SlideShare ist ein Scribd-Unternehmen logo
1 von 70
Downloaden Sie, um offline zu lesen
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
MINISTERSTWO EDUKACJI
NARODOWEJ
Leszek Kucharski
Tomasz Trojanowski
Wykonywanie połączeń blachy techniką spawania
721[03].Z1.04
Poradnik dla ucznia
Wydawca
Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy
Radom 2006
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
1
Recenzenci:
mgr inż. Grażyna Uhman
mgr Jerzy Mormul
Opracowanie redakcyjne:
mgr inż. Leszek Kucharski
mgr inż. Tomasz Trojanowski
Konsultacja:
mgr inż. Piotr Ziembicki
Korekta:
Poradnik stanowi obudowę dydaktyczną programu jednostki modułowej 721[03].Z1.04
Wykonywanie połączeń blachy techniką spawania zawartego w modułowym programie
nauczania dla zawodu blacharz samochodowy.
Wydawca
Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy, Radom 2006
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
2
SPIS TREŚCI
1. Wprowadzenie 3
2. Wymagania wstępne 5
3. Cele kształcenia 6
4. Materiał nauczania 7
4.1. Bezpieczeństwo i higiena pracy podczas spawania 7
4.1.1. Materiał nauczania 7
4.1.2. Pytania sprawdzające 13
4.1.3. Ćwiczenia 14
4.1.4. Sprawdzian postępów 15
4.2. Istota spawania 16
4.2.1. Materiał nauczania 16
4.2.2. Pytania sprawdzające 18
4.2.3. Ćwiczenia 18
4.2.4. Sprawdzian postępów 21
4.3. Spawanie gazowe 22
4.3.1. Materiał nauczania 22
4.3.2. Pytania sprawdzające 29
4.3.3. Ćwiczenia 30
4.3.4. Sprawdzian postępów 31
4.4. Spawanie elektryczne 32
4.4.1. Materiał nauczania 32
4.4.2. Pytania sprawdzające 49
4.4.3. Ćwiczenia 50
4.4.4. Sprawdzian postępów 51
4.5. Nowoczesne metody spawania 52
4.5.1. Materiał nauczania 52
4.5.2. Pytania sprawdzające 56
4.5.3. Ćwiczenia 56
4.5.4. Sprawdzian postępów 57
4.6. Cięcie termiczne 58
4.6.1. Materiał nauczania 58
4.6.2. Pytania sprawdzające 62
4.6.3. Ćwiczenia 62
4.6.4. Sprawdzian postępów 63
5. Sprawdzian osiągnięć 64
6. Literatura 68
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
3
1. WPROWADZENIE
Poradnik będzie Ci pomocny w przyswajaniu wiedzy z zakresu spawania i cięcia metali
oraz kształtowaniu umiejętności spawania elementów.
W poradniku zamieszczono:
− wymagania wstępne: to wykaz umiejętności, które powinieneś mieć opanowane zanim
przystąpisz do realizacji programu jednostki modułowej: przeczytaj je uważnie
i odpowiedz sobie na pytanie: czy posiadasz te umiejętności,
− cele kształcenia: to wykaz umiejętności jakie ukształtujesz podczas realizacji programu tej
jednostki modułowej,
− materiał nauczania, który zawiera:
− zestaw informacji, który pozwoli Ci przygotować się do wykonania ćwiczeń; naucz
się ich sumiennie pamiętając o tym, że aby umieć coś zrobić najpierw trzeba wiedzieć,
− pytania sprawdzające: odpowiadając na nie, sam stwierdzisz, czy jesteś dobrze
przygotowany do wykonania ćwiczeń,
− ćwiczenia: to najważniejszy etap twojej nauki, będziesz je wykonywał samodzielnie
lub w grupie kolegów. Staraj się być aktywny, uważnie i starannie przygotuj
ćwiczenie, podczas wykonywania ćwiczeń skorzystaj z instrukcji, materiałów,
narzędzi i maszyn, nie lekceważ rad i uwag nauczyciela, sporządź dokumentację
ćwiczenia oraz co najważniejsze bądź ostrożny, przestrzegaj zasad bhp,
− sprawdzian postępów: odpowiadając na zawarte tam pytania sam odpowiesz sobie,
czy osiągnąłeś cele kształcenia,
− sprawdzian osiągnięć to przykład testu (sprawdzianu, klasówki). Podobny test, który
przygotuje nauczyciel będziesz wykonywał pod koniec realizacji jednostki
modułowej.
Sprawdzian dotyczy całej jednostki modułowej, a więc kompleksowo sprawdza wiedzę
i umiejętności, jakie powinieneś nabyć. Przygotuj się do niego solidnie, bo tylko wtedy
będziesz miał satysfakcję z dobrze wykonanego zadania.
Podczas realizacji zajęć staraj się być aktywnym, korzystaj ze wszystkich materiałów,
narzędzi i maszyn jakie otrzymasz. Jeśli jednak będziesz miał trudności ze zrozumieniem
tematu lub ćwiczenia, to poproś nauczyciela lub pracując w grupie kolegę, by wyjaśnił Ci czy
dobrze wykonujesz daną czynność.
W czasie zajęć edukacyjnych będziesz miał do czynienia z różnymi narzędziami,
maszynami, urządzeniami oraz materiałami. W trosce o własne bezpieczeństwo, jak również
Twoich kolegów musisz przestrzegać regulaminu pracowni oraz zasad bhp; szczegółowe
przepisy bhp znajdziesz w pierwszym rozdziale tego opracowania.
Zagadnieniami szczególnie istotnymi, z którymi podczas pracy w zawodzie blacharza
będziesz spotykał się na co dzień i na które powinieneś zwrócić szczególną uwagę, są
współcześnie stosowane metody spawania, a wśród nich na pewno spawanie metodami: MIG,
MAG i TIG.
Trudność sprawi Ci na pewno spawanie blach o niewielkiej grubości, bardzo często
stosowanych w blacharstwie do napraw poszycia nadwozia.
Mamy nadzieję, że poradnik ten pomoże Ci przygotować się do wykonywania zawodu
blacharza samochodowego.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
4
Schemat układu jednostek modułowych
721[03].Z1.02
Wykonywanie operacji
cięcia blachy
721[03].Z1.03
Wykonywanie operacji
kształtowania blachy
721[03].Z1.04
Wykonywanie
połączeń blachy
techniką spawania
721[03].Z1.05
Wykonywanie
połączeń blachy
techniką zgrzewania
721[03].Z1.06
Wykonywanie
nietypowych
połączeń blachy
721[03].Z1
Technologia obróbki blachy
721[03].Z1.01
Wykonywanie operacji
obróbki skrawaniem
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
5
2. WYMAGANIA WSTĘPNE
Przystępując do realizacji programu jednostki modułowej powinieneś umieć:
− korzystać z różnych źródeł informacji,
− charakteryzować technologie produkcji nadwozi samochodowych,
− charakteryzować procesy obróbki wiórowej i obróbki plastycznej,
− wykonywać operacje tłoczenia i cięcia blachy,
− wykonywać operacje kształtowania blachy,
− posługiwać się dokumentacją techniczną,
− wyszukiwać informacje w Internecie,
− stosować ogólne zasady bhp i ppoż. w czasie eksploatacji maszyn i urządzeń.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
6
3. CELE KSZTAŁCENIA
W wyniku realizacji programu jednostki modułowej powinieneś umieć:
− scharakteryzować metodę łączenia materiałów poprzez spawanie,
− opisać części składowe spoiny,
− rozróżnić rodzaje spoin,
− scharakteryzować metodę spawania gazowego,
− scharakteryzować proces wytwarzania, warunki przechowywania oraz zastosowanie
acetylenu jako gazu spawalniczego,
− zorganizować stanowisko pracy do spawania gazowego,
− przygotować sprzęt do spawania gazowego,
− scharakteryzować techniki spawania gazowego,
− wykonać spawanie metodą w lewo,
− wykonać spawanie metodą w prawo,
− scharakteryzować spawanie elektryczne oraz spawanie w osłonie gazów,
− scharakteryzować technologię spawania elektrodami otulonymi,
− rozróżnić rodzaje elektrod i ich oznaczenia,
− przedstawić na rysunku połączenia spawane elementów nadwozia,
− posłużyć się spawarka elektryczną,
− wykonać ścieg spawalniczy, wypełnić rowek,
− wykonać spoinę czołową, pachwinową, pionową i naścienną metodami TIG, MIG, MAG,
− połączyć blachy aluminiowe i mosiężne za pomocą spawania,
− usunąć skutki skurczu spoin,
− scharakteryzować spawanie wiązanką elektronów, laserowe, tlenowe, plazmowe,
− wyjaśnić zjawisko cięcia termicznego,
− ciąć blachy o zadanej grubości palnikiem acetylenowo-tlenowym,
− wyjaśnić cięcie: tlenowe, tlenowo-łukowe, tzw. lancą, plazmowe i cięcie laserem,
− wykonać podstawowe obliczenia wytrzymałościowe połączeń spawanych,
− skorzystać z aktualnej literatury technicznej, norm i instrukcji,
− zastosować zasady bhp, ochrony przeciwpożarowej i ochrony środowiska.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
7
4. MATERIAŁ NAUCZANIA
4.1. Bezpieczeństwo i higiena pracy podczas spawania
4.1.1. Materiał nauczania
Podczas wykonywania prac spawalniczych oraz innych prac w warsztacie, należy
bezwzględnie przestrzegać zasad bezpieczeństwa i higieny pracy oraz przepisów
przeciwpożarowych. Jednym z podstawowych dokumentów, w którym zawarte są zasady bhp
podczas spawania jest rozporządzenie Ministra Gospodarki w sprawie bezpieczeństwa
i higieny pracy przy pracach spawalniczych z dnia 27 kwietnia 2000 r. (Dz. U. Nr 40).
W dokumencie tym zawarte są najważniejsze wymogi, przede wszystkim spawanie może
wykonywać tylko osoba, która została odpowiednio przeszkolona, zdała egzamin oraz została
zapoznana z zasadami bhp.
Spawacz powinien być wyposażony w odpowiedni sprzęt ochrony osobistej:
− ubranie robocze,
− fartuch spawalniczy,
− rękawice ochronne,
− buty robocze,
− nakrycie głowy (czapka, beret lub kask),
− tarcza spawalnicza lub przyłbica (zaopatrzone w odpowiednie szkła barwne i
bezbarwne).
Bardzo ważne jest odpowiednie przygotowanie pomieszczeń, w których będzie odbywało
się spawanie. Należy usunąć z nich wszystkie materiały palne lub też zabezpieczyć je
materiałami niepalnymi (kocami lub matami przeciwpożarowymi, blachami). Samo spawanie
powinno odbywać się w osobnym pomieszczeniu, które powinno spełniać następujące
zasady: powierzchnia stanowiska pracy powinna wynosić co najmniej 4 m2
, wysokość
pomieszczenia to minimum 3,75 m, powierzchnia podłogi nie zajętej przez żadne urządzenia
powinna wynosić minimum 2 m2,
konieczna jest też wentylacja ogólna oraz stanowiskowa.
W przypadku, gdy spawanie odbywa się w hali, a nie w osobnym pomieszczeniu, to
stanowisko spawalnicze powinno być przynajmniej osłonięte parawanem stałym lub
przenośnym. Te parawany mają na celu zabezpieczenie innych osób pracujących w danym
miejscu przed szkodliwym działaniem promieni łukowych. Spawanie można wykonywać
również na otwartej przestrzeni, ale stanowisko pracy spawacza powinno być zabezpieczone
przed opadami atmosferycznymi.
Spawanie jest pracą szkodliwą dla zdrowia. Osoby wykonujące ten zawód narażone są na
wiele zagrożeń wynikających z wykonywanych czynności. Dlatego tak istotne jest
przestrzeganie zasad bhp.
Porażenie prądem – w wyniku niefachowej eksploatacji, naprawy lub działania innych
czynników takich jak wilgoć, uszkodzenie mechaniczne czy wysokie temperatury, może
następować uszkodzenie urządzeń elektrycznych. Takie uszkodzenia mogą być przyczyną
porażenia prądem. Porażenie jest bardzo niebezpieczne, gdyż może doprowadzić do zaburzeń
pracy układu krążenia i układu oddechowego, miejscowych poparzeń, uszkodzenia mięśni lub
stawów, oraz nagłego zatrzymania krążenia. Dlatego ważne jest odpowiednie obchodzenie się
z urządzeniami elektrycznymi oraz ich właściwe zabezpieczenie. W przypadku, gdy dojdzie
do porażenia prądem należy przede wszystkim upewnić się czy jest bezpiecznie. W tym celu
należy odciąć źródło prądu i ocenić stan osoby poszkodowanej (zgodnie z przyjętym
algorytmem podstawowych zabiegów resuscytacyjnych BLS).
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
8
Gdyby wyłączenie prądu oznaczało upadek porażonego, trzeba go odpowiednio
zabezpieczyć tak, by upadek ten nie spowodował dodatkowych obrażeń. Najważniejszy
podczas udzielania pierwszej pomocy jest czas. Pierwsza minuta po odłączeniu prądu, daje
największe szanse na uratowanie osoby porażonej. Im więcej czasu mija, tym te szanse są
mniejsze.
Jeśli porażony jest nieprzytomny, należy zastosować podstawowe zabiegi resuscytacyjne
zgodnie z przyjętym algorytmem BLS (Basic Life Suport), dotyczącym bezprzyrządowego
utrzymania drożności dróg oddechowych oraz podtrzymania oddychania i krążenia według
przedstawionego poniżej schematu postępowania.
Podstawowe zabiegi resuscytacyjne u dorosłych.
Algorytm BLS zaleca:
1. Upewnij się, czy poszkodowany i wszyscy świadkowie zdarzenia są bezpieczni.
2. Sprawdź reakcję poszkodowanego.
a) delikatnie potrząśnij za ramiona i głośno zapytaj: „Czy wszystko w porządku?”
3 a Jeśli reaguje:
− zostaw poszkodowanego w pozycji, w której go zastałeś, o ile nie zagraża mu żadne
niebezpieczeństwo,
− dowiedz się jak najwięcej o stanie poszkodowanego, wezwij pomoc jeśli będzie
potrzebna,
− regularnie oceniaj jego stan.
3 b Jeśli nie reaguje:
− głośno zawołaj o pomoc,
− odwróć poszkodowanego na plecy, a następnie udrożnij jego drogi oddechowe,
wykonując odgięcie głowy i uniesienie żuchwy:
– umieść jedną rękę na czole poszkodowanego i delikatnie odegnij jego głowę do tyłu,
pozostawiając wolny kciuk i palec wskazujący tak, aby zatkać nimi nos, jeżeli
potrzebne będą oddechy ratunkowe,
Zawołaj o pomoc
Nie reaguje
Udrożnij drogi oddechowe
Brak prawidłowego oddechu
Zadzwoń pod numer 112
30 uciśnięć klatki piersiowej
2 oddechy ratownicze
na 30 uciśnięć klatki piersiowej
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
9
– opuszki palców drugiej ręki umieść na żuchwie poszkodowanego, a następnie unieś ją
w celu udrożnienia dróg oddechowych.
4. Utrzymując drożność dróg oddechowych wzrokiem, słuchem i dotykiem poszukaj
prawidłowego oddechu:
a) oceń wzrokiem ruchy klatki piersiowej,
b) nasłuchuj przy ustach poszkodowanego szmerów oddechowych,
c) staraj się wyczuć ruch powietrza na swoim policzku.
W pierwszych minutach po zatrzymaniu krążenia, poszkodowany może słabo oddychać lub
wykonywać głośne, pojedyncze westchnięcia. Nie należy ich mylić z prawidłowym
oddechem. Na ocenę wzrokiem, słuchem i dotykiem przeznacz nie więcej niż 10 sekund. Jeśli
masz jakiekolwiek wątpliwości czy oddech jest prawidłowy, działaj tak, jakby był
nieprawidłowy.
5. a) Jeśli oddech jest prawidłowy:
− ułóż poszkodowanego w pozycji bezpiecznej,
− wyślij kogoś lub sam udaj się po pomoc (wezwij pogotowie),
− regularnie oceniaj oddech.
5. b) Jeśli oddech nie jest prawidłowy:
– wyślij kogoś po pomoc, jeżeli jesteś sam, zostaw poszkodowanego i wezwij pogotowie,
wróć i rozpocznij uciskanie klatki piersiowej zgodnie z poniższym opisem:
– uklęknij obok poszkodowanego,
– ułóż nadgarstek jednej ręki na środku klatki piersiowej poszkodowanego,
– ułóż nadgarstek drugiej ręki na już położonym,
– spleć palce obu dłoni i upewnij się, że nie będziesz wywierać nacisku na żebra
– poszkodowanego; nie uciskaj nadbrzusza ani dolnego końca mostka,
– pochyl się nad poszkodowanym, wyprostowane ramiona ustaw prostopadle do mostka
i uciskaj na głębokość 4 – 5 cm,
– po każdym uciśnięciu zwolnij nacisk na klatkę piersiową, nie odrywając dłoni od mostka.
Powtarzaj uciśnięcia z częstotliwością 100/min (nieco mniej niż 2 uciśnięcia/s),
– okres uciskania i zwalniania nacisku (relaksacji) mostka powinien być taki sam.
6. a) Połącz uciskanie klatki piersiowej z oddechami ratowniczymi:
− po wykonaniu 30 uciśnięć klatki piersiowej udrożnij drogi oddechowe, odginając głowę
i unosząc żuchwę,
− zaciśnij skrzydełka nosa, używając palca wskazującego i kciuka ręki umieszczonej na
czole poszkodowanego,
− pozostaw usta delikatnie otwarte, jednocześnie utrzymując uniesienie żuchwy,
− weź normalny wdech i obejmij szczelnie usta poszkodowanego swoimi ustami,
upewniając się, że nie ma przecieku powietrza,
− wdmuchuj powoli powietrze do ust poszkodowanego przez około l sekundę (tak jak przy
normalnym oddychaniu), obserwując jednocześnie, czy klatka piersiowa unosi się; taki
oddech ratowniczy jest efektywny,
− utrzymując odgięcie głowy i uniesienie żuchwy, odsuń swoje usta od ust
poszkodowanego i obserwuj, czy podczas wydechu opada jego klatka piersiowa,
− jeszcze raz nabierz powietrza i wdmuchuj do ust poszkodowanego, dążąc do wykonania
dwóch skutecznych oddechów ratowniczych; następnie ponownie ułóż ręce
w prawidłowej pozycji na mostku i wykonaj kolejnych 30 uciśnięć klatki piersiowej,
− kontynuuj uciskanie klatki piersiowej i oddechy ratownicze w stosunku 30:2,
− przerwij swoje działanie w celu sprawdzenia stanu poszkodowanego tylko wtedy, gdy
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
10
− zacznie on prawidłowo oddychać. W innym przypadku nie przerywaj resuscytacji.
Jeżeli wykonany pierwszy oddech ratowniczy nie powoduje uniesienia się klatki piersiowej,
jak przy normalnym oddychaniu, wykonaj następujące czynności:
− sprawdź jamę ustną poszkodowanego i usuń widoczne ciała obce,
− sprawdź, czy odgięcie głowy i uniesienie żuchwy są poprawnie wykonane,
− wykonaj nie więcej niż 2 próby wentylacji za każdym razem, zanim podejmiesz
ponownie uciskanie klatki piersiowej.
Jeżeli na miejscu zdarzenia jest więcej niż jeden ratownik, ratownicy powinni się zmieniać
podczas prowadzenia RKO co l - 2 minuty, aby zapobiec zmęczeniu. Należy zminimalizować
przerwy w resuscytacji podczas zmian.
6. b) RKO ograniczoną wyłącznie do uciśnięć klatki piersiowej możesz prowadzić
w następujących sytuacjach:
− jeżeli nie jesteś w stanie lub nie chcesz wykonywać oddechów ratowniczych, zastosuj
uciśnięcie klatki piersiowej,
− jeżeli stosujesz wyłącznie uciśnięcia klatki piersiowej, wykonuj je bez przerwy
z częstotliwością 100 uciśnięć/min,
− przerwij swoje działanie w celu sprawdzenia stanu poszkodowanego tylko wtedy, jeżeli
zacznie on prawidłowo oddychać. W innym przypadku nie przerywaj resuscytacji.
7. Kontynuuj resuscytację do czasu gdy:
− przybędą wykwalifikowane służby medyczne i podejmą działanie,
− poszkodowany zacznie prawidłowo oddychać,
− ulegniesz wyczerpaniu.
Ochrona oczu – spawacz podczas pracy narażony jest na działanie nie tylko widzialnych
promieni świetlnych, ale również promieni niewidzialnych, czyli nadfioletowych oraz
podczerwonych. Naświetlenie oczu odczuwa się dopiero po kilku godzinach, objawia się ono
szczypaniem, łzawieniem i światłowstrętem. Aby nie dopuścić do takiej sytuacji należy
stosować odpowiednie okulary lub też maski z właściwymi szkłami ochronnymi.
W zależności od rodzaju wykonywanego spawania dobiera się odpowiednie szkła. I tak do
spawania łukowego dobiera się szkła w zależności od natężenia prądu (istnieje 19 różnych
rodzajów szkieł określanych stopniem ochrony N począwszy od wartości 1,2 aż do 16). Do
spawania gazowego dobiera się szkła zależnie od wydajności gazu palnego – acetylenu
dm3
/h. Do cięcia, żłobienia oraz skórowania tlenem dobiera się szkła w zależności od
wydajności tlenu w dm3
/h.
Działanie gazów – podczas spawania wydzielają się różne gazy oraz pyły, które mogą
negatywnie wpływać na zdrowie spawacza. Podczas spawania elektrycznego w powietrzu
mogą znajdować się tlen, azot, ozon, dwutlenek węgla i tlenek węgla. Poza gazami,
w powietrzu mogą znajdować się dymy, w których znajdują się tlenki azotu, manganu,
krzemu, azotu i miedzi. Ich duże stężanie może powodować zawroty głowy, bóle głowy,
a także drgawki oraz zapaść. Należy pamiętać, że podczas spawania elektrodami otulonymi
wydzielają się różne gazy takie jak CO, CO2, N2, H2. Duże ilości CO (tlenku węgla)
wydzielają się podczas spawania w osłonie CO2. Gaz ten jest wyjątkowo szkodliwy dla
zdrowia i życia pracującego, gdyż reaguje z hemoglobiną krwi. Może powodować śpiączkę,
zmęczenie oraz utratę przytomności. Aby zapobiec powyższym wypadkom należy
przestrzegać norm określających dopuszczalne wartości CO w pomieszczeniach, które
wynoszą:
− 0,1 % objętości przy stałym przebywaniu,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
11
− 0,129 % objętości przy okresowym przebywaniu,
− 0,2 % objętości przy chwilowym przebywaniu.
Ze względu na szkodliwość gazów, tlenków i pyłów wyjątkowo ważne jest by
w pomieszczeniach gdzie odbywa się spawanie, znajdowała się odpowiednia wentylacja
zarówno ogólna jak i dodatkowa specjalnie dla stanowiska spawacza.
Oparzenia – aby zabezpieczyć się przed oparzeniami, jakie mogą powstać w wyniku
działania łuku elektrycznego lub zetknięcia się z gorącymi elementami, należy zawsze mieć
na sobie ubranie robocze. Jeśli dojdzie do oparzenia, należy miejsce urazu, schłodzić zimną
wodą w celu zmniejszenia bólu i uniknięcia powstania kolejnych pęcherzy lub przykryć
jałową gazą, jeśli pojawił się pęcherz. Następnie trzeba udać się do lekarza.
Zdarza się, iż należy zespawać pojemnik lub naczynie, w którym uprzednio znajdowały
się gazy lub ciecze łatwopalne. Spawanie tego rodzaju przedmiotów jest niebezpieczne, gdyż
pod wpływem ciepła wydzielają się gazy, które mogą doprowadzić do wybuchu. Aby temu
zapobiec, należy przed wykonaniem prac spawalniczych kilkakrotnie wypłukać dany
przedmiot gorącą wodą lub parą, ewentualnie wodą z domieszką środków rozpuszczających.
Bardzo istotną sprawą w pracach spawalniczych jest wentylacja, ponieważ przy
wszystkich rodzajach spawania wydzielają się szkodliwe dla zdrowia gazy, pyły i pary
metaliczne. Powstaje też duże zanieczyszczenie powietrza tlenkiem węgla. Dlatego poza
ogólną wentylacją, jaka zwykle znajduje się w halach, należy również zastosować dodatkową
specjalnie dla stanowiska pracy spawacza. Dodatkową wentylację dla stanowiska pracy
spawacza mogą zapewnić specjalne stoły z dolnym lub górnym wyciągiem powietrza,
ewentualnie bocznym odciągiem.
Istotne znaczenie mają też tablice ostrzegawcze. Powinny się one znajdować w miejscach
widocznych dla wszystkich pracowników.
Rys. 1. Znaki nakazu przypominające o konieczności stosowania indywidualnych środków ochronnych.[4]
Ochrona przeciwpożarowa – obowiązek ochrony przeciwpożarowej w zakładzie pracy
spoczywa na pracodawcy. Jest on zobowiązany do:
− przestrzegania przeciwpożarowych wymagań budowlanych, instalacyjnych
i technologicznych,
− przeszkolenia pracowników,
− zapewnienia środków koniecznych do gaszenia pożarów,
− opracowania bezpiecznych dróg i sposobów ewakuacji.
Jednakże pracownik ma również pewne obowiązki. Należą do nich:
− udział w szkoleniach przeciwpożarowych,
− przestrzeganie zasad bezpieczeństwa przeciwpożarowego podczas użytkowania
sprzętów,
− czynny udział w akcjach gaśniczych, ratowniczych i ewakuacjach.
Przyczyny pożarów mogą być różnorodne, mogą być spowodowane działaniem ludzi lub
mogą być niezależne od ich działania. Najczęstsze przyczyny pożarów w zakładach pracy to:
− wady urządzeń technicznych,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
12
− niewłaściwe użytkowanie urządzeń mechanicznych i elektrycznych,
− nieodpowiednie przechowywanie i zabezpieczenie materiałów łatwopalnych oraz
wybuchowych,
− wyładowania elektryczne,
− elektryczność statyczna,
− wybuchy gazów skroplonych lub sprężonych, materiałów pirotechnicznych, pyłów oraz
oparów cieczy łatwopalnych,
− samozapalenie przechowywanych nieostrożnie w zakładzie paliw, chemikaliów oraz
odpadów,
− nieostrożność i zaniedbania za strony pracowników
Pożary można podzielić na cztery typy (A, B, C, D) w zależności od rodzaju palących się
materiałów.
TYPY POŻARÓW W ŻALEŻNOŚCI OD PALĄCYCH SIĘ MATERIAŁÓW
A – spalaniu ulegają ciała stałe pochodzenia organicznego
(paliwo stałe, drewno, papier, tkaniny itp.)
B – ogień obejmuje ciecze palne lub substancje stałe przechodzące w stan płynny pod wpływem
wysokiej temperatury (paliwa ciekłe, alkohol, smary, oleje itp.) .
C – płoną gazy palne (acetylen, metan, propan-butan, wodór, gaz ziemny lub koksowniczy).
D – zapaleniu uległy metale lekkie (magnez, sód, potas).
Rys. 2. Typy pożarów [4]
Ten podział ma bardzo duże znaczenie przy wyborze odpowiedniego rodzaju środków
gaśniczych. Pożary (typu A), w których zapaleniu uległy ciała stałe pochodzenia
organicznego takie jak paliwa stałe, papier czy tkaniny itp. można gasić wodą lub pianą
powstającą przez zmieszanie wody z substancją pianotwórczą. Jednakże w przypadku, gdy
palą się urządzenia elektryczne będące pod napięciem albo materiały wchodzące w reakcję
chemiczne z wodą, należy zastosować inną metodę gaszenia. Stosuje się wówczas taki sam
sposób gaszenia jak w przypadku pożarów (typu B), gdzie ogień obejmuje ciecze palne lub
substancje stałe przechodzące w stan płynny pod wpływem wysokiej temperatury (paliwa
ciekłe, alkohole, oleje, smary, materiały bitumiczne itp.). Do gaszenia takich pożarów stosuje
się dwutlenek węgla. Jest on skuteczniejszy, gdyż nie przewodzi elektryczności oraz izoluje
palące się substancje przed dostępem tlenu. Gaszenie pożarów (typ C), w których zapaleniu
uległy gazy palne takie jak acetylen, metan, propan – butan, wodór, gaz koksowniczy lub
ziemny polega głównie na odcięciu dopływu wyżej wymienionych gazów. Jeśli to nie
wystarczy lub jest niemożliwe do wykonania dalsze czynności gaśnicze powinny zostać
podjęte przez zawodową straż pożarną. Ostatni rodzaj pożarów (typ D) to sytuacje, w których
zapaleniu uległy materiały lekkie takie jak magnez, sód, potas oraz palące się instalacje
i urządzenia elektryczne. Do ich gaszenia stosuje się specjalne proszki gaśnicze.
W każdym warsztacie powinny znajdować się hydranty gaśnicze. Mogą to być hydranty
zewnętrzne jak i wewnętrzne. Powinny się one znajdować w miejscach łatwo dostępnych, tak
by nie było trudności z podłączeniem do nich węży strażackich. Poza hydrantami
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
13
obowiązkowym wyposażeniem w ramach ochrony przeciwpożarowej są gaśnice. Należy je
przechowywać w odpowiednio wydzielonych i oznakowanych miejscach, ale jednocześnie
w pobliżu miejsc potencjalnie zagrożonych pożarem.
Tabela 1. Rodzaje gaśnic ich charakterystyka i zastosowanie.
Typ
gaśnicy
Charakterystyka i
przeznaczenie
Sposób zastosowania
Gaśnica
ręczna
wodna -
hydronetk
a
Składa się z niewielkiego
zbiornika wodnego, ręcznej
pompki oraz krótkiego węża z
końcówką kierującą zwaną
prądownicą. Do wody można
również dodawać środka
pianotwórczego.
Ustawić hydronetkę w pobliżu ognia,
unieruchomić zbiornik z wodą przy pomocy
nogi, rozwinąć wąż i skierować prądownicę
w kierunku ognia, pompować płyn gaśniczy
miarowymi ruchami. W razie potrzeby
uzupełniać ciecz w zbiorniku.
Gaśnica
pianowa
W zbiorniku znajduje się już
uprzednio wymieszana woda ze
środkiem pianotwórczym.
Uruchamia się ją poprzez
otwarcie zaworu wylotowego.
Gaśnice zdjąć z wieszaka i udać się z nią
w kierunku ognia, następnie odwrócić ją
zaworem w dół i wbić zbijak uderzając nim
o podłoże. Trzymając gaśnice zaworem w
dół kierować strumień piany w ogień.
Gaśnica
śniegowa
W zbiorniku znajduje się zapas
skroplonego dwutlenku węgla.
Uruchamia się ją poprzez
otwarcie zaworu wylotowego.
Gaśnice zdjąć z wieszaka i udać się z nią w
kierunku ognia, następnie skierować na
ogień dyszę wylotową. Odkręcić w lewo
zawór i skierować strumień skośnie w dół na
ogień.
Gaśnica
proszkow
a
W zbiorniku znajduje się
proszek, który jest
wydmuchiwany przez sprężone
w butli niepalne gazy.
Uruchamia się ją poprzez
otwarcie zaworu wylotowego.
Gaśnice zdjąć z wieszaka i trzymając ją za
uchwyt udać się w kierunku ognia. Następnie
usunąć zabezpieczenie zaworu. Zawór
otworzyć po przez przekręcenie w lewo lub
pociągnięcie dźwigni, albo też poprzez
wciśniecie zbijaka. Po 3 sekundach nacisnąć
dźwignię zaworu i skierować strumień
w stronę ognia.
Rygorystyczne stosowanie się do wyżej opisanych zasad i instrukcji ułatwi pracę oraz
spowoduje ograniczenie możliwych wypadków, w wyniku których pracownicy mogą ponieść
uszczerbek na zdrowiu.
4.1.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
1. Jakie środki ochrony osobistej powinien posiadać pracownik?
2. Jak powinno być przygotowane pomieszczenie do spawania?
3. Na jakie zagrożenia narażony jest spawacz i czym są one spowodowane?
4. Jakie jest znaczenie wentylacji podczas prac spawalniczych?
5. Jak dzielimy rodzaje pożarów i metody ich gaszenia?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
14
4.1.3. Ćwiczenia
Ćwiczenie 1
Udziel pierwszej pomocy przedlekarskiej osobie porażonej prądem elektrycznym
wykorzystując fantom.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1) zapisać kolejno wykonywane czynności podczas ratowania porażonego prądem
elektrycznym, zgodnie z algorytmem BLS,
2) sprawdzić czy jest ,,bezpiecznie”,
3) sprawdzić reakcję poszkodowanego – dokonać oceny przytomności,
4) głośno zawołać o pomoc,
5) ułożyć poszkodowanego i udrożnić jego drogi oddechowe,
6) ustalić występowanie oddechu,
7) powiadomić służby medyczne,
8) podjąć próbę reanimacji,
9) wykonać uciskanie klatki piersiowej,
10) połączyć uciskanie klatki piersiowej z oddechami ratowniczymi,
11) sprawdzić jamę ustną poszkodowanego i usunąć widoczne ciała obce,
12) okresowo kontrolować stan poszkodowanego,
13) przerwać resuscytację jedynie w ściśle określonych warunkach,
14) zapisać wnioski i spostrzeżenia z wykonanego ćwiczenia.
Wyposażenie stanowiska pracy:
− fantom (manekin),
− przybory do pisania,
− notatnik.
Ćwiczenie 2
Zorganizuj zgodnie z zasadami bhp i przepisami przeciwpożarowymi stanowisko pracy
spawacza, zgromadź niezbędny sprzęt i urządzenia spawalnicze a także wyposaż stanowisko
w niezbędny sprzęt ochrony indywidualnej i sprzęt gaśniczy.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1) zapoznać się z literaturą wskazaną przez nauczyciela,
2) usunąć z pomieszczenia lub zabezpieczyć wszystkie materiały palne,
3) sprawdzić stan wentylacji ogólnej i stanowiskowej,
4) zgromadzić obok stanowiska niezbędny sprzęt ochrony indywidualnej,
5) zgromadzić i sprawdzić stan określonego sprzętu gaśniczego (gaśnice śniegowe
i proszkowe),
6) zgromadzić sprzęt spawalniczy,
7) sprawdzić przed włączeniem do sieci stan przewodów elektrycznych,
8) zapisać wnioski z wykonanego ćwiczenia.
Wyposażenie stanowiska pracy:
− sprzęt ochrony indywidualnej,
− stanowisko spawalnicze z wentylacją,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
15
− sprzęt gaśniczy,
− sprzęt spawalniczy,
− materiały do pisania.
4.1.4. Sprawdzian postępów
Czy potrafisz: Tak Nie
1) odciąć źródło prądu?
2) sprawdzić reakcję poszkodowanego, porażonego prądem?
3) zastosować „oddech ratowniczy”?
4) zastosować zewnętrzny masaż serca?
5) zorganizować zgodnie z zasadami bhp i przepisami przeciwpożarowymi
stanowisko pracy spawacza?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
16
4.2. Istota spawania
4.2.1. Materiał nauczania
Spawanie jest metodą łączenia materiałów poprzez nadtopienie ich krawędzi przy pomocy
skoncentrowanego źródła ciepła. Zwykle dodaje się z zewnątrz materiał łączący (dodatkowy),
natomiast nie wywiera się nacisku. [3, s. 158]
Spawanie jest jedną z najpopularniejszych metod łączenia metali. Rozróżnia się kilka
rodzajów spawania:
− gazowe,
− łukowe elektrodami otulonymi,
− łukiem krytym,
− żużlowe,
− w osłonach gazowych metodami TIG, MIG, MAG,
− plazmowe,
− elektronowe.
Ze względu na kształt spawanego złącza spoiny dzielimy na: doczołowe, kątowe,
narożne, teowe, krzyżowe, otworowe, zakładkowe, nakładkowe i przylgowe.
Rys. 3. Rodzaje złączy spawanych: a) – e) doczołowe, f) zakładkowe, g) kątowe, h), i) j) teowe,
k), l) krzyżowe, ł), m) narożne, n) nakładkowe, o) przylgowe [2, s. 61]
Spoiny w różnych rodzajach spawanych złączy mają taki sam kształt
Wśród spoin też wyróżnia się kilka rodzajów, ale najczęściej wykonuje się:
Spoiny czołowe – łączą one brzegi blach, które są ułożone względem siebie równolegle bądź
też prostopadle. W zależności od sposobu przygotowania do spawania spoiny czołowe
dzielimy na: I, V, X, U pojedyncze, podwójne, ½ V, K pojedyncze i podwójne.
Spoiny pachwinowe – taką spoinę stanowi trójkąt składający się z jednej lub kilku warstw,
ułożonych między prostopadłymi płaszczyznami łączonych elementów. Same spoiny
