidos pelos seus alunos sobre ligação química e planejar suas ações pedagógicas de forma a tentar superá-los
  • 5. QUÍMICA NOVA NA ESCOLA N° 24, NOVEMBRO 2006 24 Concepções sobre ligação química Abstract: Students’ Conceptions on Chemical Bond – The conceptual difficulties that students present on the theme “chemical bonds” are attributed to more basic problems, such as the understanding of the nature of atoms and molecules. This paper presents a review of the literature about students’ conceptions on this theme, aiming at warning teachers about what are the most common ideas that emerge when studying this topic. Knowing before hand what will be the difficulties, the proposition of specific methodologies to try to overcome them becomes easier. Keywords: students’ conceptions, chemical bond, atom, molecule Referências bibliográficas BARKER, V. e MILLAR, R. Students’s reasoning about basic chemical thermo- dynamics and chemical bonding: What changes occur during a context-based post-16 chemistry course? International Journal of Science Education v. 22, p. 1171-1200, 2000. BEN-ZVI, R.; EYLON, B.S. e SILBERS- TEIN, J. Students’ visualisation of a che- mical reaction. Education in Chemistry, v. 24, n.4, p. 117-120, 1987. BIRK, J.P. e KURTZ, M.J. Effect of ex- perience on retention and elimination of misconceptions about molecular struc- ture and bonding. Journal of Chemical Education, v. 76, p. 124-128, 1999. BLANCO, A. e PRIETO, T. Algunas cuestiones sobre la comprensión de la Química desde la perspectiva de las “ideas de los alumnos”. Investigación en la Escuela, n. 28, p. 69-78, 1996. BODNER, G.M. I have found you an argument. Journal of Chemical Educa- tion, v. 68, p. 385-388, 1991. BOO, H.K. Students’ understandings of chemical bonds and the energetics of chemical reactions. Journal of Re- search in Science Teaching, v. 35, p. 569- 581, 1998. COLL, R.K. e TREAGUST, D.F. Investi- gation of secondary school, undergradu- ate, and graduate learners’ mental mod- els of ionic bonding. Journal of Research in Science Teaching, v. 40, p. 464-486, 2003. COLL, R.K. e TREAGUST, D.F. Learn- ers’ use of analogy and alternative con- ceptions for chemical bonding: A cross- age study. Australian Science Teachers Journal, v. 48, p. 24-32, 2001a. COLL, R.K. e TREAGUST, D.F. Learn- ers’ mental models of chemical bond- ing. Research in Science Education, v. 31, p. 357-382, 2001b. DRIVER, R. e EASLEY, J. Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, v. 5, p.61-84, 1978. FURIÓ, C. e CALATAYUD, M.L. Diffi- culties with the geometry and polarity of molecules: Beyond misconceptions. Journal of Chemical Education, v. 73, p. 36-41, 1996. GAGLIARDI, P.J. e GIORDAN, A. La Historia de las Ciencias: Una herra- mienta para la enseñanza. Enseñanza de las Ciencias, v. 4, p. 253-258, 1986. GRIFFITHS, A.K. e PRESTON, K.R. Grade-12 students’ misconceptions relat- ing to fundamental characteristics of at- oms and molecules. Journal of Research in Science Teaching, v. 29, p. 611-628, 1992. HAPKIEWICZ, A. Clarifying chemical bonding: Overcoming our misconcep- tions. The Science Teacher, v. 58, n. 3, p. 24-27, 1991. HARRISON, A.G. e TREAGUST, D.F. Learning about atoms, molecules, and chemical bonds: A case study of multiple- model use in grade 11 chemistry. Science Education, v. 84, p. 352-381, 2000. HARRISON, A.G. e TREAGUST, D.F. Se- condary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, v. 80, p. 509-534, 1996. HURST, M.O. How we teach molecular structure to freshmen. Journal of Chemical Education, v. 79, p. 763-764, 2002. MORTIMER, E.F.; MOL, G. e DUARTE, L.P. Regra do octeto e teoria da ligação química no Ensino Médio: Dogma ou ciên- cia? Química Nova, v. 17, p. 243-252, 1994. MULFORD, D.R. e ROBINSON, W.R. An inventory for alternate conceptions among first-semester general chemistry students Journal of Chemical Education, v. 79, p. 739-744, 2002. NAKHLEH, M.B. Why some students don’t learn chemistry. Journal of Chemi- cal Education, v. 69, p. 191-196, 1992. NICOLL, G. A report of undergraduates’ bonding misconceptions. International Journal of Science Education, v. 23, p. 707- 730, 2001. PETERSON, R.F. e TREAGUST, D.F. Grade-12 students’ misconceptions of co- valent bonding and structure. Journal of Chemical Education, v. 66, p. 459-460, 1989. PETERSON, R.F.; TREAGUST, D.F. e GARNETT, P. Development and applica- tion of a diagnostic instrument to evalu- ate grade-11 and -12 students’ concepts of covalent bonding and structure follow- ing a course of instruction. Journal of Re- search in Science Teaching, v. 26, p. 301- 314, 1989. POSADA, J.M. Concepciones de los alumnos de 15-18 años sobre la estruc- tura interna de la materia en el estado sólido. Enseñanza de las Ciencias v. 11, p. 12-19, 1993. POSADA, J.M. Concepciones de los alumnos sobre el enlace químico antes, durante y después de la enseñanza for- mal. Problemas de aprendizaje. Ense- ñanza de las Ciencias, v. 17, p. 227-245, 1999. TABER, K.S. Misunderstanding the ionic bond. Education in Chemistry, v. 31, n. 4, p. 100-102, 1994. TABER, K.S. An alternative conceptual framework from chemistry education. In- ternational Journal of Science Education, v. 20, p. 597-608, 1998. TAN, K.C.D. e TREAGUST, D.F. Evalu- ating students’ understanding of chemi- cal bonding. School Science Review, v. 81, n. 294, p. 75-83, 1999. TEICHERT, M.A. e STACY, A.M. Pro- moting understanding of chemical bond- ing and spontaneity through student ex- planation and integration of ideas. Jour- nal of Research in Science Teaching, v. 39, p. 464-496, 2002. Para saber mais DUARTE, H.A. Ligações químicas: Iônica, covalente e metálica. Em: AMA- RAL, L.O.F e ALMEIDA, W.B. de (Orgs.). Cadernos Temáticos de Química Nova na Escola, n. 4, p. 14-23, 2001. BADILLO, R.G. e MIRANDA, R.P. El problema del cambio en las concepcio- nes de estudiantes de formación avan- zada. Enseñanza de las Ciencias, v. 20, p. 401-414, 2002. LOGAN, S.R. The role of Lewis struc- tures in teaching covalent bonding. Jour- nal of Chemical Education, v. 78, p. 1457- 1458, 2001. NIAZ, M. A rational reconstruction of the origin of the covalent bond and its implications for general chemistry text- books. International Journal of Science Education, v. 23, p. 623-641, 2001. OGILVIE, J.F. The nature of the chemi- cal bond - 1990: There are no such things as orbitals. Journal of Chemical Education, v. 67, p. 280-289, 1990. OLIVA MARTINÉZ, J.M. Ideas para la discusión sobre las concepciones de cambio conceptual. Enseñanza de las Ciencias, v. 17, p. 115-117, 1999. POZO, J.I. Más allá del cambio con- ceptual: El aprendizage de la ciencia co- mo cambio representacional. Enseñanza de las Ciencias, v. 17, p. 513-520, 1999. TOMA, H.E. Ligação química: Abor- dagem clássica ou quântica? Química Nova na Escola, n. 6, p. 8-12, 1997.