pachwinowe dzieli się na ciągłe i przerywane, jednostronne i wielostronne oraz
jednowarstwowe i wielowarstwowe. Mogą one mieć kształt lica: wklęsły, płaski bądź
wypukły. Pod względem statyczności pracy najkorzystniejsze są spoiny wklęsłe i płaskie,
spoin wypukłych powinno się unikać. Istotne znaczenie ma również grubość spoin. I tak
grubość spoiny pachwinowej jednostronnej nie powinna przekraczać 0,7 grubości cieńszego
materiału spawanego, w przypadku spoiny dwustronnej nie powinna ona przekraczać 0,5 tej
grubości, jeśli różnica miedzy grubościami nie przekracza 3 mm.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
17
Rys. 4. Elementy (nazwy) rowka ukosowania i spoiny oraz wycięcie i pospawanie grani spoiny. [2, s. 63]
Rys. 5. Pozycje spawania blach: a) złączy doczołowych, b) złączy kątowych. [1, s. 125]
Spoina jest częścią złącza. Składa się ona całkowicie z metalu, który podczas oddziaływania
wysokiej temperatury uległ stopieniu, a następnie zakrzepnięciu. Każde złącze i każda spoina
posiadają swoją własną terminologię, którą powinno się stosować w spawalnictwie. Na
rysunku poniżej opisano szczegółowo poszczególne nazwy złączy i spoin. Należy pamiętać,
iż w celu uzyskania prawidłowej spoiny często stosuje się ukosowanie brzegów materiału,
który będzie poddany spawaniu. Materiał zostaje poddany ukosowaniu za pomocą nożyc,
frezarek, strugarek, szlifierek, cięty tlenem lub też plazmą.
W zależności od usytuowania spoiny w przestrzeni wyróżnia się cztery pozycje
spawania:
− podolna – jest ona najwygodniejsza. Łatwo i szybko można uzyskać spoiny dobrej
jakości,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
18
− naścienna – jest trudniejsza od pozycji podolnej, wymaga od spawacze więcej
doświadczenia i wprawy a to dlatego, że ciekły metal może spływać z spoiny w dół,
− pionowa – podobnie jak naścienna,
− pułapowa – jest ona wyjątkowo męcząca dla spawacza, co odbija się negatywnie na
jakości spoiny.
Najwygodniejsza jest pozycja podolna, aby ją uzyskać stosuje się różnego rodzaju
przyrządy spawalnicze takie jak obrotniki.
4.2.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
1. Na czym polega spawanie?
2. Czym charakteryzują się spoiny czołowe, a czym spoiny pachwinowe?
3. Co to jest spoina?
4. Jakie występują pozycje spawania?
4.2.3. Ćwiczenia
Ćwiczenie 1
Rozpoznaj i nazwij przedstawione na rysunku (załacznik1) rodzaje spoin.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1) zapoznać się z informacjami dotyczącymi rodzaju spoin,
2) nazwać przedstawione na rysunkach rodzaje spoin,
3) zapisać w tabeli nazwy spoin przedstawionych na rysunkach
4) dokonać analizy ćwiczenia,
5) zapisać wnioski.
Wyposażenie stanowiska pracy:
− załącznik 1,
− przybory do pisania.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
19
Załącznik 1
Karta ćwiczenia
Imię i nazwisko...............................................................................................................
Rozpoznaj i nazwij przedstawione na rysunku rodzaje spoin. Przyporządkuj je do
odpowiednich oznaczeń w tabeli.
a
b
c
d
e
f
g
h
i
j
k
l
ł
m
n
o
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
20
Ćwiczenie 2
Nazwij przedstawione na rysunkach pozycje spawania i zapisz je w tabeli (załącznik 2).
Wykonaj symulowanie spawania w każdej z umieszczonych na rysunkach pozycji spawania.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1) zapoznać się z informacjami dotyczącymi pozycji spawania,
2) nazwać przedstawione na rysunkach pozycje spawania,
3) zapisać nazwy odpowiednich pozycji spawania na przedstawionych rysunkach
(załącznik 2),
4) wykonać symulacje poszczególnych pozycji spawania wykorzystując przygotowane
próbki i urządzenie spawalnicze,
5) dokonać analizy ćwiczenia,
6) zapisać wnioski.
Wyposażenie stanowiska pracy:
− załącznik 2,
− próbki,
− urządzenie spawalnicze,
− przybory do pisania.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
21
Załącznik 2
Karta ćwiczenia
Imię i Nazwisko.......................................................................................................................
Nazwij przedstawione na rysunkach pozycje spawania i zapisz je w tabeli. Wykonaj
symulowanie spawania w każdej z umieszczonych na rysunkach pozycji.
a
b
c
d
e
f
g
h
4.2.4. Sprawdzian postępów
Czy potrafisz: Tak Nie
1) zdefiniować proces spawania?
2) rozróżnić poszczególne pozycje spawania?
3) dokonać symulacji poszczególnych pozycji spawania?
4) nazwać rodzaje spoin?
d
a b
c
e
f
g h
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
22
4.3. Spawanie gazowe
4.3.1. Materiał nauczania
Spawanie gazowe jest jedną z możliwych metod spawania. Podczas spalania gazów
palnych w atmosferze tlenu wytwarzany jest płomień, który jest wykorzystywany do
spawania termicznego, cięcia termicznego i żłobienia. Spawanie gazowe polega na stapianiu
brzegów metali łączonych przez nagrzewanie ich płomieniem powstającym ze spalania gazu
palnego z jednoczesnym dodaniem spoiwa.
Gazy, które są najczęściej używane do spawania to tlen i acetylen, w niektórych
wyjątkowych przypadkach może to być wodór, gaz miejski, gaz ziemny oraz propan – butan
techniczny.
Tlen – jest gazem bezzapachowym i bezbarwnym oraz niepalnym, ale podtrzymuje
palenie. Może on reagować z różnymi pierwiastkami i związkami nawet w temperaturze
niższej od temperatury spalania. Proces ten nazywa się utlenianiem.
Tlen techniczny stosowany jest do różnych celów, w zależności od gatunku. Wyróżnia
się cztery gatunki tlenu w zależności od czystości. Gatunek I (99,5% czystości) może być
stosowany do wszystkich prac spawalniczych, również gatunek II (99,0% czystości) może
być stosowany do wszystkich prac, należy jedynie pamiętać, że obniżenie czystości może
spowolnić prace przy cięciu automatycznym. Gatunek III (98,0% czystości) może być
stosowany do spawania, lutowania, napawania, metalizacji natryskowej i hartowania
powierzchni. Gatunek IV (95,0% czystości) nie powinien być w ogóle używany do prac
spawalniczych.
Podczas pobierania tlenu do spawania można zauważyć, że tlen jest mokry. Dzieje się
tak, ponieważ sprężarki, których używa się do napełniania butli są smarowane wodą.
Niezwykle istotne jest by pamiętać, iż wszelkiego rodzaju smary i oliwy mogą doprowadzić
do samozapłonu.
Acetylen (C2H2) jest gazem bezbarwnym i nietrującym, o słabym zapachu. Ma jednak
właściwości usypiające. W połączeniu z powietrzem tworzy mieszankę silnie wybuchową,
jego nieodpowiednie składowanie lub nieprzestrzeganie zasad bezpieczeństwa w obchodzeniu
się z nim powoduje często ciężkie wypadki. Acetylen otrzymuje się poprzez działanie wody
z karbidem. Aby otrzymać przykładowo 300 litrów acetylenu należy poddać reakcji 1 kg
karbidu. Proces przereagowania karbidu z wodą odbywa się w tak zwanych wytwornicach.
Jednak istotne jest, że urządzenia te stwarzają bardzo duże zagrożenie pożarem oraz
eksplozją, stąd zasady ich eksploatacji są bardzo surowe.
Acetylen (C2H2) – jest nienasyconym węglowodorem, gdzie węgiel (C) wynosi 92,3%,
a wodór (H2) 7,7% (wagowo), natomiast jego gęstości wynosi 1,171 kg/m3
. Ponieważ
acetylen jest lżejszy od powietrza w pomieszczeniu zamkniętym będzie się on zbierał pod
sufitem. Acetylen charakteryzuje się wieloma zaletami:
− ma wysoką wartość opałową 57 MJ/m3
,
− dużą prędkość spalania mieszaniny acetylenowo-tlenowej, która wynosi 13,5 m/s,
− wysoką temperaturą spalania sięgającą 3100°C,
− redukującym działaniem płomienia,
− łatwością otrzymywania acetylenu z karbidu.
Acetylen może ulegać wybuchowemu rozkładowi, sytuacja taka może powstać
w wyniku wstrząsu lub podwyższonej temperatury. Przy ciśnieniu powyżej 0,2 MPa lub
niższym, lecz w podwyższonej temperaturze, acetylen podczas wstrząsu rozpada się
wybuchowo. Rozpad acetylenu, pod wpływem wymienionych czynników, szybko
rozprzestrzenia się na całą masę gazową, temperatura wzrasta do 3000°C, a ciśnienie wzrasta
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
23
jedenastokrotnie. Na skutek rozpadu powstają wodór i węgiel w postaci sadzy. Dlatego
acetylen poza butlą, wolno sprężać tylko do ciśnienia 0,15 MPa [1, s. 183]. W acetylenie
w temperaturze od 115°C do 120°C może dochodzić do zjawiska polimeryzacji czyli łączenia
się cząstek w zespoły. W wyniku tego łączenia w zanieczyszczonym acetylenie mogą
powstawać węglowodory takie jak benzen C6H6 czy też naftalin C10H6. W czasie zjawiska
polimeryzacji wydziela się ciepło, które może być przyczyną wybuchu acetylenu.
Acetylen techniczny wchodzi w reakcję z miedzią, srebrem oraz rtęcią, w jej wyniku
tworzą się wybuchowe acetylenki. Wszelkiego rodzaju drgania, tarcia, iskry lub temperatura
między 100°C a 120°C powoduje rozkład tych acetylenków, który doprowadzi do wybuchu.
Dlatego należy pamiętać, iż do wyrobu urządzeń acetylenowych nie wolno używać stopów
z miedzi, które zawierają jej więcej niż 65% oraz stopów ze srebrem, które zawierają więcej
niż 25% czystego srebra. Do bezpiecznego przewozu acetylenu wykorzystuje się jego
właściwość rozpuszczania. Mianowicie acetylen rozpuszcza się między innymi w wodzie,
benzolu, benzynie i acetonie. I tak w temperaturze 15°C i przy ciśnieniu 0,1 MPa:
− w 1 dm3
wody rozpuszcza się 1,15 dm3
acetylenu,
− w 1 dm3
benzolu rozpuszcza się 4,0 dm3
acetylenu,
− w 1 dm3
benzyny rozpuszcza się 5,7 dm3
acetylenu,
− w 1 dm3
acetonu rozpuszcza się 23,0 dm3
acetylenu. [1, s. 185]
Rys. 6. Butle: a) tlenowa, b) acetylenowa. 1 – butla, 2 – wkręcony zawór,
3 – pierścień zabezpieczający, 4 – kołpak ochronny.[1, s. 192]
Acetylen rozpuszczony w acetonie przechowuje się w butlach wykonanych ze stali
o podwyższonej wytrzymałości jak zbiorniki ciągnione bez szwu. Produkowane są butle
o pojemności od 3 do 40 dm3
, jednakże w spawalnictwie stosuje się tylko butle o pojemności
40 dm3
. Po wyprodukowaniu butli, zanim trafią na rynek sprawdzane są przez Inspektora
Dozoru Technicznego oraz poddawane są próbie wodnej pod ciśnieniem 6,0 MPa.
Butla, która jest nowa i pusta wypełniana jest masą porowatą. Taka masa
przygotowywana jest z drobnych kawałków aktywnego węgla drzewnego, włókna
azbestowego, tlenku cynku oraz specjalnego lepiszcza. Butle z oczyszczonym acetylenem
zawierają:
− masa porowata to 20 %,
− aceton to 40%,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
24
− acetylen pochłonięty przez aceton to 28%,
− przestrzeń bezpieczeństwa to 12%.
Na zewnątrz butli na jej głowicy znajduje się jej charakterystyka oraz tzw. tara butli,
czyli suma masy butli, masy porowatej, acetylenu pochłoniętego przez aceton oraz zaworu.
Masa butli pojemności 40 dm3
wynosi zwykle ok. 70 kg. Jednak masa samego acetylenu w
takiej butli to 5,5kg. Każda butla jest wyraźnie oznakowana, mianowicie butle z acetylenem
pomalowane są na żółto i mają czarny napis ACETYLEN. Butle powinny być ustawione
pionowo oraz zabezpieczone przed przewróceniem. Nie wolno ich przechowywać
w temperaturze większej niż 35°C czyli powinny znajdować się z dala od źródeł ciepła,
a w lecie z dala od promieni słonecznych.
Rys. 7. Zawór butli do acetylenu.(1 – wkładka filcowa, 2 – korek ebonitowy, 3 – wrzeciono dwudzielne,
4 – pierścienie uszczelek, 5 – dławica, 6 – nakrętka dławicy, 7 – klucz nasadowy. [1, s. 199]
Zawory butli zawierających acetylen wykonane są ze stali. W żadnym wypadku nie wolno
ich wykonywać z mosiądzu gdyż zawiera on miedź, która powoduje wytwarzanie się
związków wybuchowych.
Ważnym urządzeniem stosowanym przy butlach jest tzw. reduktor. Jego zadaniem jest
obniżenie ciśnienia oraz utrzymywanie stałego ciśnienia roboczego. Bez użycia reduktora
spawacz musiałby wciąż regulować płomień, który stale by się zmieniał, ponieważ wraz
z ubytkiem acetylenu zmieniałoby się również ciśnienie w butli. Reduktor zakłada się miedzy
butlę a palnik. Każdy reduktor wyposażony jest też w zawór bezpieczeństwa, który
wypuszcza nadmiar gazu w razie wzrostu ciśnienia
Zanim podłączymy reduktor należy najpierw powoli odkręcić kołpak, a następnie zawór
butli. Czynność ta ma na celu przedmuchanie zaworu czyli usunięcie ewentualnych
zanieczyszczeń i pary wodnej, które mogą się zbierać w górnej części butli. Po wykonaniu
tych czynność należy zakręcić zawór i dopiero wówczas podłączyć reduktor.
Zasada działania reduktora na przykładzie reduktora tlenowego (reduktor acetylenowy
różni się jedynie sposobem zamocowania).
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
25
Rys. 8. Budowa reduktora. 1 – łącznik, 2 – filtr, 3 – zawór redukcyjny, 4,6 – sprężyna, 5 – śruba nastawcza,
7 – gumowa przepona, 8 – popychacz, 9 – zawór odcinający, 10 – łącznik.[1, s. 202]
Reduktor pracuje w ten sposób, że po otwarciu zaworu butlowego tlen przepływa
łącznikiem do komory wysokiego ciśnienia, na przewodzie którego znajduje się manometr,
wskazujący ciśnienie w butli. Po wkręceniu śruby stawidłowej, sprężyna podnosi w górę
przeponę gumową, która z kolei podnosi zaworek redukcyjny, w którym umieszczony jest
korek ebonitowy. Wówczas tlen zaczyna przepływać z komory wysokiego ciśnienia do
komory niskiego ciśnienia, do której jest włączony manometr roboczy. Po odkręceniu zaworu
odcinającego, tlen przepływa przez łącznik do palnika. Gdy spawanie zostanie przerwane
zwiększa się stopniowo ciśnienie tlenu w komorze niskiego ciśnienia i przepona gumowa
wygina się w dół. Wówczas sprężyna pomocnicza, naciska na zaworek redukcyjny i zamyka
dopływ tlenu do komory niskiego ciśnienia. Po rozpoczęciu dalszego spawania zmniejsza się
ciśnienie w komorze niskiego ciśnienia, sprężyna rozpręża się, podnosi przeponę i zaworek
redukcyjny, a tlen zaczyna ponownie przepływać do stanowiska spawalniczego. Do komory
niskiego ciśnienia podłączony jest zawór bezpieczeństwa, który w przypadku nadmiernego
ciśnienia w komorze niskiego ciśnienia, otwiera się i wypuszcza nadmiar tlenu do atmosfery
[2, s. 152].
Palnik spawalniczy jest urządzeniem, w którym następuje wymieszanie się gazów,
mieszanka ta spala się przy wylocie dyszy palnika i powstaje płomień acetylenowo – tlenowy.
Palniki dzielimy w zależności od ich przeznaczenia (do spawania, do ciecia, uniwersalne),
wydajności (do 160 dm3
/h, do 630 dm3
/h, do 2500 dm3
/h), od rodzaju gazu (acetylenowe,
wodorowe, propanowe), od sposobu wytwarzania mieszanki palnej (smoczkowe –
inżektorowe, bezsmoczkowe).
W Polsce produkowane są popularniejsze palniki smoczkowe, które mogą pracować jako
palniki niskiego i wysokiego ciśnienia, maja łatwą regulacje płomienia i są proste w obsłudze.
Jednak warto wyjaśnić różnice między palnikami smoczkowymi i bezsmoczkowymi.
W palnikach bezsmoczkowych najpierw należy oprowadzić tlen i acetylen do tak zwanego
reduktora równoprężnego, który utrzymuje jednakowe ciśnienie. Jest dość niebezpieczny
gdyż nad membraną znajduje się acetylen, a pod nią tlen, w sytuacji uszkodzenia membrany
powstaje mieszanka wybuchowa. Z reduktora zarówno tlen jak i acetylen pod jednakowym
ciśnieniem doprowadzane są rurociągami do stanowisk spawalniczych. Natomiast
w palnikach smoczkowych tlen doprowadza się do znacznie zmniejszonego otworu
wylotowego, powoduje to znaczne zwiększenie prędkości. Smoczkiem nazywa się zwężenie
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
26
rurki, tlen wypływający z dużą prędkością zasysa acetylen doprowadzony centrycznie do
wylotu tlenu. Większe ciśnienie tlenu powoduje również większe podciśnienie w przewodzie
acetylenowym.
Rys. 9. Palniki do spawania i ciecia typu PU 214A i typu PU 214A-D. [1, s. 238]
Palniki powinny być wykonane precyzyjnie z mosiądzu i miedzi lub też ze stali
żaroodpornych. Części stykające się z tlenem nie mogą w żadnym wypadku być wykonane ze
stali węglowej gdyż mogłoby dojść do spalenia się ich w atmosferze tlenu. Jak już
wspomniano wcześniej jest wiele różnych rodzajów palników, niektóre z dostępnych modeli
zostały opisane w tabeli.
Tabela 2. Palniki do spawania i lutowania. [1, s. 234]
Typ palnika Rodzaj
gazów
zasilających
Zakres
wydajności gazu
palnego w dm3
/h
Liczba
wymiennych
nasadek
Przeznaczenie
PAP acetylen i
powietrze
atmosferyczn
e
10÷25 4 do spawania blachy
cynkowej i miękkiego
lutowania
PS101A acetylen i tlen 50÷30 4 do spawania i do
lutowania twardego
PS102A acetylen i tlen 25÷315 7 do spawania, lutowania,
opalania
PU212A
PU 212A-D
PU 214A
PU214A-D
acetylen i tlen 100÷1600 7 do spawania i cięcia
PS141A acetylen i tlen 80÷630 6 do spawania
PU 241A acetylen i tlen 100÷1600 7 do spawania i cięcia
PU 242A acetylen i tlen 100÷1000 6 do spawania i cięcia
PG-11A
PG-212A
acetylen i tlen 1000÷2500 3
PG-22A acetylen i tlen 4000÷6400 2
PG-22P-Z Propan-butan
lub gaz
ziemny i tlen
1950÷3700
propan-butan lub
7500÷11000
gazu ziemnego
do podgrzewania przy
prostowaniu i wyginaniu
lutowania twardego
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
27
Rys. 10.Przekrój przez palnik smoczkowy do spawania [1, s. 233]
1,2- końcówki doprowadzające gazy, 3,4- rurki rękojeści, 5- korpus, 6- smoczek, 7- kanaliki na obwodzie
smoczka, 8- komora mieszania, 9- dziób, 10- zwężony wylot, 11- nakrętka dociskowa.
Obsługa palników wymaga znajomości pewnych podstawowych zasad, gdyż palniki są
narzędziami precyzyjnymi. Należy je umiejętnie i fachowo obsługiwać. Zatem należy
pamiętać by:
− palniki należy przechowywać w fabrycznych kasetach specjalnie dla nich
przygotowanych,
− węże powinny mieć swój osobny wieszak,
− wszelkie nasadki, dysze należy dobierać w zależności od rodzaju pracy i grubości metalu,
− przed rozpoczęciem pracy należy sprawdzić ssanie palnika. Można to zrobić poprzez
odkręcenie przyłączki węża acetylenowego od palnika, otwarcie zaworu tlenu i zaworu
acetylenu,
− prawidłowa procedura zapalenia płomienia to: otwarcie częściowe zaworu tlenu
(ok. ¼ obrotu) jeśli wszystko jest w porządku następuje otwarcie zaworu acetylenu
(ok. ½ obrotu) i zapalenie płomienia. Dopiero teraz należy odkręcić zawór tlenu do końca
i wyregulować płomień zaworem acetylenu,
− podczas gaszenia płomienia najpierw następuje zakręcenie zaworu z acetylenem
a następnie z tlenem,
− palnik należy chronić przed zatłuszczeniem, w przypadku, gdy do niego dojdzie należy
go odpowiednio wyczyścić,
− węży z gazem nie należy przewieszać przez ramię,
− podczas spawania odpryski metalu osiadają na dziobie palnika, należy je usunąć
pocierając palnik o kawałek drewna, przy włączonym palniku,
− wnętrze dzioba należy utrzymywać w czystości, służą do tego specjalne wałeczki
dostarczone przez producenta,
− jeśli dojdzie do zapalenia się mieszanki wewnątrz smoczka należy niezwłocznie zakręcić
zawór dopuszczający acetylen, a następnie zawór z tlenem. Palnik można schłodzić
w wodzie przy lekko odkręconym zaworze tlenu.
W spawaniu wykorzystuje się również tak zwany sprzęt pomocniczy, czyli inaczej
mówiąc: węże gumowe, przyłączki i złączki, opaski taśmowe, zapalniczki iskrowe
i oszczędzacze gazów.
Węże do tlenu są oznaczone literą T i mają kolor niebieski, te stosowane do acetylenu
maja oznaczenie A i kolor czerwony. Zarówno węże tlenowe jak i acetylenowe mają dwa
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
28
typy w zależności od ciśnienia roboczego. Natomiast ich średnice są takie same niezależnie
od przeznaczenia.
Węże tlenowe Węże acetylenowe
Typ 1 ciśnienie robocze do 1 MPa ciśnienie robocze do 0,4 MPa
Typ 2 ciśnienie robocze do 2 MPa ciśnienie robocze do 0,63 MPa
Przyłączki służą do mocowania węży do palników, a złączki do łączenia ze sobą dwóch
węży, natomiast opaski taśmowe mają na celu niedopuszczenie do ściągnięcia węża
z końcówki palnika.
Technika spawania gazowego wyróżnia trzy metody spawania: spawanie w prawo,
spawanie w lewo a także spawanie w górę. Nazwy te są umowne i określają, w którym
kierunku wykonywane jest spawanie, oraz w którym kierunku skierowany jest płomień
palnika.
Spawanie w lewo – stosowane jest zwykle do spawania cienkich blach (o grubości nie
przekraczającej 3mm). Polega ono na prowadzeniu palnika od prawej do lewej, gdzie palnik
jest nachylony pod kątem 30÷60° w zależności od materiału. Im cieńszy materiał ty mniejszy
kąt. Natomiast 45° to kąt nachylenia druta podczas tego spawania. Sam palnik powinien być
prowadzony wzdłuż linii spawania wolno, natomiast drut powinien być prowadzony ruchami
w dół i w górę, w ten sposób regulujemy ilość spoiwa używanego do spawania. Metoda ta jest
łatwa do opanowania, umożliwia w sposób prosty i szybki otrzymanie gładkiego lica spoiny.
To zachęca spawaczy do jej stosowania pomimo tego, iż taka spoina ma gorsze własności
wytrzymałościowe niż ta wykonana drugą metodą (metoda w prawo). Inną wadą tej metody
jest trudność w utrzymaniu otworka miedzy brzegami co może powodować brak przetopu.
Mogą też pojawiać się pęcherze oraz pory z racji szybkiego stygnięcia spoiny.
Spawanie w prawo – stosuje się je do blach grubych (powyżej 3mm). Kąt pochylenia
palnika w tej metodzie powinien wynosić 50°, a drutu 45°. Przy tym spawaniu nie wykonuje
się żadnych ruchów bocznych tylko posuwa się go powoli wzdłuż spawanych brzegów.
Drutem natomiast wykonuje się niewielkie ruchy poprzeczne. Aby zapewnić całkowite
przetopienie spawanych brzegów konieczne jest utrzymanie w czasie spawania małego
otworka. Zaletą tego spawania jest, iż spoiny wykonane tą metodą mają lepsze właściwości
wytrzymałościowe. Ponieważ ciepło, jakie się wydziela podgrzewa również spoinę, co
sprawia że spoina potem wolniej stygnie a co za tym idzie jest czas na to by się wyżarzyła
i aby wydzieliły się wszystkie gazy. Jednakże i ta metoda ma swoje wady – mianowicie
stosując ja trudno jest uzyskać ładny wygląd nalewu, co znacznie zniechęca spawaczy do jej
stosowania.
Obie metody spawania zarówno w lewo jak i w prawo mogą być stosowane we
wszystkich pozycjach spawania.
Spawanie w górę – stosuje się je do spawania różnego rodzaju zbiorników. Współcześnie
jednak ekonomiczniejsze jest spawanie elektryczne, stąd metoda ta jest wykorzystywana
naprawdę rzadko i w wyjątkowych sytuacjach. Polega on na prowadzeniu palnika z góry na
dół lub odwrotnie. Może być wykonywane przez dwóch spawaczy jednocześnie. Palnik
powinien być pod kątem 30°, a drut pod kątem 20° do poziomej osi spawania.
Spawanie różnych materiałów. Stale węglowe – spawanie stali, które zawierają do 0,25%
węgla nie nastręcza trudności. Kłopoty mogą być przy stalach, w których zawartość węgla
jest powyżej 0,25%. Stale, w których ta zawartość sięga do poziomu 0,6% są uznawane za
praktycznie niespawalne. Stale, w których zawartość węgla znajduje się między 0,25%÷0,6%
nazywane stalami średniowęglowymi są poddawane różnym zabiegom mającym na celu
ułatwienie spawania, to jest podgrzewa się je do temperatury 200÷300°C tak by spowolnić
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
29
szybkość chłodzenia spoiwa a dokładniej ma to zapobiegać powstawaniu kruchych pęknięć.
Po zakończeniu spawania stale średniowęglowe poddawane są zabiegom, których celem ma
być usunięcie naprężeń skurczowych oraz polepszenie struktury spoiny. W tym celu stosuje
się wyważanie normalizujące, po którym zarówno spoina jak i materiał uzyskują
drobnoziarnistą jednolitą strukturę.
Stale niskostopowe są to stale, do których dodane są oprócz stałych składników jeszcze
chrom (Cr), nikiel (Ni), czasem też wanad (V), molibden (Mo) i niob (Nb) w sumie do 2,5%
dodatków stopowych. Zawartość węgla w tego rodzaju stalach nie przekracza 0,22%. Stale,
w których zawartość chromu wynosi 0.3% nie sprawiają większych problemów natomiast
jeśli ta zawartość sięga 1,0% pojawiają się trudności. Ponieważ chrom wpływa na
zwiększenie hartowności spoiny oraz strefy wpływu ciepła a tym samym na skłonność do
pęknięć. Aby sobie z tym poradzić można podgrzewać przed i w trakcie spawania oraz
powoli studzić, dodatkowo płomień powinien być dokładnie wyregulowany bez nadmiaru
acetylenu, można nawet zmniejszyć ilość acetylenu w płomieniu. W stalach, w których
znajduje się miedź (nie więcej niż 0,6%) dla polepszenia właściwości wytrzymałościowych
nie trzeba stosować jakiś dodatkowych zabiegów cieplnych. Jeśli w stali znajdują się
dodatkowo mangan i krzem, również można taką stal spawać bez podgrzewania, ale można
zrobić to tylko w hali by uniknąć zbyt szybkiego stygnięcia.
Stale wysokostopowe, czyli takie, w których zawartość dodatków stopowych wynosi
powyżej 5% nie są spawane gazowo. Spawa się je elektrodami otulonymi lub metodą TIG.
Żeliwo jest materiałem trudnym do spawania, zawiera, bowiem duże ilości węgla oraz
krzemu, a to sprzyja wydzielaniu się grafitu. Aby osiągnąć jak najlepsze rezultaty materiał do
spawania należy podgrzać do temperatury 700÷800°C i spawać płomieniem acetylenowym,
jednakże należy pamiętać, że powinien być to palnik o większej wydajności niż do spawania
stali o tej samej grubości. Trzeba również wiedzieć, że żeliwo można spawać tylko w pozycji
podolnej ewentualnie nabocznej, ponieważ w stanie stopionym jest ono rzadkopłynne. Do
spawania stosuje się pręty żeliwne, które zawierają około 3÷3,6% węgla i 3÷3,8% krzemu,
dodatkowo stosuje się również proszek – topik – który ułatwia spawanie. Po zakończeniu
spawania przedmiot należy obsypać piaskiem lub popiołem i zostawiać do całkowitego
wystygnięcia.
Spawanie gazowe metali nieżelaznych (aluminium, stopów aluminiowych, miedzi oraz
ołowiu i cynku) jest zadaniem skomplikowanym i choć jest możliwe to obecnie już się go
praktycznie nie wykonuje. Dzieje się tak dlatego, iż spawanie za pomocą płomienia
acetylenowo-tlenowego daje niezadowalające wyniki, spoiwo ma wiele wad, obniżają się
jego właściwości wytrzymałościowe. Stąd obecnie ten rodzaj metali spawa się w osłonie
argonu metodami TIG i MIG.
4.3.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
1. Co nazywamy spawaniem gazowym?
2. Jakie gazy używane są do spawania gazowego?
3. Jak jest zbudowana i oznaczona butla do przechowywania acetylenu?
4. Jakie zadanie spełnia reduktor?
5. W jaki sposób dzielimy palniki do spawania gazowego?
6. Jak dzielimy poszczególne techniki spawania gazowego?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
30
4.3.3. Ćwiczenia
Ćwiczenie 1
Wykonaj połączenie dwóch elementów nadwozia samochodowego za pomocą palnika
acetylenowo – tlenowego wykorzystując metodę spawania w „lewo”.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1) przygotować elementy do spawania.
2) dobrać odpowiedni palnik do spawania stali węglowych wykorzystując metodę w lewo,
3) dobrać odpowiedni rodzaj spoiwa,
4) sprawdzić stan techniczny palnika, węży gumowych,
5) zapalić płomień stosując się do instrukcji,
6) wyregulować płomień acetylenowo-tlenowy doprowadzając go do stanu normalnego,
7) połączyć elementy nadwozia samochodowego zgodnie z wytycznymi metody spawania
w lewo,
8) zgasić płomień stosując się do instrukcji,
9) zawiesić palnik z wężem wykorzystując odpowiednio przyjętą procedurę,
10) dokonać analizy ćwiczenia,
11) zapisać wnioski.
Wyposażenie stanowiska pracy:
− stanowisko spawalnicze,
− elementy nadwozia samochodowego przeznaczone do spawania wykonane ze stali
węglowej o grubości 1 mm,
− odzież ochronna spawacza,
− narzędzia do czyszczenia blach,
− przepisy dotyczące bezpieczeństwa i higieny pracy podczas spawania,
− sprzęt gaśniczy,
− drut spawalniczy używany jako spoiwo.
Ćwiczenie 2
Wykonaj połączenie dwóch elementów nadwozia samochodowego za pomocą palnika
acetylenowo – tlenowego wykorzystując metodę spawania w „prawo”. Ćwiczenie wykonaj
w pozycji naściennej.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1) przygotować elementy do spawania,
2) dobrać odpowiedni palnik do spawania stali węglowych wykorzystując metodę w prawo,
3) dobrać odpowiedni rodzaj spoiwa,
4) sprawdzić stan techniczny palnika, węży gumowych,
5) przygotować i ustawić łączone elementy biorąc pod uwagę specyfikę pozycji spawania,
6) zapalić płomień stosując się do instrukcji,
7) wyregulować płomień acetylenowo-tlenowy doprowadzając go do stanu normalnego,
8) połączyć elementy nadwozia samochodowego zgodnie z wytycznymi metody spawania
w prawo,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
31
9) zgasić płomień stosując się do instrukcji,
10) zawiesić palnik z wężem wykorzystując odpowiednio przyjętą procedurę,
11) dokonać analizy ćwiczenia,
12) zapisać wnioski.
Wyposażenie stanowiska pracy:
− stanowisko spawalnicze,
− elementy nadwozia samochodowego przeznaczone do spawania wykonane ze stali
węglowej o grubości 1 mm,
− odzież ochronna spawacza,
− narzędzia do czyszczenia blach,
− przepisy dotyczące bezpieczeństwa i higieny pracy podczas spawania,
− sprzęt gaśniczy,
− drut spawalniczy używany jako spoiwo.
4.3.4. Sprawdzian postępów
Czy potrafisz: Tak Nie
1) przygotować elementy do spawania gazowego?
2) dobrać odpowiedni palnik do spawania stali węglowych wykorzystując
metodę w lewo?
3) dobrać odpowiedni palnik do spawania wykorzystując metodę w prawo?
4) dobrać odpowiedni rodzaj spoiwa?
5) sprawdzić stan techniczny palnika i węży gumowych?
6) zapalić i wyregulować płomień acetylenowo-tlenowy?
7) wykonać spawanie gazowe metodą w lewo?
8) zgasić płomień i odpowiednio zabezpieczyć sprzęt po spawaniu?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
32
4.4. Spawanie elektryczne
4.4.1. Materiał nauczania
4.4.1.1. Spawanie elektryczne
Źródłem ciepła przy spawaniu elektrycznym jest łuk elektryczny, jarzący się miedzy
elektrodą a spawanym przedmiotem. Stopiony metal z elektrody i nadtopione krawędzie
spawanego materiału tworzą jeziorko spawalnicze, które po zakrzepnięciu zamienia się
w spoinę. Podczas spawania łuk elektryczny i jeziorko ciekłego metalu znajdują się pod
osłoną gazów stanowiących ochronę przed dostępem tlenu i azotu z atmosfery. Źródłem
prądu stałego są spawarki prostownikowe, natomiast prądu przemiennego – transformatory
spawalnicze.[3, s. 162]
Spawanie łukowe elektrodami otulonymi – polega ono na stapianiu metali przy pomocy
łuku elektrycznego. Łuk powstaje miedzy przedmiotem spawanym a elektrodą. Temperatura
łuku sięga 2400÷6000°C co powoduje szybkie stapianie się metalu. Do spawania łukowego
używa się zarówno prądu stałego, jak i przemiennego.
Spawanie łukiem krytym jest jedną z metod spawania elektrycznego. Źródłem ciepła jest
łuk elektryczny powstający między elektrodą w postaci gołego drutu a spawanym materiałem
pod warstwą topnika. Ten sposób spawania stosuje się do spawania grubych blach (4÷30 mm)
zrobionych ze stali niskostopowych i niestopowych.
Do powstania łuku elektrycznego konieczne jest źródło prądu mające odpowiednie
wartości napięcia (np. 50÷90 V) i natężenia (np. 50÷300 A). Łuk zajarzy się prawidłowo
poprzez potarcie końcem elektrody o spawany przedmiot. Elektrodę należy unieść lekko
w górę tak, aby miedzy drutem a przedmiotem spawanym powstała niewielka odległość (nie
większa niż średnica drutu elektrodowego). Powstałemu łukowi towarzyszy wydzielanie się
dużej ilości ciepła oraz światła. Aby tak powstały łuk, mógł się prawidłowo jarzyć, powietrze
w przestrzeni łukowej musi ulec zjonizowaniu. Zjonizowanie atomów powietrza w łuku
elektrycznym polega na tym, że w wysokiej temperaturze łuku cząsteczki gazów zawartych
w powietrzu i gazów wydzielonych z otuliny elektrody oraz par metali rozpadają się na
mniejsze, elektrycznie naładowane cząstki – elektrony i jony. Elektrony ujemne są
przyciągane przez anodę (materiał spawany), a jony dodatnie przez katodę (elektrodę).
Strumień wyzwolonych jonów i elektronów przepływa między elektrodą, a materiałem
spawanym, dzięki czemu jarzący się łuk staje się dobrym przewodnikiem prądu i szybko
doprowadza do stopienia metalu spawanego i elektrody. [2, s. 257-258]
Charakterystyka łuku elektrycznego jest to zależność między napięciem, a natężeniem
prądu, podczas jarzenia się łuku. Proces spawania można podzielić na cztery fazy. Faza I to
bieg jałowy oznacza to, że istnieje napięcie biegu jałowego spawarki, ale natężenie wynosi 0.
Faza II to zajarzenie się łuku, czyli zetkniecie się elektrody z materiałem spawanym,
wówczas napięcie spada do 0, a natężenie rośnie w granicach 10÷30% w stosunku do
natężenia zaprogramowanego w spawarce. Faza III spawania – wtedy to napięcie wynosi ok.
25 V natężenie osiąga wartości nastawione w spawarce. Faza IV – ostatnia jest to
przechodzenie kropli płynnego metalu z elektrod do jeziorka. W fazie tej wartość prądu
wzrasta o 10÷30% w stosunku do zaprogramowanej, a napięcie spada do 0.
Temperatura łuku – podczas spawania prądem stałym w środkowej części luku
temperatura sięga 5000°C, na anodzie czyli biegunie dodatnim wynosi ona ok. 2600°C, a na
katodzie, czyli biegunie ujemnym, ok. 2100°C. Natomiast podczas spawania prądem
przemiennym temperatura wynosi ok. 2200÷2300°C na obu biegunach.
Łuk elektryczny ma dwie cechy. Jedna z nich jest ugięcie łuku. Powstaje ono, ponieważ
wokół łuku występuje nierównomierny rozkład sił pola magnetycznego. Ugięcie łuku
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
33
następuje w kierunku rozrzedzenia sił pola magnetycznego, będzie się ono zwiększało wraz
ze wzrostem natężenia prądu stałego (zjawisko to nie występuje podczas spawania prądem
przemiennym). Aby zmniejszyć ugięcie łuku i tym samym zapobiec wszelkiego rodzaju
zaburzeniom w stabilizacji łuku można pochylić elektrodę w kierunku przeciwnym do
działania pola magnetycznego, korzystne również jest podłączenie bieguna uziemiającego
spawarki jak najbliżej miejsca spawania. Drugą cechą jest elastyczność łuku – jest to
zdolność do wydłużania się łuku bez gaśnięcia. Elastyczność zależy od napięcia i natężenia
prądu, rodzaju otuliny, przewodnictwa cieplnego oraz elektrycznego metalu. Na poprawę
elastyczności łuku maja wpływ miedzy innymi: większe napięcie na biegu jałowym, większe
natężenie prądu, większa ilość składników jonizujących w otulinie.
Rys. 11. Układ linii sił pola magnetycznego i zjawisko ugięcia łuku. [2, s. 262]
Elektrody dzielimy na:
− topliwe (podczas spawania w łuku elektrycznym ulegają stopieniu), które dzielą się na:
− elektrody nieotulone (sam drut),
− elektrody otulone (drut pokryty otuliną),
− elektrody rdzeniowe (inaczej zwane proszkowymi, ponieważ wewnątrz drutu znajduje
się specjalny proszek),
− nietopliwe (nie stapiają się podczas spawania, utrzymują łuk elektryczny).
Elektrody nieotulone – są zalecane do spawania łukiem krytym, spawania żużlowego,
w osłonie argonu, CO2 i mieszankach gazowych. Nie powinny być stosowane do spawania
łukowego ręcznego. Używane są często do ręcznego spawania przez początkujących
spawaczy, zwykle podczas szkoleń, ponieważ ułatwiają utrzymanie łuku, prowadzenie
elektrody, a także obserwacje procesu jarzenia się łuku.
Elektrody nieotulone – proszkowe – wypełnione są proszkiem, który spełnia rolę otuliny.
Wykonuje się je z cienkiej taśmy. Taśmę wygina się wielokrotnie w kierunku podłużnym tak,
by otrzymać rurkę o niewielkiej średnicy, wewnątrz której znajduje się kilka fałd. Wolna
przestrzeń w rurce jest wypełniana proszkiem w skład, którego wchodzą topniki,
sproszkowane metale oraz żelazostopy. Proszek nie ma stałego składu chemicznego. Bywa,
że gazy chroniące spoiwo i jeziorko ciekłego metalu przed wpływem powietrza są nie
wystarczające, wówczas spawanie takie wykonuje się w osłonie CO2 ewentualnie łukiem
krytym. Należy również pamiętać, że podczas spawania tego rodzaju elektrodami wydziela
się znacznie więcej pyłu niż podczas spawania elektrodami otulonymi, zatem cały proces
powinien odbywać się w pomieszczeniu z bardzo dobrą wentylacją.
Elektrody otulone – mają różnego rodzaju otuliny, w zależności od grubości otuliny
dzielimy je na:
− elektrody cienko otulone inaczej nazywane zanurzonymi. W tych elektrodach grubość
otuliny stanowi 20% średnicy drutu elektrody,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
34
− elektrody średnio otulone czyli prasowane, w nich grubość otuliny waha się pomiędzy
20% a 40% średnicy drutu elektrody,
− elektrody grubo otulone zwane również prasowanymi, grubość otulin przekracza 40%
średnicy drutu, najczęściej wynosi 60%,
− elektrody bardzo grubo otulone określane też mianem wysokowydajnych, w nich grubość
otuliny wynosi 100% średnicy drutu elektrody, a czasem nawet więcej.
Rodzaj otuliny ma wpływ na własności spawalnicze, oraz mechaniczne spoiwa. W każdej
otulinie powinny się znajdować co najmniej takie składniki jak: składniki żużlotwórcze,
odtleniające, gazotwórcze, jonizujące oraz stopowe. Wyróżniamy elektrody o następujących
rodzajach otulin:
− elektrody o otulinie kwaśniej – oznaczane symbolem A, ta otulina zawiera duże ilości
żelazo-manganu oraz tlenków żelaza, przyczynia się do powstawania płaskiego
i gładkiego lica spoiny, jednak jej wadą jest przyczynianie się do powstawania pęknięć
krystalicznych, stosowane jest do spawania w pozycjach przymusowych,
− elektrody w otulinie celulozowej – oznaczone symbolem C, zawierają duże ilości
celulozy a także innych składników organicznych, stosowane są do spawania we
wszystkich pozycjach,
− elektrody w otulinie rutylowej – oznaczane symbolem R lub RR, występują ich dwa
rodzaje w cieńszej oraz grubszej otulinie. W skład otuliny wchodzi duża ilość butylu,
nadają się do spawania we wszystkich pozycjach, nadają spoinie równomierne lico
o drobnej łuskowatości,
− elektrody w otulinie rutylowo-celulozowej – oznaczane symbolem RC, ma właściwości
podobne do elektrod w otulinie rutylowej, również można je stosować do spawania we
wszystkich pozycjach,
− elektrody w otulinie rutylowo-kwaśnej – oznaczane symbolem RA, otulina jest
mieszanką butylu oraz tlenków żelaza, ich własności są podobne do elektrod o otulinie
kwaśnej, można je stosować do spawania we wszystkich pozycjach (wyjątek pozycja
pionowa z góry na dół),
− elektrody w otulinie rutylowo-zasadowej – oznaczone symbolem RB, w skład tej otuliny
wchodzą duże ilości butylu, a także składników zasadowych, można je stosować do
spawania we wszystkich pozycjach (wyjątek pozycja pionowa z góry na dół),
− elektrody w otulinie zasadowej – oznaczane symbolem B, otulina zawiera zwykle duże
ilości węglanów ziem alkalicznych, czyli np.: węglany wapnia lub fluorytu, elektrody
takie są odporne na pękanie w niskich temperaturach mają również niewielką skłonność
do gorących pęknięć, można je stosować do spawania we wszystkich pozycjach (wyjątek
pozycja pionowa z góry na dół – do spawania w tej pozycji stosuje się elektrody
zasadowe ze specjalnym składem otuliny).
Każda otulina wywiera pewien wpływ na proces spawania oraz spoinę, to jest:
1) Składniki otuliny ułatwiają zajarzenie elektrody poprzez odpowiednią jonizację, mają
również pozytywny wpływ na stabilność oraz elastyczność łuku.
2) Jeśli łuk jest stabilny to metal spokojnie przepływa do spoiny dając maksymalną ilość
spoiwa, bez odprysków.
3) Otulina ma właściwości ochronne względem ciekłego metalu przenoszonego w łuku oraz
w jeziorku. Taką ochronę zapewniają gazy, które powstają w wyniku spalania oraz
rozkładu składników otuliny, tworzą one stożek o pewnym nadciśnieniu, co
uniemożliwia dostanie się powietrza do przestrzeni łuku. Z otuliny powstaje żużel, który
chroni ciekły metal z jeziorka i spoiny przed utlenianiem się i naazotowaniem.
4) Składniki otuliny również wiążą szkodliwe gazy takie jak tlen, azot czy wodór, gazy te
w postaci związków chemicznych wydalane są do żużla w czasie stygnięcia.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
35
5) Składniki stopowe metali w procesie metalurgicznym spawania przechodzą do spoiny,
dzięki czemu uzyskuje się spoiny o lepszych właściwościach mechanicznych i zwiększa
się uzysk. [1, s. 330]
6) Prędkość krzepnięcia i stygnięcia spoiny zmniejszana jest poprzez żużel tworzony
z otuliny, żużel ten rozpuszcza zanieczyszczenia, które wydzielane są z krzepnącej
spoiny, formułuje też kształt lica.
Oznaczenia elektrod – elektrody oznaczane są symbolami literowymi oraz cyframi. I tak
elektrody do spawania połączeniowego stali niestopowych oraz niskostopowych będą miały
oznaczenia typu EA, EB itd., pełne oznaczenie może wyglądać w ten sposób: EA 1,46 – gdzie
E oznacza elektrodę, A – rodzaj otuliny w tym wypadku otulina kwaśna, 1 to numer elektrody
(w tym miejscu mogą się znajdować również inne cyfry nie tylko cyfra 1), 46 to oznaczenie
minimalnej gwarantowanej trwałości spoiwa elektrody na rozerwanie, zatem 46 jest skrótem
od liczby 460 MPa. Tego rodzaju oznaczenia znajdują się zwykle na powierzchni otuliny.
W Polsce elektrody klasyfikuje się według normy PN-EN 499 (dostosowana do wymagań
międzynarodowej organizacji normalizacyjnej ISO 2560), norma to zawiera podział elektrod
nie tylko ze względu na wytrzymałość. Zatem opis elektrod może być obszerniejszy i będzie
zawierał w sobie również informacje o temperaturze, badaniach udarności, pozycji spawania
oraz prądzie spawania. Taki poszerzony opis może wyglądać w sposób następujący: E 350
RA 22 gdzie E oznacza elektrodę, 35 – to wytrzymałość spoiwa na rozciąganie 350 MPa,
0 – temperatura badania udarności spoiwa 0°C, RA – rodzaj otulin w tym przypadku otulina
rutylowo-kwaśna, 2 – pozycja spawania (wszystkie z wyjątkiem pozycji z góry na dół),
2 – prąd spawania (stały -).
Elektrody specjalne służące do spawania połączeniowego stali nisko i wysoko stopowych
oznaczane są symbolem ES. Ponieważ elektrody te zawierają molibden, chrom i nikiel
w oznaczeniu elektrody znajdują się liczny odzwierciedlające procentowy udział
poszczególnych pierwiastków (liczby 18 lub 24 to udział chromu, 8 i 18 to udział niklu, 2 to
molibden, a 6 to mangan), oczywiście znajdują się też symbole literowe określające rodzaj
otuliny. Elektrody do napawania oznacza się symbolem EN, oprócz liter w ich opisie znajdują
się oczywiście liczby takie jak np.: 200 lub 400, które oznaczają średnia twardość warstwy
napawanej, na końcu znajduje się oczywiście litera określająca rodzaj otuliny.
Elektrody żeby zachowały wszystkie swoje właściwości muszą być odpowiednio
przechowywane. Przede wszystkim powinny być przechowywane w pomieszczeniach
o temperaturze co najmniej 20°C, w miejscach przewiewnych. Powinny być ułożone na
drewnianej powierzchni warstwami z tym, że jeśli jedna warstwa jest wzdłuż to druga
powinna być w poprzek. Otuliny z racji właściwości higroskopijnych pochłaniają wodę
w zetknięciu z powietrzem, jeśli nie wejdzie ona w reakcje ze składnikami otuliny elektrody
można wysuszyć i w ten sposób odzyskać ich właściwości. Zawilgocone elektrody łatwo
poznać po wykwitach białych kryształów, które są wynikiem reakcji chemicznej wilgoci ze
składnikami otuliny. Należy pamiętać, że elektrody w otulinie rutylowej i kwaśnej powinny
być suszone przez godzinę w temperaturze 110-120°C, natomiast elektrody w otulinie
zasadowej przez półtorej do dwóch godzin w temperaturze 200-350°C.
Do spawania elektrodami otulonymi, a także nieotulonymi, stosuje się trzy rodzaje
urządzeń, które wytwarzają prąd o wysokim natężeniu i niskim napięciu, są to:
− przetwornice spawalnicze (prąd stały),
− transformatory spawalnicze (prąd zmienny),
− prostowniki spawalnicze (prąd stały).
Przetwornice spawalnicze składają się z prądnicy spawalniczej oraz silnika napędowego
(elektrycznego asynchronicznego trójfazowego lub spalinowego).
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
36
Rys. 12. Przetwornice spawalnicze: a) typu EW23u-300A b) typu EWPa- 315 [2, s. 230]
Każda przetwornica ma regulację natężenia prądu, dobiera się je w zależności od
średnicy elektrody oraz grubości spawanego materiału. Przetwornice uruchamia się za
pomocą przełącznika określanego mianem „gwiazda – trójkąt”. Polega to na tym, że najpierw
ustawiamy przełącznik w pozycji „gwiazdy” i tak pozostawiamy go na 15 do 20 sekund, by
w tym czasie wirnik osiągnął właściwą prędkość obrotową. Następnie przestawiamy do
pozycji „trójkąta”, w tej pozycji przetwornica działa normalnie. Czasem bywa, że do prac
spawalniczych potrzebne jest natężenie prądu większe niż może dać jedna przetwornica,
można wówczas połączyć ze sobą dwie lub więcej przetwornic. Sprawnie działające
urządzenia uzyskujemy poprzez połączenie przewodem miedzianym wszystkich zacisków
w przetwornicach oraz połączenie zacisków + i – równolegle przewodami spawalniczymi.
Ważne jest by wszystkie wspólnie działające przetwornice były ustawione na takie samo
natężenie.
Agregaty spawalnicze składają się z silnika spalinowego oraz prądnicy lub prostownika
spawalniczego. W produkcji jest wiele rodzajów agregatów niektóre są osadzone na
podwoziu co umożliwia ich łatwe przemieszczanie, różnią się też miedzy sobą maksymalnym
prądem spawania, który jest podany w oznaczeniu, np.: AS 240. Agregaty są urządzeniami
dość uniwersalnymi można je stosować nie tylko do spawania, ale także jako generatory
prądu stałego, służą też do zasilania półautomatów spawalniczych.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
37
Rys. 13. Agregat spawalniczy na podwoziu jezdnym. [2, s. 234]
Transformatory spawalnicze działają na zasadzie przetwarzania prądu przemiennego
o napięciu sieciowym na prąd przemienny o niższym napięciu, ale za to wyższym natężeniu
(jest ono niezbędne do zajarzenia się łuku elektrycznego). W produkcji znajdują się
transformatory o sposobach regulacji natężenia prądu - z dławikiem we wspólnym rdzeniu,
oraz z bocznikiem magnetycznym.
Obecnie w Polsce produkowane są transformatory spawalnicze przenośne, oraz na
kołach. Transformatory podłącza się do sieci energetycznej prądu przemiennego. Jedna z cech
transformatorów jest ich charakterystyka statyczna stromoopadająca – oznacza to, że przy
zajarzeniu łuku elektrycznego w transformatorze wzrasta natężenie prądu o 20 do 40%
w stosunku do ustawionej. Urządzenia te są wyjątkowo ekonomiczne, gdyż prąd pobierają
tylko podczas pracy zatem będąc na biegu jałowym nie czerpią prądu. Ponieważ
w transformatorach znajdują się tylko części stałe, nie ulegają one szybkiemu zużyciu.
Prostowniki spawalnicze przetwarzają prąd przemienny na prąd stały, który umożliwia
spawanie czyli ma niskie napięcie i wysokie natężenie. Składają się z trójfazowego
transformatora, układu regulacji natężenia i układu prostowniczego prądu przemiennego na
prąd stały. W produkcji krajowej znajdują się prostowniki spawalnicze:
− Z regulacją prądu za pomocą transduktora – taki prostownik składa się z trójfazowego
transformatora, transreduktora i prostownika. Transformator zamienia prąd przemienny
o wysokim napięciu i małym natężeniu na prąd o niskim napięciu i wysokim natężeniu,
transreduktor reguluje prąd spawania za pomocą opornika, a prostownik zmienia prąd
przemienny na prąd stały.
− Z regulacją prądu za pomocą odmagnesowanych boczników – składa się z trójfazowego
transformatora i prostownika. Trójfazowy transformator zamienia prąd przemienny
o wysokim napięciu i małym natężeniu na prąd o niskim napięciu i wysokim natężeniu,
ponieważ transformator ma wbudowane boczniki magnetyczne one dokonują regulacji
prądu spawania, a prostownik zmienia prąd przemienny na prąd stały.
Poza prostownikami jednostanowiskowymi w produkcji krajowej znajdują się również
prostowniki inwentorowe. Zasilane są one napięciem o częstotliwości 50÷60 Hz, ponieważ
zamontowane są w nich falowniki wysokonapięciowe, transduktory mocy, które umożliwiają
wewnętrzną przemianę częstotliwości powyżej 16 kHz. Cecha ta warunkuje ich zalety
w postaci małych gabarytów, małego ciężaru wysokich wskaźników energetycznych,
dokładnej regulacji natężenia prądu oraz miejscowej i zdalnej regulacji prądu.
Prostowniki wielostanowiskowe stosowane są w dużych zakładach lub ośrodkach
spawalniczych gdyż jak sama nazwa mówi mogą służyć do zasilania nawet kilkunastu
stanowisk spawalniczych. W Polsce produkowane są dwie wersje tego rodzaju prostowników:
typu SBA-50/2500 (zasila do 24 stanowisk spawalniczych) oraz typu SBA-50/1250 (zasila 12
stanowisk spawalniczych). Taki prostownik składa się z szafy transformatorowej
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
38
(transformator trójfazowy suchy), szafy prostownikowej i rezystorów (regulują prąd
spawania).
Prostowniki maja kilka istotnych zalet miedzy innymi wytwarzany przez nie łuk ma dużą
elastyczność. Posiadają czułe regulacje natężenia prądu. Umożliwiają spawanie cienkich
blach we wszystkich pozycjach, dodatkowo zużywają niewiele energii, są tanie
w konserwacji i naprawach oraz nie są tak hałaśliwe jak na przykład przetwornice.
Wykonywanie spoin elektrodą otuloną – wiadomo, iż znając dobrze podstawy
teoretyczne prowadzenia końca elektrody łatwo opanujemy praktykę. Najważniejszą pozycją
spawania jest pozycja podolna, należy pamiętać, że wszystkie inne pozycje są
przymusowymi, czyli pozycjami montażowymi. Podczas spawania w tej pozycji elektrodę
należy prowadzić pod kątem 20÷50° do kierunku spawania (kąt jest istotny gdyż decyduje o
gładkości powierzchni). Grubość otuliny ma istotny wpływ na technikę prowadzenia
elektrody im grubsza warstwa otuliny tym większy kąt nachylenia elektrody.
Rys. 14. Prowadzenie końca elektrody o różnej grubości otuliny [1, s. 339 b)]
Ścieg graniowy jest ściegiem pierwszym i jednocześnie mającym największy wpływ na
jakość spoiny. Każdy następny ścieg należy wypełniać możliwie płasko – tak by nie tworzyły
się ostre krawędzie na bokach ściegu, które będą się wypełniały żużlem (jest on trudny do
usunięcia). Dodatkowo na jakość spoiny wpływa też prawidłowość dobrania średnicy
elektrody. Spoiny wykonuje się albo ściegiem prostym albo zakosowym.
Rys. 15. Spawanie w pozycji podolnej: ściegi prosty i zakosowy. [1, s. 340]
Spawanie w pozycji nabocznej – podczas spawania tą metodą płynne spoiwo może
rozpływać się po ścianie poziomej. Jeśli dodatkowo elektroda była niewłaściwie ustawiona
powoduje to powstanie spoiny o niesymetrycznym trójkącie. Spoiny pachwinowe
wielościegowe wykonywane w pozycji nabocznej układa się ściegami prostymi.
Spawanie w pozycji pionowej z góry na dół – jak wiadomo spawać w tej pozycji można
wszystkimi elektrodami otulonymi, aczkolwiek przy takiej pozycji ciekły metal i żużel
ściekają na dół. Zatem masa ciekłego metalu i żużla w jeziorku powinna być jak najmniejsza,
aby mogła być utrzymana przez strumień łuku elektrycznego. Elektroda powinna być
prowadzona łukiem krótkim, pod kątem 10÷20° odchylenia w dół do linii prostopadłej do
spoiny. Żeby zapobiec powstawaniu podtopień, które pojawiają się czasem podczas
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
39
prowadzenia lica w spoinach czołowych, należy przed rozpoczęciem spawania wyszlifować
dwa rowki na krawędziach spoiny a elektrodę prowadzić ósemką.
Spawanie w pozycji naściennej – podstawową zasadą jest ukosowanie złączy do spawania
naściennego, dzięki temu zużywa się mniej spoiwa a płynny metal lepiej się trzyma. Przy tej
pozycji powinny być stosowane elektrody o średnicy 2,5 do 4 mm i ścieg prosty. Elektroda
powinna być ustawiona prostopadle do ściegu, samo lico można wykonać przy pomocy
ściegu zakolowego.
Rys. 16. Spoina czołowa naścienna: a) ściegi proste, b) ścieg lica zakosowy [1, s. 343]
Spawanie w pozycji pułapowej – jest ono stosowane tylko i wyłącznie w montażu, oraz
naprawach. Do spawania stosuje się elektrody o średnicy 4mm, grubo otulone, a natężenie
prądu powinno być o 10% wyższe od tego stosowanego przy pozycji podolnej. Elektroda
powinna być prowadzona łukiem krótkim, prostopadle do spoiny i pochylna pod kątem
15÷20° w kierunku układanej spoiny.
Rys. 17. Spawanie w pozycji pułapowej:
a) kąty prowadzenia elektrody, b) spoina czołowa, c) spoina pachwinowa, d) napawanie. [1, s. 344]
Spawanie łukowe różnych materiałów. Spawanie stali niestopowych – wśród nich można
wyodrębnić trzy grupy: stale dobrze spawane, które zawierają do 0,25% węgla, stale
o ograniczonej spawalności zawierające 0,25%÷0,4% węgla, oraz stale trudno spawalne, czyli
takie gdzie zawartość węgla przekracza 0,4%. Stale należące do pierwszej grupy (poniżej
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
40
0,25% węgla) można spawać dużym zakresem natężenia prądu, można stosować dowolne
ściegi i spawać w temperaturze poniżej 0°C. Wszelkiego rodzaju występujące naprężenia, są
łagodzone odkształceniem plastycznym. Aby zapobiec zbyt szybkiemu stygnięciu, które
powoduje powstawanie pęknięć można podgrzać materiał spawany do temperatury
200÷300°C. Inną metodą zapobiegającą pęknięciom jest stosowanie niskiego natężenia prądu
spawania i wykonywanie pierwszego ściegu krótkim łukiem tak, by był dość gruby. Należy
zapamiętać, iż stale zawierające powyżej 0,25% węgla nie mogą być spawane w temperaturze
0°C oraz nie powodują one odkształceń plastycznych, które mogą złagodzić naprężenia.
Stale niskostopowe – to takie, w których zawartość składników stopowych nie przekracza
2,5%. Pierwiastki takie jak mangan, krzem, chrom, nikiel, wanad, molibden mają pozytywny
wpływ w postaci zwiększenia właściwości mechanicznych, czy też zwiększenia
wytrzymałości materiału, odporności na korozję, żaroodporności, ale tym samym powodują
większą hartowność, która jest przyczyną pękania stali oraz trudności z otrzymaniem spoiny
o takich samych właściwościach jak materiał spawany. Można jednak temu zapobiec kierując
się następującymi wskazówkami:
− należy starannie przygotować brzegi metali przed spawaniem,
− zwiększając średnice elektrody oraz natężenie prądu spawania zapobiega się
podhartowaniu,
− utrzymanie przez odpowiedni czas materiału i strefy wpływu w temperaturze 200÷350°C
zapobiega hartowaniu, dodatkowo należy spawać wielościegowo, sposobem
kaskadowym,
− podgrzewając stale przed, w trakcie i po spawaniu zmniejszamy szanse na powstanie
pęknięć,
− koniecznością jest też stosowanie naprężania odprężającego.
Stale wysoko stopowe tak samo jak niskostopowe zawierają domieszki innych
pierwiastków z tym, że ich zawartość przekracza 2,5%. Takie stale mają duży współczynnik
skurczu i słabo przewodzą ciepło. Choć wszystkie stale wysokostopowe są trudne do
spawania to jednak te zawierające duże ilości chromu nastręczają dużych trudności w postaci
łatwości pękania podczas procesu spawania, wytwarzające się tlenki chromu utrudniają
łączenie spoiwa z metalem, oraz ograniczają jej odporność na korozje. Podczas spawania
grubych stali wysokostopowych należy podgrzewać je do temperatury 150÷200°C, a po
zakończeniu całego procesu spawania studzić bardzo powoli. Zaleca się również wyżarzanie
w temperaturze 600÷850°C. Stale wysokostopowe chromowe, kwasoodporne i żaroodporne
nie nastręczają dużych trudności w spawaniu łukowym elektrodami otulonymi, jednakże
podczas tego procesu powstają silne odkształcenia spawalnicze, oraz naprężanie, które są
przyczyną pękania.
Spawanie żeliwa może odbywać się łukiem elektrycznym zarówno na zimno jak i na
gorąco. Spawanie na zimno łukiem elektrycznym musi odbywać na tyle wolno, by spawany
materiał nie podgrzał się do temperatury wyższej niż 60÷70°C. Aby spawanie przyniosło
oczekiwane rezultaty należy przed jego rozpoczęciem dokładnie określić rodzaj żeliwa, to
znaczy, czy jest ono szare czy białe. Należy również ustalić rozmiar pęknięcia, na jego
końcach trzeba wywiercić otwory (1/3 średnicy grubości metalu), które zapobiegną
powiększeniu się pęknięcia. Brzegi należy oczyścić bardzo dokładnie oraz zukosować.
Spawać należy krótkimi odcinkami, by nie spowodować nagrzania się żeliwa. Po zakończeniu
spawania pęknięcia, trzeba zaspawać wcześniej wywiercone otwory. Żeby zapobiec
powstawaniu pęknięć oraz zmniejszyć naprężenia skurczów należy zaraz po zakończeniu
spawania to znaczy nim metal wystygnie, przemłotkować go. Do tego rodzaju spawania
używa się prądu stałego.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
41
Spawanie żeliwa na gorąco – jest znacznie lepszym sposobem niż spawanie na zimno.
Przed rozpoczęciem spawania przedmiot należy podgrzać do temperatury 700÷800°C, jednak
trzeba pamiętać, że nie wolno nagrzewać zbyt szybko, najwyżej 100°C na godzinę.
Nagrzewanie może się odbywać w piecu gazowym bądź elektrycznym. Do tego rodzaju
spawania używa się elektrod otulonych lub pałeczek żeliwnych. Zawarty w nich krzem
i węgiel wyrównują straty tych składników powstałe podczas spawania. Spawanie powinno
być wykonywane w pozycji podolnej.
Spawanie miedzi jest procesem bardzo trudnym ze względu na dużą przewodność cieplną
tego materiału, oraz tworzenie się podczas spawania trudno topliwych tlenków miedzi. Do
spawania miedzi stosuje się elektrody miedziane otulone oznaczone zwykle symbolem ECuS
[2, s. 304]. Spawanie odbywa się w pozycji podolnej. Blachy powinny być podniesione pod
kątem 6° do kierunku spawania. Blachy o grubości powyżej 4 mm ukosuje się na V, a grubsze
na X. Do spawania powinien być stosowany prąd stały, do elektrody podłączony powinien
być biegun dodatni. Natężenie powinno wynosić 80÷100 A na 1 mm grubości elektrody.
Podczas spawania łuk powinien być krótki, gdyż w przeciwnym wypadku powstaną pory i
pęcherze gazowe. Ponieważ elektrody stosowane do spawania miedzi są wyjątkowo wrażliwe
na wilgoć, należy je przed spawaniem suszyć w temperaturze 350÷400°C przez dwie lub trzy
godziny. Nie polecane jest wykonywanie spoin wielowarstwowych, gdyż przy spawaniu
miedzi w ten sposób istnieje duża rozszerzalność oraz skurcze, które powodują naprężenia,
a co za tym idzie pękanie spoin. Jeśli już decydujemy się na wykonywanie spoin
wielowarstwowych to trzeba każdą spoinę wymłotkować na gorąco – takie działanie
powoduje rozdrobnienie kryształów, czyli jednocześnie zwiększenie wytrzymałości spoiny.
Spawanie aluminium jest także procesem trudnym ze względu na dużą przewodność
ciepła aluminium oraz tworzenie się tlenków aluminium, które trudno się topią. Spawanie jest
możliwe przy pomocy elektrod aluminiowych otulonych, gdzie w otulinie znajdują się chlorki
oraz fluorki metali alkalicznych i kriolitu (taka otulina jest niehigroskopijna i trwała). Do
spawania stosuje się prąd stały, a elektrodę przyłącza się do bieguna dodatniego. Średnica
elektrody powinna być większa o 1mm od połowy grubości łączonych blach. Spoiny należy
układać ściegami prostymi, a nie zakolowymi w położeniu podolnym lub pochyłym o 45°
[2, s. 306]. Zanim rozpoczniemy spawanie blach aluminiowych, ich brzegi należy starannie
oczyścić za pomocą płomienia z wszelkiego rodzaju zanieczyszczeń, tłuszczy, czy resztek
wilgoci, następnie przetrzeć je szczotką stalową. Niezależnie od tego, czy blacha jest
ukosowana (ukosuje się blachy powyżej 6 mm – na Y lub V, powyżej 15mm na X) czy nie,
najlepiej jest spawać ją w pozycji podolnej. W blachach powyżej 2 mm, należy zostawić
odstęp (2÷4mm), a blachy powyżej 4 mm powinny być podgrzane (200÷250°C) przed
spawaniem. Tu również należy unikać wykonywania spoin wielowarstwowych. Po
zakończeniu spawania i ostygnięciu spoiny, należy ją dokładnie oczyścić z żużlu przy
pomocy szczotki stalowej i przemyć wodą. Jeśli natomiast chodzi o spawanie stopów
aluminium, to możliwe jest to tylko przy stopach: PA1, PA2, PA4, PA11, PA20 i PA47,
wówczas stosuje się elektrody o rdzeniu ze stopu aluminiowego. Przy czym stop PA4 przy
większej grubości jest niemożliwy do spawania.
4.4.1.2. Spawanie w osłonie gazów
Spawanie w osłonie gazów jest wariantem spawania łukiem elektrycznym, w tych
metodach gaz chroni rozgrzany i płynny metal przed wpływem czynników atmosferycznych.
W zależność od zastosowanej elektrody, łuku elektrycznego i gazu ochronnego mamy do
wyboru kilka metod:
− metoda TIG (WIG – Tungsten Inert Gas) – łuk jarzy się między nietopliwą elektrodą
a materiałem w osłonie argonu lub helu,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
42
− metoda MIG (Metal Inert Gas) – elektroda metalowa topi się w osłonie argonu lub helu,
− metoda MAG (Metal Active Gas) – elektroda metalowa topi się w osłonie CO2 (gaz
aktywny) lub jego mieszankach z innymi gazami spawalniczymi,
− spawanie plazmowe (zostanie opisane w następnym rozdziale) [3, s. 164].
Rys. 18. Metody spawania w osłonie gazów. [5]
Metody te jak wszystkie inne mają swoje wady jaki i zalety. Wady to:
− duży rozprysk metalu,
− stosowanie drutów o małej średnicy,
− niemożność wprowadzenia składników stopowych.
Pomimo tych wyżej wymienionych wad, zalety mają istotne znaczenie dla stosowania
tych metod. Do zalet należy:
− duża wydajność,
− łatwość obserwacji układania spoiny,
− dobre własności mechaniczne połączeń,
− możliwość spawania w różnych pozycjach,
− możliwość mechanizacji i robotyzacji spawania.
Każdy z zastosowanych gazów spełnia konkretne zadnie, ich użycie nie jest w żadnym
wypadku przypadkowe. I tak argon z racji swojej dużej gęstości utrzymuje atmosferę z dala
od jeziorka spawalniczego. Hel ma dużą wydajność ciepła, a to pomaga w odprowadzaniu
ciepła z łuku spawalniczego od elementu spawanego co znacznie zwiększa wytopienie.
Natomiast CO2 poprzez chemiczne reakcje z płynnym metalem wpływa na odprowadzanie
ciepła, poprawia wytop, oraz wpływa na łagodny wygląd spoiny zmniejszając napięcie
powierzchniowe.
Metoda TIG – w tej metodzie łuk jarzy się między nietopliwa elektrodą wolframową
a materiałem spawanym znajdującym się w osłonie gazów ochronnych. Urządzenia, które
stosuje się do spawania tą metodą, mogą być zasilane zarówno prądem zmiennym jak
i stałym. Ważne jest, iż do zajarzenia się łuku konieczne będą jonizatory wielkiej
częstotliwości. Z metody tej korzysta się przy spawaniu aluminium i jej stopów (prąd
przemienny), miedzi i jej stopów (prąd stały), oraz stali wysokostopowych. Można również
spawać nią stale niskowęglowe i niskostopowe, ale nie stosuje się jej, gdyż jest ona zbyt
kosztowana w przypadku wyżej wymienionych materiałów.
Urządzenia do spawania metodą TIG budowane są w trzech wersjach, to znaczy może być
urządzenie w jednej obudowie, w którym istnieje możliwość przełączenia z prądu
przemiennego na prąd stały. Dokonuje się tego za pomocą przełącznika, takie urządzenie
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania
Wykonywanie połączeń blachy techniką spawania

Weitere ähnliche Inhalte

Was ist angesagt? (20)

1
11
1
 
TECHNIK FOTOGRAFII I MULTIMEDIÓW
TECHNIK FOTOGRAFII I MULTIMEDIÓWTECHNIK FOTOGRAFII I MULTIMEDIÓW
TECHNIK FOTOGRAFII I MULTIMEDIÓW
 
Produkowanie koncentratów spożywczych
Produkowanie koncentratów spożywczychProdukowanie koncentratów spożywczych
Produkowanie koncentratów spożywczych
 
Przygotowywanie roztworów do chemicznej obróbki materiałów fotograficznych
Przygotowywanie roztworów do chemicznej obróbki materiałów fotograficznych Przygotowywanie roztworów do chemicznej obróbki materiałów fotograficznych
Przygotowywanie roztworów do chemicznej obróbki materiałów fotograficznych
 
Organizowanie procesów technologicznych przetwórstwa spożywczego
Organizowanie procesów technologicznych przetwórstwa spożywczego Organizowanie procesów technologicznych przetwórstwa spożywczego
Organizowanie procesów technologicznych przetwórstwa spożywczego
 
13
1313
13
 
Scalone dokumenty (6)
Scalone dokumenty (6)Scalone dokumenty (6)
Scalone dokumenty (6)
 
Technik.weterynarii 5
Technik.weterynarii 5Technik.weterynarii 5
Technik.weterynarii 5
 
4
44
4
 
14
1414
14
 
Slusarz 722[03] z1.02_u
Slusarz 722[03] z1.02_uSlusarz 722[03] z1.02_u
Slusarz 722[03] z1.02_u
 
15
1515
15
 
Wykonywanie nietypowych połączeń blachy
Wykonywanie nietypowych połączeń blachy Wykonywanie nietypowych połączeń blachy
Wykonywanie nietypowych połączeń blachy
 
22
2222
22
 
Dietetyk 321[11] z2.09_u
Dietetyk 321[11] z2.09_uDietetyk 321[11] z2.09_u
Dietetyk 321[11] z2.09_u
 
2. Charakteryzowanie budowy, fizjologii i patologii narządu żucia.
2. Charakteryzowanie budowy, fizjologii i patologii narządu żucia.2. Charakteryzowanie budowy, fizjologii i patologii narządu żucia.
2. Charakteryzowanie budowy, fizjologii i patologii narządu żucia.
 
15
1515
15
 
4
44
4
 
Rzeznik.wedliniarz 741[03] z4.05_u
Rzeznik.wedliniarz 741[03] z4.05_uRzeznik.wedliniarz 741[03] z4.05_u
Rzeznik.wedliniarz 741[03] z4.05_u
 
3
33
3
 

Andere mochten auch

Stanowisko Instytucji Zarządzającej RPO WSL w zakresie zmian w projektach w o...
Stanowisko Instytucji Zarządzającej RPO WSL w zakresie zmian w projektach w o...Stanowisko Instytucji Zarządzającej RPO WSL w zakresie zmian w projektach w o...
Stanowisko Instytucji Zarządzającej RPO WSL w zakresie zmian w projektach w o...RPOWSL
 
Janusz gwadera stypendium z wyboru
Janusz gwadera   stypendium z wyboruJanusz gwadera   stypendium z wyboru
Janusz gwadera stypendium z wyboruJanusz Gwadera
 
40. badanie układów sterowania z regulatorami nieciągłymi
40. badanie układów sterowania z regulatorami nieciągłymi40. badanie układów sterowania z regulatorami nieciągłymi
40. badanie układów sterowania z regulatorami nieciągłymiLukas Pobocha
 
Efektywnosc wykorzystania energii_w_latach_2002-2012
Efektywnosc wykorzystania energii_w_latach_2002-2012Efektywnosc wykorzystania energii_w_latach_2002-2012
Efektywnosc wykorzystania energii_w_latach_2002-2012Grupa PTWP S.A.
 
36. Montowanie i badanie instalacji domofonowej
36. Montowanie i badanie instalacji domofonowej36. Montowanie i badanie instalacji domofonowej
36. Montowanie i badanie instalacji domofonowejLukas Pobocha
 
Surowce energetyczne – elektrownie w polsce
Surowce energetyczne – elektrownie w polsceSurowce energetyczne – elektrownie w polsce
Surowce energetyczne – elektrownie w polsceBabcia3000
 
Rozdzielnica rsn2 (nr fabr. 115 16)
Rozdzielnica rsn2 (nr fabr. 115 16)Rozdzielnica rsn2 (nr fabr. 115 16)
Rozdzielnica rsn2 (nr fabr. 115 16)krzysztofdeda
 
Uczenie sie
Uczenie sieUczenie sie
Uczenie siemalbor25
 
Sztuka Pielegnacji Skory - Ebook
Sztuka Pielegnacji Skory - EbookSztuka Pielegnacji Skory - Ebook
Sztuka Pielegnacji Skory - Ebooksisishare
 
5 menadzer-doskonaly-rozwiazywanie-problemow
5 menadzer-doskonaly-rozwiazywanie-problemow5 menadzer-doskonaly-rozwiazywanie-problemow
5 menadzer-doskonaly-rozwiazywanie-problemowe-book prezenty
 
Hydraulic cushions
Hydraulic cushionsHydraulic cushions
Hydraulic cushionsabuamo
 
Całość publikacji
Całość publikacjiCałość publikacji
Całość publikacjiBeata Wójcik
 
Scalone dokumenty (14)
Scalone dokumenty (14)Scalone dokumenty (14)
Scalone dokumenty (14)Darek Simka
 
Proces zmian w edukacji (dydaktyka nauczania)
Proces  zmian            w  edukacji (dydaktyka nauczania)Proces  zmian            w  edukacji (dydaktyka nauczania)
Proces zmian w edukacji (dydaktyka nauczania)Mrtinez86
 
Scalone dokumenty (12)
Scalone dokumenty (12)Scalone dokumenty (12)
Scalone dokumenty (12)Darek Simka
 

Andere mochten auch (20)

Stanowisko Instytucji Zarządzającej RPO WSL w zakresie zmian w projektach w o...
Stanowisko Instytucji Zarządzającej RPO WSL w zakresie zmian w projektach w o...Stanowisko Instytucji Zarządzającej RPO WSL w zakresie zmian w projektach w o...
Stanowisko Instytucji Zarządzającej RPO WSL w zakresie zmian w projektach w o...
 
Janusz gwadera stypendium z wyboru
Janusz gwadera   stypendium z wyboruJanusz gwadera   stypendium z wyboru
Janusz gwadera stypendium z wyboru
 
SVG
SVGSVG
SVG
 
40. badanie układów sterowania z regulatorami nieciągłymi
40. badanie układów sterowania z regulatorami nieciągłymi40. badanie układów sterowania z regulatorami nieciągłymi
40. badanie układów sterowania z regulatorami nieciągłymi
 
Efektywnosc wykorzystania energii_w_latach_2002-2012
Efektywnosc wykorzystania energii_w_latach_2002-2012Efektywnosc wykorzystania energii_w_latach_2002-2012
Efektywnosc wykorzystania energii_w_latach_2002-2012
 
36. Montowanie i badanie instalacji domofonowej
36. Montowanie i badanie instalacji domofonowej36. Montowanie i badanie instalacji domofonowej
36. Montowanie i badanie instalacji domofonowej
 
Hupp 6
Hupp   6Hupp   6
Hupp 6
 
Surowce energetyczne – elektrownie w polsce
Surowce energetyczne – elektrownie w polsceSurowce energetyczne – elektrownie w polsce
Surowce energetyczne – elektrownie w polsce
 
Rozdzielnica rsn2 (nr fabr. 115 16)
Rozdzielnica rsn2 (nr fabr. 115 16)Rozdzielnica rsn2 (nr fabr. 115 16)
Rozdzielnica rsn2 (nr fabr. 115 16)
 
Soczewki
SoczewkiSoczewki
Soczewki
 
Uczenie sie
Uczenie sieUczenie sie
Uczenie sie
 
Wypalenie zawodowe
Wypalenie zawodowe Wypalenie zawodowe
Wypalenie zawodowe
 
Sztuka Pielegnacji Skory - Ebook
Sztuka Pielegnacji Skory - EbookSztuka Pielegnacji Skory - Ebook
Sztuka Pielegnacji Skory - Ebook
 
5 menadzer-doskonaly-rozwiazywanie-problemow
5 menadzer-doskonaly-rozwiazywanie-problemow5 menadzer-doskonaly-rozwiazywanie-problemow
5 menadzer-doskonaly-rozwiazywanie-problemow
 
Hydraulic cushions
Hydraulic cushionsHydraulic cushions
Hydraulic cushions
 
Całość publikacji
Całość publikacjiCałość publikacji
Całość publikacji
 
Scalone dokumenty (14)
Scalone dokumenty (14)Scalone dokumenty (14)
Scalone dokumenty (14)
 
Proces zmian w edukacji (dydaktyka nauczania)
Proces  zmian            w  edukacji (dydaktyka nauczania)Proces  zmian            w  edukacji (dydaktyka nauczania)
Proces zmian w edukacji (dydaktyka nauczania)
 
Scalone dokumenty (12)
Scalone dokumenty (12)Scalone dokumenty (12)
Scalone dokumenty (12)
 
Z2.02
Z2.02Z2.02
Z2.02
 

Ähnlich wie Wykonywanie połączeń blachy techniką spawania

Wykonywanie operacji cięcia blachy
Wykonywanie operacji cięcia blachy Wykonywanie operacji cięcia blachy
Wykonywanie operacji cięcia blachy kamil132
 
Wykonywanie napraw wgnieceń poszycia nadwozia
Wykonywanie napraw wgnieceń poszycia nadwozia Wykonywanie napraw wgnieceń poszycia nadwozia
Wykonywanie napraw wgnieceń poszycia nadwozia kamil132
 
Wykonywanie operacji kształtowania blachy
Wykonywanie operacji kształtowania blachy Wykonywanie operacji kształtowania blachy
Wykonywanie operacji kształtowania blachy kamil132
 
Wykonywanie operacji obróbki skrawaniem
Wykonywanie operacji obróbki skrawaniem Wykonywanie operacji obróbki skrawaniem
Wykonywanie operacji obróbki skrawaniem kamil132
 
Dekarz 713[01] z1.09_u
Dekarz 713[01] z1.09_uDekarz 713[01] z1.09_u
Dekarz 713[01] z1.09_uEmotka
 
16. Wykonywanie połączeń spajanych
16. Wykonywanie połączeń spajanych16. Wykonywanie połączeń spajanych
16. Wykonywanie połączeń spajanychAdam Osa
 
Dekarz 713[01] z1.04_u
Dekarz 713[01] z1.04_uDekarz 713[01] z1.04_u
Dekarz 713[01] z1.04_uEmotka
 
Ciesla 712[02] z1.01_u
Ciesla 712[02] z1.01_uCiesla 712[02] z1.01_u
Ciesla 712[02] z1.01_uEmotka
 
Dokonywanie wymiany elementów nadwozia
Dokonywanie wymiany elementów nadwozia Dokonywanie wymiany elementów nadwozia
Dokonywanie wymiany elementów nadwozia kamil132
 
Dekarz 713[01] z1.06_u
Dekarz 713[01] z1.06_uDekarz 713[01] z1.06_u
Dekarz 713[01] z1.06_uEmotka
 
Dekarz 713[01] z1.02_u
Dekarz 713[01] z1.02_uDekarz 713[01] z1.02_u
Dekarz 713[01] z1.02_uEmotka
 
Gornik.eksploatacji.podziemnej 711[02] z1.02_u
Gornik.eksploatacji.podziemnej 711[02] z1.02_uGornik.eksploatacji.podziemnej 711[02] z1.02_u
Gornik.eksploatacji.podziemnej 711[02] z1.02_uMuszex
 
Dekarz 713[01] z1.11_u
Dekarz 713[01] z1.11_uDekarz 713[01] z1.11_u
Dekarz 713[01] z1.11_uEmotka
 

Ähnlich wie Wykonywanie połączeń blachy techniką spawania (20)

Wykonywanie operacji cięcia blachy
Wykonywanie operacji cięcia blachy Wykonywanie operacji cięcia blachy
Wykonywanie operacji cięcia blachy
 
Wykonywanie napraw wgnieceń poszycia nadwozia
Wykonywanie napraw wgnieceń poszycia nadwozia Wykonywanie napraw wgnieceń poszycia nadwozia
Wykonywanie napraw wgnieceń poszycia nadwozia
 
Wykonywanie operacji kształtowania blachy
Wykonywanie operacji kształtowania blachy Wykonywanie operacji kształtowania blachy
Wykonywanie operacji kształtowania blachy
 
Wykonywanie operacji obróbki skrawaniem
Wykonywanie operacji obróbki skrawaniem Wykonywanie operacji obróbki skrawaniem
Wykonywanie operacji obróbki skrawaniem
 
15
1515
15
 
Tapicer 743[03] z3.03_u
Tapicer 743[03] z3.03_uTapicer 743[03] z3.03_u
Tapicer 743[03] z3.03_u
 
Dekarz 713[01] z1.09_u
Dekarz 713[01] z1.09_uDekarz 713[01] z1.09_u
Dekarz 713[01] z1.09_u
 
16. Wykonywanie połączeń spajanych
16. Wykonywanie połączeń spajanych16. Wykonywanie połączeń spajanych
16. Wykonywanie połączeń spajanych
 
Dekarz 713[01] z1.04_u
Dekarz 713[01] z1.04_uDekarz 713[01] z1.04_u
Dekarz 713[01] z1.04_u
 
4
44
4
 
Ciesla 712[02] z1.01_u
Ciesla 712[02] z1.01_uCiesla 712[02] z1.01_u
Ciesla 712[02] z1.01_u
 
Tapicer 743[03] z3.02_u
Tapicer 743[03] z3.02_uTapicer 743[03] z3.02_u
Tapicer 743[03] z3.02_u
 
Dokonywanie wymiany elementów nadwozia
Dokonywanie wymiany elementów nadwozia Dokonywanie wymiany elementów nadwozia
Dokonywanie wymiany elementów nadwozia
 
Malarz-tapeciarz
Malarz-tapeciarzMalarz-tapeciarz
Malarz-tapeciarz
 
Dekarz 713[01] z1.06_u
Dekarz 713[01] z1.06_uDekarz 713[01] z1.06_u
Dekarz 713[01] z1.06_u
 
Dekarz 713[01] z1.02_u
Dekarz 713[01] z1.02_uDekarz 713[01] z1.02_u
Dekarz 713[01] z1.02_u
 
1.02
1.021.02
1.02
 
Gornik.eksploatacji.podziemnej 711[02] z1.02_u
Gornik.eksploatacji.podziemnej 711[02] z1.02_uGornik.eksploatacji.podziemnej 711[02] z1.02_u
Gornik.eksploatacji.podziemnej 711[02] z1.02_u
 
Dekarz 713[01] z1.11_u
Dekarz 713[01] z1.11_uDekarz 713[01] z1.11_u
Dekarz 713[01] z1.11_u
 
6
66
6
 

Wykonywanie połączeń blachy techniką spawania

  • 1.
  • 2. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” MINISTERSTWO EDUKACJI NARODOWEJ Leszek Kucharski Tomasz Trojanowski Wykonywanie połączeń blachy techniką spawania 721[03].Z1.04 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy Radom 2006
  • 3. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 1 Recenzenci: mgr inż. Grażyna Uhman mgr Jerzy Mormul Opracowanie redakcyjne: mgr inż. Leszek Kucharski mgr inż. Tomasz Trojanowski Konsultacja: mgr inż. Piotr Ziembicki Korekta: Poradnik stanowi obudowę dydaktyczną programu jednostki modułowej 721[03].Z1.04 Wykonywanie połączeń blachy techniką spawania zawartego w modułowym programie nauczania dla zawodu blacharz samochodowy. Wydawca Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy, Radom 2006
  • 4. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 2 SPIS TREŚCI 1. Wprowadzenie 3 2. Wymagania wstępne 5 3. Cele kształcenia 6 4. Materiał nauczania 7 4.1. Bezpieczeństwo i higiena pracy podczas spawania 7 4.1.1. Materiał nauczania 7 4.1.2. Pytania sprawdzające 13 4.1.3. Ćwiczenia 14 4.1.4. Sprawdzian postępów 15 4.2. Istota spawania 16 4.2.1. Materiał nauczania 16 4.2.2. Pytania sprawdzające 18 4.2.3. Ćwiczenia 18 4.2.4. Sprawdzian postępów 21 4.3. Spawanie gazowe 22 4.3.1. Materiał nauczania 22 4.3.2. Pytania sprawdzające 29 4.3.3. Ćwiczenia 30 4.3.4. Sprawdzian postępów 31 4.4. Spawanie elektryczne 32 4.4.1. Materiał nauczania 32 4.4.2. Pytania sprawdzające 49 4.4.3. Ćwiczenia 50 4.4.4. Sprawdzian postępów 51 4.5. Nowoczesne metody spawania 52 4.5.1. Materiał nauczania 52 4.5.2. Pytania sprawdzające 56 4.5.3. Ćwiczenia 56 4.5.4. Sprawdzian postępów 57 4.6. Cięcie termiczne 58 4.6.1. Materiał nauczania 58 4.6.2. Pytania sprawdzające 62 4.6.3. Ćwiczenia 62 4.6.4. Sprawdzian postępów 63 5. Sprawdzian osiągnięć 64 6. Literatura 68
  • 5. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 3 1. WPROWADZENIE Poradnik będzie Ci pomocny w przyswajaniu wiedzy z zakresu spawania i cięcia metali oraz kształtowaniu umiejętności spawania elementów. W poradniku zamieszczono: − wymagania wstępne: to wykaz umiejętności, które powinieneś mieć opanowane zanim przystąpisz do realizacji programu jednostki modułowej: przeczytaj je uważnie i odpowiedz sobie na pytanie: czy posiadasz te umiejętności, − cele kształcenia: to wykaz umiejętności jakie ukształtujesz podczas realizacji programu tej jednostki modułowej, − materiał nauczania, który zawiera: − zestaw informacji, który pozwoli Ci przygotować się do wykonania ćwiczeń; naucz się ich sumiennie pamiętając o tym, że aby umieć coś zrobić najpierw trzeba wiedzieć, − pytania sprawdzające: odpowiadając na nie, sam stwierdzisz, czy jesteś dobrze przygotowany do wykonania ćwiczeń, − ćwiczenia: to najważniejszy etap twojej nauki, będziesz je wykonywał samodzielnie lub w grupie kolegów. Staraj się być aktywny, uważnie i starannie przygotuj ćwiczenie, podczas wykonywania ćwiczeń skorzystaj z instrukcji, materiałów, narzędzi i maszyn, nie lekceważ rad i uwag nauczyciela, sporządź dokumentację ćwiczenia oraz co najważniejsze bądź ostrożny, przestrzegaj zasad bhp, − sprawdzian postępów: odpowiadając na zawarte tam pytania sam odpowiesz sobie, czy osiągnąłeś cele kształcenia, − sprawdzian osiągnięć to przykład testu (sprawdzianu, klasówki). Podobny test, który przygotuje nauczyciel będziesz wykonywał pod koniec realizacji jednostki modułowej. Sprawdzian dotyczy całej jednostki modułowej, a więc kompleksowo sprawdza wiedzę i umiejętności, jakie powinieneś nabyć. Przygotuj się do niego solidnie, bo tylko wtedy będziesz miał satysfakcję z dobrze wykonanego zadania. Podczas realizacji zajęć staraj się być aktywnym, korzystaj ze wszystkich materiałów, narzędzi i maszyn jakie otrzymasz. Jeśli jednak będziesz miał trudności ze zrozumieniem tematu lub ćwiczenia, to poproś nauczyciela lub pracując w grupie kolegę, by wyjaśnił Ci czy dobrze wykonujesz daną czynność. W czasie zajęć edukacyjnych będziesz miał do czynienia z różnymi narzędziami, maszynami, urządzeniami oraz materiałami. W trosce o własne bezpieczeństwo, jak również Twoich kolegów musisz przestrzegać regulaminu pracowni oraz zasad bhp; szczegółowe przepisy bhp znajdziesz w pierwszym rozdziale tego opracowania. Zagadnieniami szczególnie istotnymi, z którymi podczas pracy w zawodzie blacharza będziesz spotykał się na co dzień i na które powinieneś zwrócić szczególną uwagę, są współcześnie stosowane metody spawania, a wśród nich na pewno spawanie metodami: MIG, MAG i TIG. Trudność sprawi Ci na pewno spawanie blach o niewielkiej grubości, bardzo często stosowanych w blacharstwie do napraw poszycia nadwozia. Mamy nadzieję, że poradnik ten pomoże Ci przygotować się do wykonywania zawodu blacharza samochodowego.
  • 6. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 4 Schemat układu jednostek modułowych 721[03].Z1.02 Wykonywanie operacji cięcia blachy 721[03].Z1.03 Wykonywanie operacji kształtowania blachy 721[03].Z1.04 Wykonywanie połączeń blachy techniką spawania 721[03].Z1.05 Wykonywanie połączeń blachy techniką zgrzewania 721[03].Z1.06 Wykonywanie nietypowych połączeń blachy 721[03].Z1 Technologia obróbki blachy 721[03].Z1.01 Wykonywanie operacji obróbki skrawaniem
  • 7. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 5 2. WYMAGANIA WSTĘPNE Przystępując do realizacji programu jednostki modułowej powinieneś umieć: − korzystać z różnych źródeł informacji, − charakteryzować technologie produkcji nadwozi samochodowych, − charakteryzować procesy obróbki wiórowej i obróbki plastycznej, − wykonywać operacje tłoczenia i cięcia blachy, − wykonywać operacje kształtowania blachy, − posługiwać się dokumentacją techniczną, − wyszukiwać informacje w Internecie, − stosować ogólne zasady bhp i ppoż. w czasie eksploatacji maszyn i urządzeń.
  • 8. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 6 3. CELE KSZTAŁCENIA W wyniku realizacji programu jednostki modułowej powinieneś umieć: − scharakteryzować metodę łączenia materiałów poprzez spawanie, − opisać części składowe spoiny, − rozróżnić rodzaje spoin, − scharakteryzować metodę spawania gazowego, − scharakteryzować proces wytwarzania, warunki przechowywania oraz zastosowanie acetylenu jako gazu spawalniczego, − zorganizować stanowisko pracy do spawania gazowego, − przygotować sprzęt do spawania gazowego, − scharakteryzować techniki spawania gazowego, − wykonać spawanie metodą w lewo, − wykonać spawanie metodą w prawo, − scharakteryzować spawanie elektryczne oraz spawanie w osłonie gazów, − scharakteryzować technologię spawania elektrodami otulonymi, − rozróżnić rodzaje elektrod i ich oznaczenia, − przedstawić na rysunku połączenia spawane elementów nadwozia, − posłużyć się spawarka elektryczną, − wykonać ścieg spawalniczy, wypełnić rowek, − wykonać spoinę czołową, pachwinową, pionową i naścienną metodami TIG, MIG, MAG, − połączyć blachy aluminiowe i mosiężne za pomocą spawania, − usunąć skutki skurczu spoin, − scharakteryzować spawanie wiązanką elektronów, laserowe, tlenowe, plazmowe, − wyjaśnić zjawisko cięcia termicznego, − ciąć blachy o zadanej grubości palnikiem acetylenowo-tlenowym, − wyjaśnić cięcie: tlenowe, tlenowo-łukowe, tzw. lancą, plazmowe i cięcie laserem, − wykonać podstawowe obliczenia wytrzymałościowe połączeń spawanych, − skorzystać z aktualnej literatury technicznej, norm i instrukcji, − zastosować zasady bhp, ochrony przeciwpożarowej i ochrony środowiska.
  • 9. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 7 4. MATERIAŁ NAUCZANIA 4.1. Bezpieczeństwo i higiena pracy podczas spawania 4.1.1. Materiał nauczania Podczas wykonywania prac spawalniczych oraz innych prac w warsztacie, należy bezwzględnie przestrzegać zasad bezpieczeństwa i higieny pracy oraz przepisów przeciwpożarowych. Jednym z podstawowych dokumentów, w którym zawarte są zasady bhp podczas spawania jest rozporządzenie Ministra Gospodarki w sprawie bezpieczeństwa i higieny pracy przy pracach spawalniczych z dnia 27 kwietnia 2000 r. (Dz. U. Nr 40). W dokumencie tym zawarte są najważniejsze wymogi, przede wszystkim spawanie może wykonywać tylko osoba, która została odpowiednio przeszkolona, zdała egzamin oraz została zapoznana z zasadami bhp. Spawacz powinien być wyposażony w odpowiedni sprzęt ochrony osobistej: − ubranie robocze, − fartuch spawalniczy, − rękawice ochronne, − buty robocze, − nakrycie głowy (czapka, beret lub kask), − tarcza spawalnicza lub przyłbica (zaopatrzone w odpowiednie szkła barwne i bezbarwne). Bardzo ważne jest odpowiednie przygotowanie pomieszczeń, w których będzie odbywało się spawanie. Należy usunąć z nich wszystkie materiały palne lub też zabezpieczyć je materiałami niepalnymi (kocami lub matami przeciwpożarowymi, blachami). Samo spawanie powinno odbywać się w osobnym pomieszczeniu, które powinno spełniać następujące zasady: powierzchnia stanowiska pracy powinna wynosić co najmniej 4 m2 , wysokość pomieszczenia to minimum 3,75 m, powierzchnia podłogi nie zajętej przez żadne urządzenia powinna wynosić minimum 2 m2, konieczna jest też wentylacja ogólna oraz stanowiskowa. W przypadku, gdy spawanie odbywa się w hali, a nie w osobnym pomieszczeniu, to stanowisko spawalnicze powinno być przynajmniej osłonięte parawanem stałym lub przenośnym. Te parawany mają na celu zabezpieczenie innych osób pracujących w danym miejscu przed szkodliwym działaniem promieni łukowych. Spawanie można wykonywać również na otwartej przestrzeni, ale stanowisko pracy spawacza powinno być zabezpieczone przed opadami atmosferycznymi. Spawanie jest pracą szkodliwą dla zdrowia. Osoby wykonujące ten zawód narażone są na wiele zagrożeń wynikających z wykonywanych czynności. Dlatego tak istotne jest przestrzeganie zasad bhp. Porażenie prądem – w wyniku niefachowej eksploatacji, naprawy lub działania innych czynników takich jak wilgoć, uszkodzenie mechaniczne czy wysokie temperatury, może następować uszkodzenie urządzeń elektrycznych. Takie uszkodzenia mogą być przyczyną porażenia prądem. Porażenie jest bardzo niebezpieczne, gdyż może doprowadzić do zaburzeń pracy układu krążenia i układu oddechowego, miejscowych poparzeń, uszkodzenia mięśni lub stawów, oraz nagłego zatrzymania krążenia. Dlatego ważne jest odpowiednie obchodzenie się z urządzeniami elektrycznymi oraz ich właściwe zabezpieczenie. W przypadku, gdy dojdzie do porażenia prądem należy przede wszystkim upewnić się czy jest bezpiecznie. W tym celu należy odciąć źródło prądu i ocenić stan osoby poszkodowanej (zgodnie z przyjętym algorytmem podstawowych zabiegów resuscytacyjnych BLS).
  • 10. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 8 Gdyby wyłączenie prądu oznaczało upadek porażonego, trzeba go odpowiednio zabezpieczyć tak, by upadek ten nie spowodował dodatkowych obrażeń. Najważniejszy podczas udzielania pierwszej pomocy jest czas. Pierwsza minuta po odłączeniu prądu, daje największe szanse na uratowanie osoby porażonej. Im więcej czasu mija, tym te szanse są mniejsze. Jeśli porażony jest nieprzytomny, należy zastosować podstawowe zabiegi resuscytacyjne zgodnie z przyjętym algorytmem BLS (Basic Life Suport), dotyczącym bezprzyrządowego utrzymania drożności dróg oddechowych oraz podtrzymania oddychania i krążenia według przedstawionego poniżej schematu postępowania. Podstawowe zabiegi resuscytacyjne u dorosłych. Algorytm BLS zaleca: 1. Upewnij się, czy poszkodowany i wszyscy świadkowie zdarzenia są bezpieczni. 2. Sprawdź reakcję poszkodowanego. a) delikatnie potrząśnij za ramiona i głośno zapytaj: „Czy wszystko w porządku?” 3 a Jeśli reaguje: − zostaw poszkodowanego w pozycji, w której go zastałeś, o ile nie zagraża mu żadne niebezpieczeństwo, − dowiedz się jak najwięcej o stanie poszkodowanego, wezwij pomoc jeśli będzie potrzebna, − regularnie oceniaj jego stan. 3 b Jeśli nie reaguje: − głośno zawołaj o pomoc, − odwróć poszkodowanego na plecy, a następnie udrożnij jego drogi oddechowe, wykonując odgięcie głowy i uniesienie żuchwy: – umieść jedną rękę na czole poszkodowanego i delikatnie odegnij jego głowę do tyłu, pozostawiając wolny kciuk i palec wskazujący tak, aby zatkać nimi nos, jeżeli potrzebne będą oddechy ratunkowe, Zawołaj o pomoc Nie reaguje Udrożnij drogi oddechowe Brak prawidłowego oddechu Zadzwoń pod numer 112 30 uciśnięć klatki piersiowej 2 oddechy ratownicze na 30 uciśnięć klatki piersiowej
  • 11. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 9 – opuszki palców drugiej ręki umieść na żuchwie poszkodowanego, a następnie unieś ją w celu udrożnienia dróg oddechowych. 4. Utrzymując drożność dróg oddechowych wzrokiem, słuchem i dotykiem poszukaj prawidłowego oddechu: a) oceń wzrokiem ruchy klatki piersiowej, b) nasłuchuj przy ustach poszkodowanego szmerów oddechowych, c) staraj się wyczuć ruch powietrza na swoim policzku. W pierwszych minutach po zatrzymaniu krążenia, poszkodowany może słabo oddychać lub wykonywać głośne, pojedyncze westchnięcia. Nie należy ich mylić z prawidłowym oddechem. Na ocenę wzrokiem, słuchem i dotykiem przeznacz nie więcej niż 10 sekund. Jeśli masz jakiekolwiek wątpliwości czy oddech jest prawidłowy, działaj tak, jakby był nieprawidłowy. 5. a) Jeśli oddech jest prawidłowy: − ułóż poszkodowanego w pozycji bezpiecznej, − wyślij kogoś lub sam udaj się po pomoc (wezwij pogotowie), − regularnie oceniaj oddech. 5. b) Jeśli oddech nie jest prawidłowy: – wyślij kogoś po pomoc, jeżeli jesteś sam, zostaw poszkodowanego i wezwij pogotowie, wróć i rozpocznij uciskanie klatki piersiowej zgodnie z poniższym opisem: – uklęknij obok poszkodowanego, – ułóż nadgarstek jednej ręki na środku klatki piersiowej poszkodowanego, – ułóż nadgarstek drugiej ręki na już położonym, – spleć palce obu dłoni i upewnij się, że nie będziesz wywierać nacisku na żebra – poszkodowanego; nie uciskaj nadbrzusza ani dolnego końca mostka, – pochyl się nad poszkodowanym, wyprostowane ramiona ustaw prostopadle do mostka i uciskaj na głębokość 4 – 5 cm, – po każdym uciśnięciu zwolnij nacisk na klatkę piersiową, nie odrywając dłoni od mostka. Powtarzaj uciśnięcia z częstotliwością 100/min (nieco mniej niż 2 uciśnięcia/s), – okres uciskania i zwalniania nacisku (relaksacji) mostka powinien być taki sam. 6. a) Połącz uciskanie klatki piersiowej z oddechami ratowniczymi: − po wykonaniu 30 uciśnięć klatki piersiowej udrożnij drogi oddechowe, odginając głowę i unosząc żuchwę, − zaciśnij skrzydełka nosa, używając palca wskazującego i kciuka ręki umieszczonej na czole poszkodowanego, − pozostaw usta delikatnie otwarte, jednocześnie utrzymując uniesienie żuchwy, − weź normalny wdech i obejmij szczelnie usta poszkodowanego swoimi ustami, upewniając się, że nie ma przecieku powietrza, − wdmuchuj powoli powietrze do ust poszkodowanego przez około l sekundę (tak jak przy normalnym oddychaniu), obserwując jednocześnie, czy klatka piersiowa unosi się; taki oddech ratowniczy jest efektywny, − utrzymując odgięcie głowy i uniesienie żuchwy, odsuń swoje usta od ust poszkodowanego i obserwuj, czy podczas wydechu opada jego klatka piersiowa, − jeszcze raz nabierz powietrza i wdmuchuj do ust poszkodowanego, dążąc do wykonania dwóch skutecznych oddechów ratowniczych; następnie ponownie ułóż ręce w prawidłowej pozycji na mostku i wykonaj kolejnych 30 uciśnięć klatki piersiowej, − kontynuuj uciskanie klatki piersiowej i oddechy ratownicze w stosunku 30:2, − przerwij swoje działanie w celu sprawdzenia stanu poszkodowanego tylko wtedy, gdy
  • 12. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 10 − zacznie on prawidłowo oddychać. W innym przypadku nie przerywaj resuscytacji. Jeżeli wykonany pierwszy oddech ratowniczy nie powoduje uniesienia się klatki piersiowej, jak przy normalnym oddychaniu, wykonaj następujące czynności: − sprawdź jamę ustną poszkodowanego i usuń widoczne ciała obce, − sprawdź, czy odgięcie głowy i uniesienie żuchwy są poprawnie wykonane, − wykonaj nie więcej niż 2 próby wentylacji za każdym razem, zanim podejmiesz ponownie uciskanie klatki piersiowej. Jeżeli na miejscu zdarzenia jest więcej niż jeden ratownik, ratownicy powinni się zmieniać podczas prowadzenia RKO co l - 2 minuty, aby zapobiec zmęczeniu. Należy zminimalizować przerwy w resuscytacji podczas zmian. 6. b) RKO ograniczoną wyłącznie do uciśnięć klatki piersiowej możesz prowadzić w następujących sytuacjach: − jeżeli nie jesteś w stanie lub nie chcesz wykonywać oddechów ratowniczych, zastosuj uciśnięcie klatki piersiowej, − jeżeli stosujesz wyłącznie uciśnięcia klatki piersiowej, wykonuj je bez przerwy z częstotliwością 100 uciśnięć/min, − przerwij swoje działanie w celu sprawdzenia stanu poszkodowanego tylko wtedy, jeżeli zacznie on prawidłowo oddychać. W innym przypadku nie przerywaj resuscytacji. 7. Kontynuuj resuscytację do czasu gdy: − przybędą wykwalifikowane służby medyczne i podejmą działanie, − poszkodowany zacznie prawidłowo oddychać, − ulegniesz wyczerpaniu. Ochrona oczu – spawacz podczas pracy narażony jest na działanie nie tylko widzialnych promieni świetlnych, ale również promieni niewidzialnych, czyli nadfioletowych oraz podczerwonych. Naświetlenie oczu odczuwa się dopiero po kilku godzinach, objawia się ono szczypaniem, łzawieniem i światłowstrętem. Aby nie dopuścić do takiej sytuacji należy stosować odpowiednie okulary lub też maski z właściwymi szkłami ochronnymi. W zależności od rodzaju wykonywanego spawania dobiera się odpowiednie szkła. I tak do spawania łukowego dobiera się szkła w zależności od natężenia prądu (istnieje 19 różnych rodzajów szkieł określanych stopniem ochrony N począwszy od wartości 1,2 aż do 16). Do spawania gazowego dobiera się szkła zależnie od wydajności gazu palnego – acetylenu dm3 /h. Do cięcia, żłobienia oraz skórowania tlenem dobiera się szkła w zależności od wydajności tlenu w dm3 /h. Działanie gazów – podczas spawania wydzielają się różne gazy oraz pyły, które mogą negatywnie wpływać na zdrowie spawacza. Podczas spawania elektrycznego w powietrzu mogą znajdować się tlen, azot, ozon, dwutlenek węgla i tlenek węgla. Poza gazami, w powietrzu mogą znajdować się dymy, w których znajdują się tlenki azotu, manganu, krzemu, azotu i miedzi. Ich duże stężanie może powodować zawroty głowy, bóle głowy, a także drgawki oraz zapaść. Należy pamiętać, że podczas spawania elektrodami otulonymi wydzielają się różne gazy takie jak CO, CO2, N2, H2. Duże ilości CO (tlenku węgla) wydzielają się podczas spawania w osłonie CO2. Gaz ten jest wyjątkowo szkodliwy dla zdrowia i życia pracującego, gdyż reaguje z hemoglobiną krwi. Może powodować śpiączkę, zmęczenie oraz utratę przytomności. Aby zapobiec powyższym wypadkom należy przestrzegać norm określających dopuszczalne wartości CO w pomieszczeniach, które wynoszą: − 0,1 % objętości przy stałym przebywaniu,
  • 13. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 11 − 0,129 % objętości przy okresowym przebywaniu, − 0,2 % objętości przy chwilowym przebywaniu. Ze względu na szkodliwość gazów, tlenków i pyłów wyjątkowo ważne jest by w pomieszczeniach gdzie odbywa się spawanie, znajdowała się odpowiednia wentylacja zarówno ogólna jak i dodatkowa specjalnie dla stanowiska spawacza. Oparzenia – aby zabezpieczyć się przed oparzeniami, jakie mogą powstać w wyniku działania łuku elektrycznego lub zetknięcia się z gorącymi elementami, należy zawsze mieć na sobie ubranie robocze. Jeśli dojdzie do oparzenia, należy miejsce urazu, schłodzić zimną wodą w celu zmniejszenia bólu i uniknięcia powstania kolejnych pęcherzy lub przykryć jałową gazą, jeśli pojawił się pęcherz. Następnie trzeba udać się do lekarza. Zdarza się, iż należy zespawać pojemnik lub naczynie, w którym uprzednio znajdowały się gazy lub ciecze łatwopalne. Spawanie tego rodzaju przedmiotów jest niebezpieczne, gdyż pod wpływem ciepła wydzielają się gazy, które mogą doprowadzić do wybuchu. Aby temu zapobiec, należy przed wykonaniem prac spawalniczych kilkakrotnie wypłukać dany przedmiot gorącą wodą lub parą, ewentualnie wodą z domieszką środków rozpuszczających. Bardzo istotną sprawą w pracach spawalniczych jest wentylacja, ponieważ przy wszystkich rodzajach spawania wydzielają się szkodliwe dla zdrowia gazy, pyły i pary metaliczne. Powstaje też duże zanieczyszczenie powietrza tlenkiem węgla. Dlatego poza ogólną wentylacją, jaka zwykle znajduje się w halach, należy również zastosować dodatkową specjalnie dla stanowiska pracy spawacza. Dodatkową wentylację dla stanowiska pracy spawacza mogą zapewnić specjalne stoły z dolnym lub górnym wyciągiem powietrza, ewentualnie bocznym odciągiem. Istotne znaczenie mają też tablice ostrzegawcze. Powinny się one znajdować w miejscach widocznych dla wszystkich pracowników. Rys. 1. Znaki nakazu przypominające o konieczności stosowania indywidualnych środków ochronnych.[4] Ochrona przeciwpożarowa – obowiązek ochrony przeciwpożarowej w zakładzie pracy spoczywa na pracodawcy. Jest on zobowiązany do: − przestrzegania przeciwpożarowych wymagań budowlanych, instalacyjnych i technologicznych, − przeszkolenia pracowników, − zapewnienia środków koniecznych do gaszenia pożarów, − opracowania bezpiecznych dróg i sposobów ewakuacji. Jednakże pracownik ma również pewne obowiązki. Należą do nich: − udział w szkoleniach przeciwpożarowych, − przestrzeganie zasad bezpieczeństwa przeciwpożarowego podczas użytkowania sprzętów, − czynny udział w akcjach gaśniczych, ratowniczych i ewakuacjach. Przyczyny pożarów mogą być różnorodne, mogą być spowodowane działaniem ludzi lub mogą być niezależne od ich działania. Najczęstsze przyczyny pożarów w zakładach pracy to: − wady urządzeń technicznych,
  • 14. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 12 − niewłaściwe użytkowanie urządzeń mechanicznych i elektrycznych, − nieodpowiednie przechowywanie i zabezpieczenie materiałów łatwopalnych oraz wybuchowych, − wyładowania elektryczne, − elektryczność statyczna, − wybuchy gazów skroplonych lub sprężonych, materiałów pirotechnicznych, pyłów oraz oparów cieczy łatwopalnych, − samozapalenie przechowywanych nieostrożnie w zakładzie paliw, chemikaliów oraz odpadów, − nieostrożność i zaniedbania za strony pracowników Pożary można podzielić na cztery typy (A, B, C, D) w zależności od rodzaju palących się materiałów. TYPY POŻARÓW W ŻALEŻNOŚCI OD PALĄCYCH SIĘ MATERIAŁÓW A – spalaniu ulegają ciała stałe pochodzenia organicznego (paliwo stałe, drewno, papier, tkaniny itp.) B – ogień obejmuje ciecze palne lub substancje stałe przechodzące w stan płynny pod wpływem wysokiej temperatury (paliwa ciekłe, alkohol, smary, oleje itp.) . C – płoną gazy palne (acetylen, metan, propan-butan, wodór, gaz ziemny lub koksowniczy). D – zapaleniu uległy metale lekkie (magnez, sód, potas). Rys. 2. Typy pożarów [4] Ten podział ma bardzo duże znaczenie przy wyborze odpowiedniego rodzaju środków gaśniczych. Pożary (typu A), w których zapaleniu uległy ciała stałe pochodzenia organicznego takie jak paliwa stałe, papier czy tkaniny itp. można gasić wodą lub pianą powstającą przez zmieszanie wody z substancją pianotwórczą. Jednakże w przypadku, gdy palą się urządzenia elektryczne będące pod napięciem albo materiały wchodzące w reakcję chemiczne z wodą, należy zastosować inną metodę gaszenia. Stosuje się wówczas taki sam sposób gaszenia jak w przypadku pożarów (typu B), gdzie ogień obejmuje ciecze palne lub substancje stałe przechodzące w stan płynny pod wpływem wysokiej temperatury (paliwa ciekłe, alkohole, oleje, smary, materiały bitumiczne itp.). Do gaszenia takich pożarów stosuje się dwutlenek węgla. Jest on skuteczniejszy, gdyż nie przewodzi elektryczności oraz izoluje palące się substancje przed dostępem tlenu. Gaszenie pożarów (typ C), w których zapaleniu uległy gazy palne takie jak acetylen, metan, propan – butan, wodór, gaz koksowniczy lub ziemny polega głównie na odcięciu dopływu wyżej wymienionych gazów. Jeśli to nie wystarczy lub jest niemożliwe do wykonania dalsze czynności gaśnicze powinny zostać podjęte przez zawodową straż pożarną. Ostatni rodzaj pożarów (typ D) to sytuacje, w których zapaleniu uległy materiały lekkie takie jak magnez, sód, potas oraz palące się instalacje i urządzenia elektryczne. Do ich gaszenia stosuje się specjalne proszki gaśnicze. W każdym warsztacie powinny znajdować się hydranty gaśnicze. Mogą to być hydranty zewnętrzne jak i wewnętrzne. Powinny się one znajdować w miejscach łatwo dostępnych, tak by nie było trudności z podłączeniem do nich węży strażackich. Poza hydrantami
  • 15. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 13 obowiązkowym wyposażeniem w ramach ochrony przeciwpożarowej są gaśnice. Należy je przechowywać w odpowiednio wydzielonych i oznakowanych miejscach, ale jednocześnie w pobliżu miejsc potencjalnie zagrożonych pożarem. Tabela 1. Rodzaje gaśnic ich charakterystyka i zastosowanie. Typ gaśnicy Charakterystyka i przeznaczenie Sposób zastosowania Gaśnica ręczna wodna - hydronetk a Składa się z niewielkiego zbiornika wodnego, ręcznej pompki oraz krótkiego węża z końcówką kierującą zwaną prądownicą. Do wody można również dodawać środka pianotwórczego. Ustawić hydronetkę w pobliżu ognia, unieruchomić zbiornik z wodą przy pomocy nogi, rozwinąć wąż i skierować prądownicę w kierunku ognia, pompować płyn gaśniczy miarowymi ruchami. W razie potrzeby uzupełniać ciecz w zbiorniku. Gaśnica pianowa W zbiorniku znajduje się już uprzednio wymieszana woda ze środkiem pianotwórczym. Uruchamia się ją poprzez otwarcie zaworu wylotowego. Gaśnice zdjąć z wieszaka i udać się z nią w kierunku ognia, następnie odwrócić ją zaworem w dół i wbić zbijak uderzając nim o podłoże. Trzymając gaśnice zaworem w dół kierować strumień piany w ogień. Gaśnica śniegowa W zbiorniku znajduje się zapas skroplonego dwutlenku węgla. Uruchamia się ją poprzez otwarcie zaworu wylotowego. Gaśnice zdjąć z wieszaka i udać się z nią w kierunku ognia, następnie skierować na ogień dyszę wylotową. Odkręcić w lewo zawór i skierować strumień skośnie w dół na ogień. Gaśnica proszkow a W zbiorniku znajduje się proszek, który jest wydmuchiwany przez sprężone w butli niepalne gazy. Uruchamia się ją poprzez otwarcie zaworu wylotowego. Gaśnice zdjąć z wieszaka i trzymając ją za uchwyt udać się w kierunku ognia. Następnie usunąć zabezpieczenie zaworu. Zawór otworzyć po przez przekręcenie w lewo lub pociągnięcie dźwigni, albo też poprzez wciśniecie zbijaka. Po 3 sekundach nacisnąć dźwignię zaworu i skierować strumień w stronę ognia. Rygorystyczne stosowanie się do wyżej opisanych zasad i instrukcji ułatwi pracę oraz spowoduje ograniczenie możliwych wypadków, w wyniku których pracownicy mogą ponieść uszczerbek na zdrowiu. 4.1.2. Pytania sprawdzające Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Jakie środki ochrony osobistej powinien posiadać pracownik? 2. Jak powinno być przygotowane pomieszczenie do spawania? 3. Na jakie zagrożenia narażony jest spawacz i czym są one spowodowane? 4. Jakie jest znaczenie wentylacji podczas prac spawalniczych? 5. Jak dzielimy rodzaje pożarów i metody ich gaszenia?
  • 16. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 14 4.1.3. Ćwiczenia Ćwiczenie 1 Udziel pierwszej pomocy przedlekarskiej osobie porażonej prądem elektrycznym wykorzystując fantom. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś: 1) zapisać kolejno wykonywane czynności podczas ratowania porażonego prądem elektrycznym, zgodnie z algorytmem BLS, 2) sprawdzić czy jest ,,bezpiecznie”, 3) sprawdzić reakcję poszkodowanego – dokonać oceny przytomności, 4) głośno zawołać o pomoc, 5) ułożyć poszkodowanego i udrożnić jego drogi oddechowe, 6) ustalić występowanie oddechu, 7) powiadomić służby medyczne, 8) podjąć próbę reanimacji, 9) wykonać uciskanie klatki piersiowej, 10) połączyć uciskanie klatki piersiowej z oddechami ratowniczymi, 11) sprawdzić jamę ustną poszkodowanego i usunąć widoczne ciała obce, 12) okresowo kontrolować stan poszkodowanego, 13) przerwać resuscytację jedynie w ściśle określonych warunkach, 14) zapisać wnioski i spostrzeżenia z wykonanego ćwiczenia. Wyposażenie stanowiska pracy: − fantom (manekin), − przybory do pisania, − notatnik. Ćwiczenie 2 Zorganizuj zgodnie z zasadami bhp i przepisami przeciwpożarowymi stanowisko pracy spawacza, zgromadź niezbędny sprzęt i urządzenia spawalnicze a także wyposaż stanowisko w niezbędny sprzęt ochrony indywidualnej i sprzęt gaśniczy. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś: 1) zapoznać się z literaturą wskazaną przez nauczyciela, 2) usunąć z pomieszczenia lub zabezpieczyć wszystkie materiały palne, 3) sprawdzić stan wentylacji ogólnej i stanowiskowej, 4) zgromadzić obok stanowiska niezbędny sprzęt ochrony indywidualnej, 5) zgromadzić i sprawdzić stan określonego sprzętu gaśniczego (gaśnice śniegowe i proszkowe), 6) zgromadzić sprzęt spawalniczy, 7) sprawdzić przed włączeniem do sieci stan przewodów elektrycznych, 8) zapisać wnioski z wykonanego ćwiczenia. Wyposażenie stanowiska pracy: − sprzęt ochrony indywidualnej, − stanowisko spawalnicze z wentylacją,
  • 17. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 15 − sprzęt gaśniczy, − sprzęt spawalniczy, − materiały do pisania. 4.1.4. Sprawdzian postępów Czy potrafisz: Tak Nie 1) odciąć źródło prądu? 2) sprawdzić reakcję poszkodowanego, porażonego prądem? 3) zastosować „oddech ratowniczy”? 4) zastosować zewnętrzny masaż serca? 5) zorganizować zgodnie z zasadami bhp i przepisami przeciwpożarowymi stanowisko pracy spawacza?
  • 18. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 16 4.2. Istota spawania 4.2.1. Materiał nauczania Spawanie jest metodą łączenia materiałów poprzez nadtopienie ich krawędzi przy pomocy skoncentrowanego źródła ciepła. Zwykle dodaje się z zewnątrz materiał łączący (dodatkowy), natomiast nie wywiera się nacisku. [3, s. 158] Spawanie jest jedną z najpopularniejszych metod łączenia metali. Rozróżnia się kilka rodzajów spawania: − gazowe, − łukowe elektrodami otulonymi, − łukiem krytym, − żużlowe, − w osłonach gazowych metodami TIG, MIG, MAG, − plazmowe, − elektronowe. Ze względu na kształt spawanego złącza spoiny dzielimy na: doczołowe, kątowe, narożne, teowe, krzyżowe, otworowe, zakładkowe, nakładkowe i przylgowe. Rys. 3. Rodzaje złączy spawanych: a) – e) doczołowe, f) zakładkowe, g) kątowe, h), i) j) teowe, k), l) krzyżowe, ł), m) narożne, n) nakładkowe, o) przylgowe [2, s. 61] Spoiny w różnych rodzajach spawanych złączy mają taki sam kształt Wśród spoin też wyróżnia się kilka rodzajów, ale najczęściej wykonuje się: Spoiny czołowe – łączą one brzegi blach, które są ułożone względem siebie równolegle bądź też prostopadle. W zależności od sposobu przygotowania do spawania spoiny czołowe dzielimy na: I, V, X, U pojedyncze, podwójne, ½ V, K pojedyncze i podwójne. Spoiny pachwinowe – taką spoinę stanowi trójkąt składający się z jednej lub kilku warstw, ułożonych między prostopadłymi płaszczyznami łączonych elementów. Same spoiny pachwinowe dzieli się na ciągłe i przerywane, jednostronne i wielostronne oraz jednowarstwowe i wielowarstwowe. Mogą one mieć kształt lica: wklęsły, płaski bądź wypukły. Pod względem statyczności pracy najkorzystniejsze są spoiny wklęsłe i płaskie, spoin wypukłych powinno się unikać. Istotne znaczenie ma również grubość spoin. I tak grubość spoiny pachwinowej jednostronnej nie powinna przekraczać 0,7 grubości cieńszego materiału spawanego, w przypadku spoiny dwustronnej nie powinna ona przekraczać 0,5 tej grubości, jeśli różnica miedzy grubościami nie przekracza 3 mm.
  • 19. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 17 Rys. 4. Elementy (nazwy) rowka ukosowania i spoiny oraz wycięcie i pospawanie grani spoiny. [2, s. 63] Rys. 5. Pozycje spawania blach: a) złączy doczołowych, b) złączy kątowych. [1, s. 125] Spoina jest częścią złącza. Składa się ona całkowicie z metalu, który podczas oddziaływania wysokiej temperatury uległ stopieniu, a następnie zakrzepnięciu. Każde złącze i każda spoina posiadają swoją własną terminologię, którą powinno się stosować w spawalnictwie. Na rysunku poniżej opisano szczegółowo poszczególne nazwy złączy i spoin. Należy pamiętać, iż w celu uzyskania prawidłowej spoiny często stosuje się ukosowanie brzegów materiału, który będzie poddany spawaniu. Materiał zostaje poddany ukosowaniu za pomocą nożyc, frezarek, strugarek, szlifierek, cięty tlenem lub też plazmą. W zależności od usytuowania spoiny w przestrzeni wyróżnia się cztery pozycje spawania: − podolna – jest ona najwygodniejsza. Łatwo i szybko można uzyskać spoiny dobrej jakości,
  • 20. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 18 − naścienna – jest trudniejsza od pozycji podolnej, wymaga od spawacze więcej doświadczenia i wprawy a to dlatego, że ciekły metal może spływać z spoiny w dół, − pionowa – podobnie jak naścienna, − pułapowa – jest ona wyjątkowo męcząca dla spawacza, co odbija się negatywnie na jakości spoiny. Najwygodniejsza jest pozycja podolna, aby ją uzyskać stosuje się różnego rodzaju przyrządy spawalnicze takie jak obrotniki. 4.2.2. Pytania sprawdzające Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Na czym polega spawanie? 2. Czym charakteryzują się spoiny czołowe, a czym spoiny pachwinowe? 3. Co to jest spoina? 4. Jakie występują pozycje spawania? 4.2.3. Ćwiczenia Ćwiczenie 1 Rozpoznaj i nazwij przedstawione na rysunku (załacznik1) rodzaje spoin. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś: 1) zapoznać się z informacjami dotyczącymi rodzaju spoin, 2) nazwać przedstawione na rysunkach rodzaje spoin, 3) zapisać w tabeli nazwy spoin przedstawionych na rysunkach 4) dokonać analizy ćwiczenia, 5) zapisać wnioski. Wyposażenie stanowiska pracy: − załącznik 1, − przybory do pisania.
  • 21. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 19 Załącznik 1 Karta ćwiczenia Imię i nazwisko............................................................................................................... Rozpoznaj i nazwij przedstawione na rysunku rodzaje spoin. Przyporządkuj je do odpowiednich oznaczeń w tabeli. a b c d e f g h i j k l ł m n o
  • 22. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 20 Ćwiczenie 2 Nazwij przedstawione na rysunkach pozycje spawania i zapisz je w tabeli (załącznik 2). Wykonaj symulowanie spawania w każdej z umieszczonych na rysunkach pozycji spawania. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś: 1) zapoznać się z informacjami dotyczącymi pozycji spawania, 2) nazwać przedstawione na rysunkach pozycje spawania, 3) zapisać nazwy odpowiednich pozycji spawania na przedstawionych rysunkach (załącznik 2), 4) wykonać symulacje poszczególnych pozycji spawania wykorzystując przygotowane próbki i urządzenie spawalnicze, 5) dokonać analizy ćwiczenia, 6) zapisać wnioski. Wyposażenie stanowiska pracy: − załącznik 2, − próbki, − urządzenie spawalnicze, − przybory do pisania.
  • 23. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 21 Załącznik 2 Karta ćwiczenia Imię i Nazwisko....................................................................................................................... Nazwij przedstawione na rysunkach pozycje spawania i zapisz je w tabeli. Wykonaj symulowanie spawania w każdej z umieszczonych na rysunkach pozycji. a b c d e f g h 4.2.4. Sprawdzian postępów Czy potrafisz: Tak Nie 1) zdefiniować proces spawania? 2) rozróżnić poszczególne pozycje spawania? 3) dokonać symulacji poszczególnych pozycji spawania? 4) nazwać rodzaje spoin? d a b c e f g h
  • 24. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 22 4.3. Spawanie gazowe 4.3.1. Materiał nauczania Spawanie gazowe jest jedną z możliwych metod spawania. Podczas spalania gazów palnych w atmosferze tlenu wytwarzany jest płomień, który jest wykorzystywany do spawania termicznego, cięcia termicznego i żłobienia. Spawanie gazowe polega na stapianiu brzegów metali łączonych przez nagrzewanie ich płomieniem powstającym ze spalania gazu palnego z jednoczesnym dodaniem spoiwa. Gazy, które są najczęściej używane do spawania to tlen i acetylen, w niektórych wyjątkowych przypadkach może to być wodór, gaz miejski, gaz ziemny oraz propan – butan techniczny. Tlen – jest gazem bezzapachowym i bezbarwnym oraz niepalnym, ale podtrzymuje palenie. Może on reagować z różnymi pierwiastkami i związkami nawet w temperaturze niższej od temperatury spalania. Proces ten nazywa się utlenianiem. Tlen techniczny stosowany jest do różnych celów, w zależności od gatunku. Wyróżnia się cztery gatunki tlenu w zależności od czystości. Gatunek I (99,5% czystości) może być stosowany do wszystkich prac spawalniczych, również gatunek II (99,0% czystości) może być stosowany do wszystkich prac, należy jedynie pamiętać, że obniżenie czystości może spowolnić prace przy cięciu automatycznym. Gatunek III (98,0% czystości) może być stosowany do spawania, lutowania, napawania, metalizacji natryskowej i hartowania powierzchni. Gatunek IV (95,0% czystości) nie powinien być w ogóle używany do prac spawalniczych. Podczas pobierania tlenu do spawania można zauważyć, że tlen jest mokry. Dzieje się tak, ponieważ sprężarki, których używa się do napełniania butli są smarowane wodą. Niezwykle istotne jest by pamiętać, iż wszelkiego rodzaju smary i oliwy mogą doprowadzić do samozapłonu. Acetylen (C2H2) jest gazem bezbarwnym i nietrującym, o słabym zapachu. Ma jednak właściwości usypiające. W połączeniu z powietrzem tworzy mieszankę silnie wybuchową, jego nieodpowiednie składowanie lub nieprzestrzeganie zasad bezpieczeństwa w obchodzeniu się z nim powoduje często ciężkie wypadki. Acetylen otrzymuje się poprzez działanie wody z karbidem. Aby otrzymać przykładowo 300 litrów acetylenu należy poddać reakcji 1 kg karbidu. Proces przereagowania karbidu z wodą odbywa się w tak zwanych wytwornicach. Jednak istotne jest, że urządzenia te stwarzają bardzo duże zagrożenie pożarem oraz eksplozją, stąd zasady ich eksploatacji są bardzo surowe. Acetylen (C2H2) – jest nienasyconym węglowodorem, gdzie węgiel (C) wynosi 92,3%, a wodór (H2) 7,7% (wagowo), natomiast jego gęstości wynosi 1,171 kg/m3 . Ponieważ acetylen jest lżejszy od powietrza w pomieszczeniu zamkniętym będzie się on zbierał pod sufitem. Acetylen charakteryzuje się wieloma zaletami: − ma wysoką wartość opałową 57 MJ/m3 , − dużą prędkość spalania mieszaniny acetylenowo-tlenowej, która wynosi 13,5 m/s, − wysoką temperaturą spalania sięgającą 3100°C, − redukującym działaniem płomienia, − łatwością otrzymywania acetylenu z karbidu. Acetylen może ulegać wybuchowemu rozkładowi, sytuacja taka może powstać w wyniku wstrząsu lub podwyższonej temperatury. Przy ciśnieniu powyżej 0,2 MPa lub niższym, lecz w podwyższonej temperaturze, acetylen podczas wstrząsu rozpada się wybuchowo. Rozpad acetylenu, pod wpływem wymienionych czynników, szybko rozprzestrzenia się na całą masę gazową, temperatura wzrasta do 3000°C, a ciśnienie wzrasta
  • 25. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 23 jedenastokrotnie. Na skutek rozpadu powstają wodór i węgiel w postaci sadzy. Dlatego acetylen poza butlą, wolno sprężać tylko do ciśnienia 0,15 MPa [1, s. 183]. W acetylenie w temperaturze od 115°C do 120°C może dochodzić do zjawiska polimeryzacji czyli łączenia się cząstek w zespoły. W wyniku tego łączenia w zanieczyszczonym acetylenie mogą powstawać węglowodory takie jak benzen C6H6 czy też naftalin C10H6. W czasie zjawiska polimeryzacji wydziela się ciepło, które może być przyczyną wybuchu acetylenu. Acetylen techniczny wchodzi w reakcję z miedzią, srebrem oraz rtęcią, w jej wyniku tworzą się wybuchowe acetylenki. Wszelkiego rodzaju drgania, tarcia, iskry lub temperatura między 100°C a 120°C powoduje rozkład tych acetylenków, który doprowadzi do wybuchu. Dlatego należy pamiętać, iż do wyrobu urządzeń acetylenowych nie wolno używać stopów z miedzi, które zawierają jej więcej niż 65% oraz stopów ze srebrem, które zawierają więcej niż 25% czystego srebra. Do bezpiecznego przewozu acetylenu wykorzystuje się jego właściwość rozpuszczania. Mianowicie acetylen rozpuszcza się między innymi w wodzie, benzolu, benzynie i acetonie. I tak w temperaturze 15°C i przy ciśnieniu 0,1 MPa: − w 1 dm3 wody rozpuszcza się 1,15 dm3 acetylenu, − w 1 dm3 benzolu rozpuszcza się 4,0 dm3 acetylenu, − w 1 dm3 benzyny rozpuszcza się 5,7 dm3 acetylenu, − w 1 dm3 acetonu rozpuszcza się 23,0 dm3 acetylenu. [1, s. 185] Rys. 6. Butle: a) tlenowa, b) acetylenowa. 1 – butla, 2 – wkręcony zawór, 3 – pierścień zabezpieczający, 4 – kołpak ochronny.[1, s. 192] Acetylen rozpuszczony w acetonie przechowuje się w butlach wykonanych ze stali o podwyższonej wytrzymałości jak zbiorniki ciągnione bez szwu. Produkowane są butle o pojemności od 3 do 40 dm3 , jednakże w spawalnictwie stosuje się tylko butle o pojemności 40 dm3 . Po wyprodukowaniu butli, zanim trafią na rynek sprawdzane są przez Inspektora Dozoru Technicznego oraz poddawane są próbie wodnej pod ciśnieniem 6,0 MPa. Butla, która jest nowa i pusta wypełniana jest masą porowatą. Taka masa przygotowywana jest z drobnych kawałków aktywnego węgla drzewnego, włókna azbestowego, tlenku cynku oraz specjalnego lepiszcza. Butle z oczyszczonym acetylenem zawierają: − masa porowata to 20 %, − aceton to 40%,
  • 26. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 24 − acetylen pochłonięty przez aceton to 28%, − przestrzeń bezpieczeństwa to 12%. Na zewnątrz butli na jej głowicy znajduje się jej charakterystyka oraz tzw. tara butli, czyli suma masy butli, masy porowatej, acetylenu pochłoniętego przez aceton oraz zaworu. Masa butli pojemności 40 dm3 wynosi zwykle ok. 70 kg. Jednak masa samego acetylenu w takiej butli to 5,5kg. Każda butla jest wyraźnie oznakowana, mianowicie butle z acetylenem pomalowane są na żółto i mają czarny napis ACETYLEN. Butle powinny być ustawione pionowo oraz zabezpieczone przed przewróceniem. Nie wolno ich przechowywać w temperaturze większej niż 35°C czyli powinny znajdować się z dala od źródeł ciepła, a w lecie z dala od promieni słonecznych. Rys. 7. Zawór butli do acetylenu.(1 – wkładka filcowa, 2 – korek ebonitowy, 3 – wrzeciono dwudzielne, 4 – pierścienie uszczelek, 5 – dławica, 6 – nakrętka dławicy, 7 – klucz nasadowy. [1, s. 199] Zawory butli zawierających acetylen wykonane są ze stali. W żadnym wypadku nie wolno ich wykonywać z mosiądzu gdyż zawiera on miedź, która powoduje wytwarzanie się związków wybuchowych. Ważnym urządzeniem stosowanym przy butlach jest tzw. reduktor. Jego zadaniem jest obniżenie ciśnienia oraz utrzymywanie stałego ciśnienia roboczego. Bez użycia reduktora spawacz musiałby wciąż regulować płomień, który stale by się zmieniał, ponieważ wraz z ubytkiem acetylenu zmieniałoby się również ciśnienie w butli. Reduktor zakłada się miedzy butlę a palnik. Każdy reduktor wyposażony jest też w zawór bezpieczeństwa, który wypuszcza nadmiar gazu w razie wzrostu ciśnienia Zanim podłączymy reduktor należy najpierw powoli odkręcić kołpak, a następnie zawór butli. Czynność ta ma na celu przedmuchanie zaworu czyli usunięcie ewentualnych zanieczyszczeń i pary wodnej, które mogą się zbierać w górnej części butli. Po wykonaniu tych czynność należy zakręcić zawór i dopiero wówczas podłączyć reduktor. Zasada działania reduktora na przykładzie reduktora tlenowego (reduktor acetylenowy różni się jedynie sposobem zamocowania).
  • 27. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 25 Rys. 8. Budowa reduktora. 1 – łącznik, 2 – filtr, 3 – zawór redukcyjny, 4,6 – sprężyna, 5 – śruba nastawcza, 7 – gumowa przepona, 8 – popychacz, 9 – zawór odcinający, 10 – łącznik.[1, s. 202] Reduktor pracuje w ten sposób, że po otwarciu zaworu butlowego tlen przepływa łącznikiem do komory wysokiego ciśnienia, na przewodzie którego znajduje się manometr, wskazujący ciśnienie w butli. Po wkręceniu śruby stawidłowej, sprężyna podnosi w górę przeponę gumową, która z kolei podnosi zaworek redukcyjny, w którym umieszczony jest korek ebonitowy. Wówczas tlen zaczyna przepływać z komory wysokiego ciśnienia do komory niskiego ciśnienia, do której jest włączony manometr roboczy. Po odkręceniu zaworu odcinającego, tlen przepływa przez łącznik do palnika. Gdy spawanie zostanie przerwane zwiększa się stopniowo ciśnienie tlenu w komorze niskiego ciśnienia i przepona gumowa wygina się w dół. Wówczas sprężyna pomocnicza, naciska na zaworek redukcyjny i zamyka dopływ tlenu do komory niskiego ciśnienia. Po rozpoczęciu dalszego spawania zmniejsza się ciśnienie w komorze niskiego ciśnienia, sprężyna rozpręża się, podnosi przeponę i zaworek redukcyjny, a tlen zaczyna ponownie przepływać do stanowiska spawalniczego. Do komory niskiego ciśnienia podłączony jest zawór bezpieczeństwa, który w przypadku nadmiernego ciśnienia w komorze niskiego ciśnienia, otwiera się i wypuszcza nadmiar tlenu do atmosfery [2, s. 152]. Palnik spawalniczy jest urządzeniem, w którym następuje wymieszanie się gazów, mieszanka ta spala się przy wylocie dyszy palnika i powstaje płomień acetylenowo – tlenowy. Palniki dzielimy w zależności od ich przeznaczenia (do spawania, do ciecia, uniwersalne), wydajności (do 160 dm3 /h, do 630 dm3 /h, do 2500 dm3 /h), od rodzaju gazu (acetylenowe, wodorowe, propanowe), od sposobu wytwarzania mieszanki palnej (smoczkowe – inżektorowe, bezsmoczkowe). W Polsce produkowane są popularniejsze palniki smoczkowe, które mogą pracować jako palniki niskiego i wysokiego ciśnienia, maja łatwą regulacje płomienia i są proste w obsłudze. Jednak warto wyjaśnić różnice między palnikami smoczkowymi i bezsmoczkowymi. W palnikach bezsmoczkowych najpierw należy oprowadzić tlen i acetylen do tak zwanego reduktora równoprężnego, który utrzymuje jednakowe ciśnienie. Jest dość niebezpieczny gdyż nad membraną znajduje się acetylen, a pod nią tlen, w sytuacji uszkodzenia membrany powstaje mieszanka wybuchowa. Z reduktora zarówno tlen jak i acetylen pod jednakowym ciśnieniem doprowadzane są rurociągami do stanowisk spawalniczych. Natomiast w palnikach smoczkowych tlen doprowadza się do znacznie zmniejszonego otworu wylotowego, powoduje to znaczne zwiększenie prędkości. Smoczkiem nazywa się zwężenie
  • 28. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 26 rurki, tlen wypływający z dużą prędkością zasysa acetylen doprowadzony centrycznie do wylotu tlenu. Większe ciśnienie tlenu powoduje również większe podciśnienie w przewodzie acetylenowym. Rys. 9. Palniki do spawania i ciecia typu PU 214A i typu PU 214A-D. [1, s. 238] Palniki powinny być wykonane precyzyjnie z mosiądzu i miedzi lub też ze stali żaroodpornych. Części stykające się z tlenem nie mogą w żadnym wypadku być wykonane ze stali węglowej gdyż mogłoby dojść do spalenia się ich w atmosferze tlenu. Jak już wspomniano wcześniej jest wiele różnych rodzajów palników, niektóre z dostępnych modeli zostały opisane w tabeli. Tabela 2. Palniki do spawania i lutowania. [1, s. 234] Typ palnika Rodzaj gazów zasilających Zakres wydajności gazu palnego w dm3 /h Liczba wymiennych nasadek Przeznaczenie PAP acetylen i powietrze atmosferyczn e 10÷25 4 do spawania blachy cynkowej i miękkiego lutowania PS101A acetylen i tlen 50÷30 4 do spawania i do lutowania twardego PS102A acetylen i tlen 25÷315 7 do spawania, lutowania, opalania PU212A PU 212A-D PU 214A PU214A-D acetylen i tlen 100÷1600 7 do spawania i cięcia PS141A acetylen i tlen 80÷630 6 do spawania PU 241A acetylen i tlen 100÷1600 7 do spawania i cięcia PU 242A acetylen i tlen 100÷1000 6 do spawania i cięcia PG-11A PG-212A acetylen i tlen 1000÷2500 3 PG-22A acetylen i tlen 4000÷6400 2 PG-22P-Z Propan-butan lub gaz ziemny i tlen 1950÷3700 propan-butan lub 7500÷11000 gazu ziemnego do podgrzewania przy prostowaniu i wyginaniu lutowania twardego
  • 29. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 27 Rys. 10.Przekrój przez palnik smoczkowy do spawania [1, s. 233] 1,2- końcówki doprowadzające gazy, 3,4- rurki rękojeści, 5- korpus, 6- smoczek, 7- kanaliki na obwodzie smoczka, 8- komora mieszania, 9- dziób, 10- zwężony wylot, 11- nakrętka dociskowa. Obsługa palników wymaga znajomości pewnych podstawowych zasad, gdyż palniki są narzędziami precyzyjnymi. Należy je umiejętnie i fachowo obsługiwać. Zatem należy pamiętać by: − palniki należy przechowywać w fabrycznych kasetach specjalnie dla nich przygotowanych, − węże powinny mieć swój osobny wieszak, − wszelkie nasadki, dysze należy dobierać w zależności od rodzaju pracy i grubości metalu, − przed rozpoczęciem pracy należy sprawdzić ssanie palnika. Można to zrobić poprzez odkręcenie przyłączki węża acetylenowego od palnika, otwarcie zaworu tlenu i zaworu acetylenu, − prawidłowa procedura zapalenia płomienia to: otwarcie częściowe zaworu tlenu (ok. ¼ obrotu) jeśli wszystko jest w porządku następuje otwarcie zaworu acetylenu (ok. ½ obrotu) i zapalenie płomienia. Dopiero teraz należy odkręcić zawór tlenu do końca i wyregulować płomień zaworem acetylenu, − podczas gaszenia płomienia najpierw następuje zakręcenie zaworu z acetylenem a następnie z tlenem, − palnik należy chronić przed zatłuszczeniem, w przypadku, gdy do niego dojdzie należy go odpowiednio wyczyścić, − węży z gazem nie należy przewieszać przez ramię, − podczas spawania odpryski metalu osiadają na dziobie palnika, należy je usunąć pocierając palnik o kawałek drewna, przy włączonym palniku, − wnętrze dzioba należy utrzymywać w czystości, służą do tego specjalne wałeczki dostarczone przez producenta, − jeśli dojdzie do zapalenia się mieszanki wewnątrz smoczka należy niezwłocznie zakręcić zawór dopuszczający acetylen, a następnie zawór z tlenem. Palnik można schłodzić w wodzie przy lekko odkręconym zaworze tlenu. W spawaniu wykorzystuje się również tak zwany sprzęt pomocniczy, czyli inaczej mówiąc: węże gumowe, przyłączki i złączki, opaski taśmowe, zapalniczki iskrowe i oszczędzacze gazów. Węże do tlenu są oznaczone literą T i mają kolor niebieski, te stosowane do acetylenu maja oznaczenie A i kolor czerwony. Zarówno węże tlenowe jak i acetylenowe mają dwa
  • 30. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 28 typy w zależności od ciśnienia roboczego. Natomiast ich średnice są takie same niezależnie od przeznaczenia. Węże tlenowe Węże acetylenowe Typ 1 ciśnienie robocze do 1 MPa ciśnienie robocze do 0,4 MPa Typ 2 ciśnienie robocze do 2 MPa ciśnienie robocze do 0,63 MPa Przyłączki służą do mocowania węży do palników, a złączki do łączenia ze sobą dwóch węży, natomiast opaski taśmowe mają na celu niedopuszczenie do ściągnięcia węża z końcówki palnika. Technika spawania gazowego wyróżnia trzy metody spawania: spawanie w prawo, spawanie w lewo a także spawanie w górę. Nazwy te są umowne i określają, w którym kierunku wykonywane jest spawanie, oraz w którym kierunku skierowany jest płomień palnika. Spawanie w lewo – stosowane jest zwykle do spawania cienkich blach (o grubości nie przekraczającej 3mm). Polega ono na prowadzeniu palnika od prawej do lewej, gdzie palnik jest nachylony pod kątem 30÷60° w zależności od materiału. Im cieńszy materiał ty mniejszy kąt. Natomiast 45° to kąt nachylenia druta podczas tego spawania. Sam palnik powinien być prowadzony wzdłuż linii spawania wolno, natomiast drut powinien być prowadzony ruchami w dół i w górę, w ten sposób regulujemy ilość spoiwa używanego do spawania. Metoda ta jest łatwa do opanowania, umożliwia w sposób prosty i szybki otrzymanie gładkiego lica spoiny. To zachęca spawaczy do jej stosowania pomimo tego, iż taka spoina ma gorsze własności wytrzymałościowe niż ta wykonana drugą metodą (metoda w prawo). Inną wadą tej metody jest trudność w utrzymaniu otworka miedzy brzegami co może powodować brak przetopu. Mogą też pojawiać się pęcherze oraz pory z racji szybkiego stygnięcia spoiny. Spawanie w prawo – stosuje się je do blach grubych (powyżej 3mm). Kąt pochylenia palnika w tej metodzie powinien wynosić 50°, a drutu 45°. Przy tym spawaniu nie wykonuje się żadnych ruchów bocznych tylko posuwa się go powoli wzdłuż spawanych brzegów. Drutem natomiast wykonuje się niewielkie ruchy poprzeczne. Aby zapewnić całkowite przetopienie spawanych brzegów konieczne jest utrzymanie w czasie spawania małego otworka. Zaletą tego spawania jest, iż spoiny wykonane tą metodą mają lepsze właściwości wytrzymałościowe. Ponieważ ciepło, jakie się wydziela podgrzewa również spoinę, co sprawia że spoina potem wolniej stygnie a co za tym idzie jest czas na to by się wyżarzyła i aby wydzieliły się wszystkie gazy. Jednakże i ta metoda ma swoje wady – mianowicie stosując ja trudno jest uzyskać ładny wygląd nalewu, co znacznie zniechęca spawaczy do jej stosowania. Obie metody spawania zarówno w lewo jak i w prawo mogą być stosowane we wszystkich pozycjach spawania. Spawanie w górę – stosuje się je do spawania różnego rodzaju zbiorników. Współcześnie jednak ekonomiczniejsze jest spawanie elektryczne, stąd metoda ta jest wykorzystywana naprawdę rzadko i w wyjątkowych sytuacjach. Polega on na prowadzeniu palnika z góry na dół lub odwrotnie. Może być wykonywane przez dwóch spawaczy jednocześnie. Palnik powinien być pod kątem 30°, a drut pod kątem 20° do poziomej osi spawania. Spawanie różnych materiałów. Stale węglowe – spawanie stali, które zawierają do 0,25% węgla nie nastręcza trudności. Kłopoty mogą być przy stalach, w których zawartość węgla jest powyżej 0,25%. Stale, w których ta zawartość sięga do poziomu 0,6% są uznawane za praktycznie niespawalne. Stale, w których zawartość węgla znajduje się między 0,25%÷0,6% nazywane stalami średniowęglowymi są poddawane różnym zabiegom mającym na celu ułatwienie spawania, to jest podgrzewa się je do temperatury 200÷300°C tak by spowolnić
  • 31. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 29 szybkość chłodzenia spoiwa a dokładniej ma to zapobiegać powstawaniu kruchych pęknięć. Po zakończeniu spawania stale średniowęglowe poddawane są zabiegom, których celem ma być usunięcie naprężeń skurczowych oraz polepszenie struktury spoiny. W tym celu stosuje się wyważanie normalizujące, po którym zarówno spoina jak i materiał uzyskują drobnoziarnistą jednolitą strukturę. Stale niskostopowe są to stale, do których dodane są oprócz stałych składników jeszcze chrom (Cr), nikiel (Ni), czasem też wanad (V), molibden (Mo) i niob (Nb) w sumie do 2,5% dodatków stopowych. Zawartość węgla w tego rodzaju stalach nie przekracza 0,22%. Stale, w których zawartość chromu wynosi 0.3% nie sprawiają większych problemów natomiast jeśli ta zawartość sięga 1,0% pojawiają się trudności. Ponieważ chrom wpływa na zwiększenie hartowności spoiny oraz strefy wpływu ciepła a tym samym na skłonność do pęknięć. Aby sobie z tym poradzić można podgrzewać przed i w trakcie spawania oraz powoli studzić, dodatkowo płomień powinien być dokładnie wyregulowany bez nadmiaru acetylenu, można nawet zmniejszyć ilość acetylenu w płomieniu. W stalach, w których znajduje się miedź (nie więcej niż 0,6%) dla polepszenia właściwości wytrzymałościowych nie trzeba stosować jakiś dodatkowych zabiegów cieplnych. Jeśli w stali znajdują się dodatkowo mangan i krzem, również można taką stal spawać bez podgrzewania, ale można zrobić to tylko w hali by uniknąć zbyt szybkiego stygnięcia. Stale wysokostopowe, czyli takie, w których zawartość dodatków stopowych wynosi powyżej 5% nie są spawane gazowo. Spawa się je elektrodami otulonymi lub metodą TIG. Żeliwo jest materiałem trudnym do spawania, zawiera, bowiem duże ilości węgla oraz krzemu, a to sprzyja wydzielaniu się grafitu. Aby osiągnąć jak najlepsze rezultaty materiał do spawania należy podgrzać do temperatury 700÷800°C i spawać płomieniem acetylenowym, jednakże należy pamiętać, że powinien być to palnik o większej wydajności niż do spawania stali o tej samej grubości. Trzeba również wiedzieć, że żeliwo można spawać tylko w pozycji podolnej ewentualnie nabocznej, ponieważ w stanie stopionym jest ono rzadkopłynne. Do spawania stosuje się pręty żeliwne, które zawierają około 3÷3,6% węgla i 3÷3,8% krzemu, dodatkowo stosuje się również proszek – topik – który ułatwia spawanie. Po zakończeniu spawania przedmiot należy obsypać piaskiem lub popiołem i zostawiać do całkowitego wystygnięcia. Spawanie gazowe metali nieżelaznych (aluminium, stopów aluminiowych, miedzi oraz ołowiu i cynku) jest zadaniem skomplikowanym i choć jest możliwe to obecnie już się go praktycznie nie wykonuje. Dzieje się tak dlatego, iż spawanie za pomocą płomienia acetylenowo-tlenowego daje niezadowalające wyniki, spoiwo ma wiele wad, obniżają się jego właściwości wytrzymałościowe. Stąd obecnie ten rodzaj metali spawa się w osłonie argonu metodami TIG i MIG. 4.3.2. Pytania sprawdzające Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Co nazywamy spawaniem gazowym? 2. Jakie gazy używane są do spawania gazowego? 3. Jak jest zbudowana i oznaczona butla do przechowywania acetylenu? 4. Jakie zadanie spełnia reduktor? 5. W jaki sposób dzielimy palniki do spawania gazowego? 6. Jak dzielimy poszczególne techniki spawania gazowego?
  • 32. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 30 4.3.3. Ćwiczenia Ćwiczenie 1 Wykonaj połączenie dwóch elementów nadwozia samochodowego za pomocą palnika acetylenowo – tlenowego wykorzystując metodę spawania w „lewo”. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś: 1) przygotować elementy do spawania. 2) dobrać odpowiedni palnik do spawania stali węglowych wykorzystując metodę w lewo, 3) dobrać odpowiedni rodzaj spoiwa, 4) sprawdzić stan techniczny palnika, węży gumowych, 5) zapalić płomień stosując się do instrukcji, 6) wyregulować płomień acetylenowo-tlenowy doprowadzając go do stanu normalnego, 7) połączyć elementy nadwozia samochodowego zgodnie z wytycznymi metody spawania w lewo, 8) zgasić płomień stosując się do instrukcji, 9) zawiesić palnik z wężem wykorzystując odpowiednio przyjętą procedurę, 10) dokonać analizy ćwiczenia, 11) zapisać wnioski. Wyposażenie stanowiska pracy: − stanowisko spawalnicze, − elementy nadwozia samochodowego przeznaczone do spawania wykonane ze stali węglowej o grubości 1 mm, − odzież ochronna spawacza, − narzędzia do czyszczenia blach, − przepisy dotyczące bezpieczeństwa i higieny pracy podczas spawania, − sprzęt gaśniczy, − drut spawalniczy używany jako spoiwo. Ćwiczenie 2 Wykonaj połączenie dwóch elementów nadwozia samochodowego za pomocą palnika acetylenowo – tlenowego wykorzystując metodę spawania w „prawo”. Ćwiczenie wykonaj w pozycji naściennej. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś: 1) przygotować elementy do spawania, 2) dobrać odpowiedni palnik do spawania stali węglowych wykorzystując metodę w prawo, 3) dobrać odpowiedni rodzaj spoiwa, 4) sprawdzić stan techniczny palnika, węży gumowych, 5) przygotować i ustawić łączone elementy biorąc pod uwagę specyfikę pozycji spawania, 6) zapalić płomień stosując się do instrukcji, 7) wyregulować płomień acetylenowo-tlenowy doprowadzając go do stanu normalnego, 8) połączyć elementy nadwozia samochodowego zgodnie z wytycznymi metody spawania w prawo,
  • 33. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 31 9) zgasić płomień stosując się do instrukcji, 10) zawiesić palnik z wężem wykorzystując odpowiednio przyjętą procedurę, 11) dokonać analizy ćwiczenia, 12) zapisać wnioski. Wyposażenie stanowiska pracy: − stanowisko spawalnicze, − elementy nadwozia samochodowego przeznaczone do spawania wykonane ze stali węglowej o grubości 1 mm, − odzież ochronna spawacza, − narzędzia do czyszczenia blach, − przepisy dotyczące bezpieczeństwa i higieny pracy podczas spawania, − sprzęt gaśniczy, − drut spawalniczy używany jako spoiwo. 4.3.4. Sprawdzian postępów Czy potrafisz: Tak Nie 1) przygotować elementy do spawania gazowego? 2) dobrać odpowiedni palnik do spawania stali węglowych wykorzystując metodę w lewo? 3) dobrać odpowiedni palnik do spawania wykorzystując metodę w prawo? 4) dobrać odpowiedni rodzaj spoiwa? 5) sprawdzić stan techniczny palnika i węży gumowych? 6) zapalić i wyregulować płomień acetylenowo-tlenowy? 7) wykonać spawanie gazowe metodą w lewo? 8) zgasić płomień i odpowiednio zabezpieczyć sprzęt po spawaniu?
  • 34. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 32 4.4. Spawanie elektryczne 4.4.1. Materiał nauczania 4.4.1.1. Spawanie elektryczne Źródłem ciepła przy spawaniu elektrycznym jest łuk elektryczny, jarzący się miedzy elektrodą a spawanym przedmiotem. Stopiony metal z elektrody i nadtopione krawędzie spawanego materiału tworzą jeziorko spawalnicze, które po zakrzepnięciu zamienia się w spoinę. Podczas spawania łuk elektryczny i jeziorko ciekłego metalu znajdują się pod osłoną gazów stanowiących ochronę przed dostępem tlenu i azotu z atmosfery. Źródłem prądu stałego są spawarki prostownikowe, natomiast prądu przemiennego – transformatory spawalnicze.[3, s. 162] Spawanie łukowe elektrodami otulonymi – polega ono na stapianiu metali przy pomocy łuku elektrycznego. Łuk powstaje miedzy przedmiotem spawanym a elektrodą. Temperatura łuku sięga 2400÷6000°C co powoduje szybkie stapianie się metalu. Do spawania łukowego używa się zarówno prądu stałego, jak i przemiennego. Spawanie łukiem krytym jest jedną z metod spawania elektrycznego. Źródłem ciepła jest łuk elektryczny powstający między elektrodą w postaci gołego drutu a spawanym materiałem pod warstwą topnika. Ten sposób spawania stosuje się do spawania grubych blach (4÷30 mm) zrobionych ze stali niskostopowych i niestopowych. Do powstania łuku elektrycznego konieczne jest źródło prądu mające odpowiednie wartości napięcia (np. 50÷90 V) i natężenia (np. 50÷300 A). Łuk zajarzy się prawidłowo poprzez potarcie końcem elektrody o spawany przedmiot. Elektrodę należy unieść lekko w górę tak, aby miedzy drutem a przedmiotem spawanym powstała niewielka odległość (nie większa niż średnica drutu elektrodowego). Powstałemu łukowi towarzyszy wydzielanie się dużej ilości ciepła oraz światła. Aby tak powstały łuk, mógł się prawidłowo jarzyć, powietrze w przestrzeni łukowej musi ulec zjonizowaniu. Zjonizowanie atomów powietrza w łuku elektrycznym polega na tym, że w wysokiej temperaturze łuku cząsteczki gazów zawartych w powietrzu i gazów wydzielonych z otuliny elektrody oraz par metali rozpadają się na mniejsze, elektrycznie naładowane cząstki – elektrony i jony. Elektrony ujemne są przyciągane przez anodę (materiał spawany), a jony dodatnie przez katodę (elektrodę). Strumień wyzwolonych jonów i elektronów przepływa między elektrodą, a materiałem spawanym, dzięki czemu jarzący się łuk staje się dobrym przewodnikiem prądu i szybko doprowadza do stopienia metalu spawanego i elektrody. [2, s. 257-258] Charakterystyka łuku elektrycznego jest to zależność między napięciem, a natężeniem prądu, podczas jarzenia się łuku. Proces spawania można podzielić na cztery fazy. Faza I to bieg jałowy oznacza to, że istnieje napięcie biegu jałowego spawarki, ale natężenie wynosi 0. Faza II to zajarzenie się łuku, czyli zetkniecie się elektrody z materiałem spawanym, wówczas napięcie spada do 0, a natężenie rośnie w granicach 10÷30% w stosunku do natężenia zaprogramowanego w spawarce. Faza III spawania – wtedy to napięcie wynosi ok. 25 V natężenie osiąga wartości nastawione w spawarce. Faza IV – ostatnia jest to przechodzenie kropli płynnego metalu z elektrod do jeziorka. W fazie tej wartość prądu wzrasta o 10÷30% w stosunku do zaprogramowanej, a napięcie spada do 0. Temperatura łuku – podczas spawania prądem stałym w środkowej części luku temperatura sięga 5000°C, na anodzie czyli biegunie dodatnim wynosi ona ok. 2600°C, a na katodzie, czyli biegunie ujemnym, ok. 2100°C. Natomiast podczas spawania prądem przemiennym temperatura wynosi ok. 2200÷2300°C na obu biegunach. Łuk elektryczny ma dwie cechy. Jedna z nich jest ugięcie łuku. Powstaje ono, ponieważ wokół łuku występuje nierównomierny rozkład sił pola magnetycznego. Ugięcie łuku
  • 35. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 33 następuje w kierunku rozrzedzenia sił pola magnetycznego, będzie się ono zwiększało wraz ze wzrostem natężenia prądu stałego (zjawisko to nie występuje podczas spawania prądem przemiennym). Aby zmniejszyć ugięcie łuku i tym samym zapobiec wszelkiego rodzaju zaburzeniom w stabilizacji łuku można pochylić elektrodę w kierunku przeciwnym do działania pola magnetycznego, korzystne również jest podłączenie bieguna uziemiającego spawarki jak najbliżej miejsca spawania. Drugą cechą jest elastyczność łuku – jest to zdolność do wydłużania się łuku bez gaśnięcia. Elastyczność zależy od napięcia i natężenia prądu, rodzaju otuliny, przewodnictwa cieplnego oraz elektrycznego metalu. Na poprawę elastyczności łuku maja wpływ miedzy innymi: większe napięcie na biegu jałowym, większe natężenie prądu, większa ilość składników jonizujących w otulinie. Rys. 11. Układ linii sił pola magnetycznego i zjawisko ugięcia łuku. [2, s. 262] Elektrody dzielimy na: − topliwe (podczas spawania w łuku elektrycznym ulegają stopieniu), które dzielą się na: − elektrody nieotulone (sam drut), − elektrody otulone (drut pokryty otuliną), − elektrody rdzeniowe (inaczej zwane proszkowymi, ponieważ wewnątrz drutu znajduje się specjalny proszek), − nietopliwe (nie stapiają się podczas spawania, utrzymują łuk elektryczny). Elektrody nieotulone – są zalecane do spawania łukiem krytym, spawania żużlowego, w osłonie argonu, CO2 i mieszankach gazowych. Nie powinny być stosowane do spawania łukowego ręcznego. Używane są często do ręcznego spawania przez początkujących spawaczy, zwykle podczas szkoleń, ponieważ ułatwiają utrzymanie łuku, prowadzenie elektrody, a także obserwacje procesu jarzenia się łuku. Elektrody nieotulone – proszkowe – wypełnione są proszkiem, który spełnia rolę otuliny. Wykonuje się je z cienkiej taśmy. Taśmę wygina się wielokrotnie w kierunku podłużnym tak, by otrzymać rurkę o niewielkiej średnicy, wewnątrz której znajduje się kilka fałd. Wolna przestrzeń w rurce jest wypełniana proszkiem w skład, którego wchodzą topniki, sproszkowane metale oraz żelazostopy. Proszek nie ma stałego składu chemicznego. Bywa, że gazy chroniące spoiwo i jeziorko ciekłego metalu przed wpływem powietrza są nie wystarczające, wówczas spawanie takie wykonuje się w osłonie CO2 ewentualnie łukiem krytym. Należy również pamiętać, że podczas spawania tego rodzaju elektrodami wydziela się znacznie więcej pyłu niż podczas spawania elektrodami otulonymi, zatem cały proces powinien odbywać się w pomieszczeniu z bardzo dobrą wentylacją. Elektrody otulone – mają różnego rodzaju otuliny, w zależności od grubości otuliny dzielimy je na: − elektrody cienko otulone inaczej nazywane zanurzonymi. W tych elektrodach grubość otuliny stanowi 20% średnicy drutu elektrody,
  • 36. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 34 − elektrody średnio otulone czyli prasowane, w nich grubość otuliny waha się pomiędzy 20% a 40% średnicy drutu elektrody, − elektrody grubo otulone zwane również prasowanymi, grubość otulin przekracza 40% średnicy drutu, najczęściej wynosi 60%, − elektrody bardzo grubo otulone określane też mianem wysokowydajnych, w nich grubość otuliny wynosi 100% średnicy drutu elektrody, a czasem nawet więcej. Rodzaj otuliny ma wpływ na własności spawalnicze, oraz mechaniczne spoiwa. W każdej otulinie powinny się znajdować co najmniej takie składniki jak: składniki żużlotwórcze, odtleniające, gazotwórcze, jonizujące oraz stopowe. Wyróżniamy elektrody o następujących rodzajach otulin: − elektrody o otulinie kwaśniej – oznaczane symbolem A, ta otulina zawiera duże ilości żelazo-manganu oraz tlenków żelaza, przyczynia się do powstawania płaskiego i gładkiego lica spoiny, jednak jej wadą jest przyczynianie się do powstawania pęknięć krystalicznych, stosowane jest do spawania w pozycjach przymusowych, − elektrody w otulinie celulozowej – oznaczone symbolem C, zawierają duże ilości celulozy a także innych składników organicznych, stosowane są do spawania we wszystkich pozycjach, − elektrody w otulinie rutylowej – oznaczane symbolem R lub RR, występują ich dwa rodzaje w cieńszej oraz grubszej otulinie. W skład otuliny wchodzi duża ilość butylu, nadają się do spawania we wszystkich pozycjach, nadają spoinie równomierne lico o drobnej łuskowatości, − elektrody w otulinie rutylowo-celulozowej – oznaczane symbolem RC, ma właściwości podobne do elektrod w otulinie rutylowej, również można je stosować do spawania we wszystkich pozycjach, − elektrody w otulinie rutylowo-kwaśnej – oznaczane symbolem RA, otulina jest mieszanką butylu oraz tlenków żelaza, ich własności są podobne do elektrod o otulinie kwaśnej, można je stosować do spawania we wszystkich pozycjach (wyjątek pozycja pionowa z góry na dół), − elektrody w otulinie rutylowo-zasadowej – oznaczone symbolem RB, w skład tej otuliny wchodzą duże ilości butylu, a także składników zasadowych, można je stosować do spawania we wszystkich pozycjach (wyjątek pozycja pionowa z góry na dół), − elektrody w otulinie zasadowej – oznaczane symbolem B, otulina zawiera zwykle duże ilości węglanów ziem alkalicznych, czyli np.: węglany wapnia lub fluorytu, elektrody takie są odporne na pękanie w niskich temperaturach mają również niewielką skłonność do gorących pęknięć, można je stosować do spawania we wszystkich pozycjach (wyjątek pozycja pionowa z góry na dół – do spawania w tej pozycji stosuje się elektrody zasadowe ze specjalnym składem otuliny). Każda otulina wywiera pewien wpływ na proces spawania oraz spoinę, to jest: 1) Składniki otuliny ułatwiają zajarzenie elektrody poprzez odpowiednią jonizację, mają również pozytywny wpływ na stabilność oraz elastyczność łuku. 2) Jeśli łuk jest stabilny to metal spokojnie przepływa do spoiny dając maksymalną ilość spoiwa, bez odprysków. 3) Otulina ma właściwości ochronne względem ciekłego metalu przenoszonego w łuku oraz w jeziorku. Taką ochronę zapewniają gazy, które powstają w wyniku spalania oraz rozkładu składników otuliny, tworzą one stożek o pewnym nadciśnieniu, co uniemożliwia dostanie się powietrza do przestrzeni łuku. Z otuliny powstaje żużel, który chroni ciekły metal z jeziorka i spoiny przed utlenianiem się i naazotowaniem. 4) Składniki otuliny również wiążą szkodliwe gazy takie jak tlen, azot czy wodór, gazy te w postaci związków chemicznych wydalane są do żużla w czasie stygnięcia.
  • 37. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 35 5) Składniki stopowe metali w procesie metalurgicznym spawania przechodzą do spoiny, dzięki czemu uzyskuje się spoiny o lepszych właściwościach mechanicznych i zwiększa się uzysk. [1, s. 330] 6) Prędkość krzepnięcia i stygnięcia spoiny zmniejszana jest poprzez żużel tworzony z otuliny, żużel ten rozpuszcza zanieczyszczenia, które wydzielane są z krzepnącej spoiny, formułuje też kształt lica. Oznaczenia elektrod – elektrody oznaczane są symbolami literowymi oraz cyframi. I tak elektrody do spawania połączeniowego stali niestopowych oraz niskostopowych będą miały oznaczenia typu EA, EB itd., pełne oznaczenie może wyglądać w ten sposób: EA 1,46 – gdzie E oznacza elektrodę, A – rodzaj otuliny w tym wypadku otulina kwaśna, 1 to numer elektrody (w tym miejscu mogą się znajdować również inne cyfry nie tylko cyfra 1), 46 to oznaczenie minimalnej gwarantowanej trwałości spoiwa elektrody na rozerwanie, zatem 46 jest skrótem od liczby 460 MPa. Tego rodzaju oznaczenia znajdują się zwykle na powierzchni otuliny. W Polsce elektrody klasyfikuje się według normy PN-EN 499 (dostosowana do wymagań międzynarodowej organizacji normalizacyjnej ISO 2560), norma to zawiera podział elektrod nie tylko ze względu na wytrzymałość. Zatem opis elektrod może być obszerniejszy i będzie zawierał w sobie również informacje o temperaturze, badaniach udarności, pozycji spawania oraz prądzie spawania. Taki poszerzony opis może wyglądać w sposób następujący: E 350 RA 22 gdzie E oznacza elektrodę, 35 – to wytrzymałość spoiwa na rozciąganie 350 MPa, 0 – temperatura badania udarności spoiwa 0°C, RA – rodzaj otulin w tym przypadku otulina rutylowo-kwaśna, 2 – pozycja spawania (wszystkie z wyjątkiem pozycji z góry na dół), 2 – prąd spawania (stały -). Elektrody specjalne służące do spawania połączeniowego stali nisko i wysoko stopowych oznaczane są symbolem ES. Ponieważ elektrody te zawierają molibden, chrom i nikiel w oznaczeniu elektrody znajdują się liczny odzwierciedlające procentowy udział poszczególnych pierwiastków (liczby 18 lub 24 to udział chromu, 8 i 18 to udział niklu, 2 to molibden, a 6 to mangan), oczywiście znajdują się też symbole literowe określające rodzaj otuliny. Elektrody do napawania oznacza się symbolem EN, oprócz liter w ich opisie znajdują się oczywiście liczby takie jak np.: 200 lub 400, które oznaczają średnia twardość warstwy napawanej, na końcu znajduje się oczywiście litera określająca rodzaj otuliny. Elektrody żeby zachowały wszystkie swoje właściwości muszą być odpowiednio przechowywane. Przede wszystkim powinny być przechowywane w pomieszczeniach o temperaturze co najmniej 20°C, w miejscach przewiewnych. Powinny być ułożone na drewnianej powierzchni warstwami z tym, że jeśli jedna warstwa jest wzdłuż to druga powinna być w poprzek. Otuliny z racji właściwości higroskopijnych pochłaniają wodę w zetknięciu z powietrzem, jeśli nie wejdzie ona w reakcje ze składnikami otuliny elektrody można wysuszyć i w ten sposób odzyskać ich właściwości. Zawilgocone elektrody łatwo poznać po wykwitach białych kryształów, które są wynikiem reakcji chemicznej wilgoci ze składnikami otuliny. Należy pamiętać, że elektrody w otulinie rutylowej i kwaśnej powinny być suszone przez godzinę w temperaturze 110-120°C, natomiast elektrody w otulinie zasadowej przez półtorej do dwóch godzin w temperaturze 200-350°C. Do spawania elektrodami otulonymi, a także nieotulonymi, stosuje się trzy rodzaje urządzeń, które wytwarzają prąd o wysokim natężeniu i niskim napięciu, są to: − przetwornice spawalnicze (prąd stały), − transformatory spawalnicze (prąd zmienny), − prostowniki spawalnicze (prąd stały). Przetwornice spawalnicze składają się z prądnicy spawalniczej oraz silnika napędowego (elektrycznego asynchronicznego trójfazowego lub spalinowego).
  • 38. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 36 Rys. 12. Przetwornice spawalnicze: a) typu EW23u-300A b) typu EWPa- 315 [2, s. 230] Każda przetwornica ma regulację natężenia prądu, dobiera się je w zależności od średnicy elektrody oraz grubości spawanego materiału. Przetwornice uruchamia się za pomocą przełącznika określanego mianem „gwiazda – trójkąt”. Polega to na tym, że najpierw ustawiamy przełącznik w pozycji „gwiazdy” i tak pozostawiamy go na 15 do 20 sekund, by w tym czasie wirnik osiągnął właściwą prędkość obrotową. Następnie przestawiamy do pozycji „trójkąta”, w tej pozycji przetwornica działa normalnie. Czasem bywa, że do prac spawalniczych potrzebne jest natężenie prądu większe niż może dać jedna przetwornica, można wówczas połączyć ze sobą dwie lub więcej przetwornic. Sprawnie działające urządzenia uzyskujemy poprzez połączenie przewodem miedzianym wszystkich zacisków w przetwornicach oraz połączenie zacisków + i – równolegle przewodami spawalniczymi. Ważne jest by wszystkie wspólnie działające przetwornice były ustawione na takie samo natężenie. Agregaty spawalnicze składają się z silnika spalinowego oraz prądnicy lub prostownika spawalniczego. W produkcji jest wiele rodzajów agregatów niektóre są osadzone na podwoziu co umożliwia ich łatwe przemieszczanie, różnią się też miedzy sobą maksymalnym prądem spawania, który jest podany w oznaczeniu, np.: AS 240. Agregaty są urządzeniami dość uniwersalnymi można je stosować nie tylko do spawania, ale także jako generatory prądu stałego, służą też do zasilania półautomatów spawalniczych.
  • 39. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 37 Rys. 13. Agregat spawalniczy na podwoziu jezdnym. [2, s. 234] Transformatory spawalnicze działają na zasadzie przetwarzania prądu przemiennego o napięciu sieciowym na prąd przemienny o niższym napięciu, ale za to wyższym natężeniu (jest ono niezbędne do zajarzenia się łuku elektrycznego). W produkcji znajdują się transformatory o sposobach regulacji natężenia prądu - z dławikiem we wspólnym rdzeniu, oraz z bocznikiem magnetycznym. Obecnie w Polsce produkowane są transformatory spawalnicze przenośne, oraz na kołach. Transformatory podłącza się do sieci energetycznej prądu przemiennego. Jedna z cech transformatorów jest ich charakterystyka statyczna stromoopadająca – oznacza to, że przy zajarzeniu łuku elektrycznego w transformatorze wzrasta natężenie prądu o 20 do 40% w stosunku do ustawionej. Urządzenia te są wyjątkowo ekonomiczne, gdyż prąd pobierają tylko podczas pracy zatem będąc na biegu jałowym nie czerpią prądu. Ponieważ w transformatorach znajdują się tylko części stałe, nie ulegają one szybkiemu zużyciu. Prostowniki spawalnicze przetwarzają prąd przemienny na prąd stały, który umożliwia spawanie czyli ma niskie napięcie i wysokie natężenie. Składają się z trójfazowego transformatora, układu regulacji natężenia i układu prostowniczego prądu przemiennego na prąd stały. W produkcji krajowej znajdują się prostowniki spawalnicze: − Z regulacją prądu za pomocą transduktora – taki prostownik składa się z trójfazowego transformatora, transreduktora i prostownika. Transformator zamienia prąd przemienny o wysokim napięciu i małym natężeniu na prąd o niskim napięciu i wysokim natężeniu, transreduktor reguluje prąd spawania za pomocą opornika, a prostownik zmienia prąd przemienny na prąd stały. − Z regulacją prądu za pomocą odmagnesowanych boczników – składa się z trójfazowego transformatora i prostownika. Trójfazowy transformator zamienia prąd przemienny o wysokim napięciu i małym natężeniu na prąd o niskim napięciu i wysokim natężeniu, ponieważ transformator ma wbudowane boczniki magnetyczne one dokonują regulacji prądu spawania, a prostownik zmienia prąd przemienny na prąd stały. Poza prostownikami jednostanowiskowymi w produkcji krajowej znajdują się również prostowniki inwentorowe. Zasilane są one napięciem o częstotliwości 50÷60 Hz, ponieważ zamontowane są w nich falowniki wysokonapięciowe, transduktory mocy, które umożliwiają wewnętrzną przemianę częstotliwości powyżej 16 kHz. Cecha ta warunkuje ich zalety w postaci małych gabarytów, małego ciężaru wysokich wskaźników energetycznych, dokładnej regulacji natężenia prądu oraz miejscowej i zdalnej regulacji prądu. Prostowniki wielostanowiskowe stosowane są w dużych zakładach lub ośrodkach spawalniczych gdyż jak sama nazwa mówi mogą służyć do zasilania nawet kilkunastu stanowisk spawalniczych. W Polsce produkowane są dwie wersje tego rodzaju prostowników: typu SBA-50/2500 (zasila do 24 stanowisk spawalniczych) oraz typu SBA-50/1250 (zasila 12 stanowisk spawalniczych). Taki prostownik składa się z szafy transformatorowej
  • 40. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 38 (transformator trójfazowy suchy), szafy prostownikowej i rezystorów (regulują prąd spawania). Prostowniki maja kilka istotnych zalet miedzy innymi wytwarzany przez nie łuk ma dużą elastyczność. Posiadają czułe regulacje natężenia prądu. Umożliwiają spawanie cienkich blach we wszystkich pozycjach, dodatkowo zużywają niewiele energii, są tanie w konserwacji i naprawach oraz nie są tak hałaśliwe jak na przykład przetwornice. Wykonywanie spoin elektrodą otuloną – wiadomo, iż znając dobrze podstawy teoretyczne prowadzenia końca elektrody łatwo opanujemy praktykę. Najważniejszą pozycją spawania jest pozycja podolna, należy pamiętać, że wszystkie inne pozycje są przymusowymi, czyli pozycjami montażowymi. Podczas spawania w tej pozycji elektrodę należy prowadzić pod kątem 20÷50° do kierunku spawania (kąt jest istotny gdyż decyduje o gładkości powierzchni). Grubość otuliny ma istotny wpływ na technikę prowadzenia elektrody im grubsza warstwa otuliny tym większy kąt nachylenia elektrody. Rys. 14. Prowadzenie końca elektrody o różnej grubości otuliny [1, s. 339 b)] Ścieg graniowy jest ściegiem pierwszym i jednocześnie mającym największy wpływ na jakość spoiny. Każdy następny ścieg należy wypełniać możliwie płasko – tak by nie tworzyły się ostre krawędzie na bokach ściegu, które będą się wypełniały żużlem (jest on trudny do usunięcia). Dodatkowo na jakość spoiny wpływa też prawidłowość dobrania średnicy elektrody. Spoiny wykonuje się albo ściegiem prostym albo zakosowym. Rys. 15. Spawanie w pozycji podolnej: ściegi prosty i zakosowy. [1, s. 340] Spawanie w pozycji nabocznej – podczas spawania tą metodą płynne spoiwo może rozpływać się po ścianie poziomej. Jeśli dodatkowo elektroda była niewłaściwie ustawiona powoduje to powstanie spoiny o niesymetrycznym trójkącie. Spoiny pachwinowe wielościegowe wykonywane w pozycji nabocznej układa się ściegami prostymi. Spawanie w pozycji pionowej z góry na dół – jak wiadomo spawać w tej pozycji można wszystkimi elektrodami otulonymi, aczkolwiek przy takiej pozycji ciekły metal i żużel ściekają na dół. Zatem masa ciekłego metalu i żużla w jeziorku powinna być jak najmniejsza, aby mogła być utrzymana przez strumień łuku elektrycznego. Elektroda powinna być prowadzona łukiem krótkim, pod kątem 10÷20° odchylenia w dół do linii prostopadłej do spoiny. Żeby zapobiec powstawaniu podtopień, które pojawiają się czasem podczas
  • 41. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 39 prowadzenia lica w spoinach czołowych, należy przed rozpoczęciem spawania wyszlifować dwa rowki na krawędziach spoiny a elektrodę prowadzić ósemką. Spawanie w pozycji naściennej – podstawową zasadą jest ukosowanie złączy do spawania naściennego, dzięki temu zużywa się mniej spoiwa a płynny metal lepiej się trzyma. Przy tej pozycji powinny być stosowane elektrody o średnicy 2,5 do 4 mm i ścieg prosty. Elektroda powinna być ustawiona prostopadle do ściegu, samo lico można wykonać przy pomocy ściegu zakolowego. Rys. 16. Spoina czołowa naścienna: a) ściegi proste, b) ścieg lica zakosowy [1, s. 343] Spawanie w pozycji pułapowej – jest ono stosowane tylko i wyłącznie w montażu, oraz naprawach. Do spawania stosuje się elektrody o średnicy 4mm, grubo otulone, a natężenie prądu powinno być o 10% wyższe od tego stosowanego przy pozycji podolnej. Elektroda powinna być prowadzona łukiem krótkim, prostopadle do spoiny i pochylna pod kątem 15÷20° w kierunku układanej spoiny. Rys. 17. Spawanie w pozycji pułapowej: a) kąty prowadzenia elektrody, b) spoina czołowa, c) spoina pachwinowa, d) napawanie. [1, s. 344] Spawanie łukowe różnych materiałów. Spawanie stali niestopowych – wśród nich można wyodrębnić trzy grupy: stale dobrze spawane, które zawierają do 0,25% węgla, stale o ograniczonej spawalności zawierające 0,25%÷0,4% węgla, oraz stale trudno spawalne, czyli takie gdzie zawartość węgla przekracza 0,4%. Stale należące do pierwszej grupy (poniżej
  • 42. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 40 0,25% węgla) można spawać dużym zakresem natężenia prądu, można stosować dowolne ściegi i spawać w temperaturze poniżej 0°C. Wszelkiego rodzaju występujące naprężenia, są łagodzone odkształceniem plastycznym. Aby zapobiec zbyt szybkiemu stygnięciu, które powoduje powstawanie pęknięć można podgrzać materiał spawany do temperatury 200÷300°C. Inną metodą zapobiegającą pęknięciom jest stosowanie niskiego natężenia prądu spawania i wykonywanie pierwszego ściegu krótkim łukiem tak, by był dość gruby. Należy zapamiętać, iż stale zawierające powyżej 0,25% węgla nie mogą być spawane w temperaturze 0°C oraz nie powodują one odkształceń plastycznych, które mogą złagodzić naprężenia. Stale niskostopowe – to takie, w których zawartość składników stopowych nie przekracza 2,5%. Pierwiastki takie jak mangan, krzem, chrom, nikiel, wanad, molibden mają pozytywny wpływ w postaci zwiększenia właściwości mechanicznych, czy też zwiększenia wytrzymałości materiału, odporności na korozję, żaroodporności, ale tym samym powodują większą hartowność, która jest przyczyną pękania stali oraz trudności z otrzymaniem spoiny o takich samych właściwościach jak materiał spawany. Można jednak temu zapobiec kierując się następującymi wskazówkami: − należy starannie przygotować brzegi metali przed spawaniem, − zwiększając średnice elektrody oraz natężenie prądu spawania zapobiega się podhartowaniu, − utrzymanie przez odpowiedni czas materiału i strefy wpływu w temperaturze 200÷350°C zapobiega hartowaniu, dodatkowo należy spawać wielościegowo, sposobem kaskadowym, − podgrzewając stale przed, w trakcie i po spawaniu zmniejszamy szanse na powstanie pęknięć, − koniecznością jest też stosowanie naprężania odprężającego. Stale wysoko stopowe tak samo jak niskostopowe zawierają domieszki innych pierwiastków z tym, że ich zawartość przekracza 2,5%. Takie stale mają duży współczynnik skurczu i słabo przewodzą ciepło. Choć wszystkie stale wysokostopowe są trudne do spawania to jednak te zawierające duże ilości chromu nastręczają dużych trudności w postaci łatwości pękania podczas procesu spawania, wytwarzające się tlenki chromu utrudniają łączenie spoiwa z metalem, oraz ograniczają jej odporność na korozje. Podczas spawania grubych stali wysokostopowych należy podgrzewać je do temperatury 150÷200°C, a po zakończeniu całego procesu spawania studzić bardzo powoli. Zaleca się również wyżarzanie w temperaturze 600÷850°C. Stale wysokostopowe chromowe, kwasoodporne i żaroodporne nie nastręczają dużych trudności w spawaniu łukowym elektrodami otulonymi, jednakże podczas tego procesu powstają silne odkształcenia spawalnicze, oraz naprężanie, które są przyczyną pękania. Spawanie żeliwa może odbywać się łukiem elektrycznym zarówno na zimno jak i na gorąco. Spawanie na zimno łukiem elektrycznym musi odbywać na tyle wolno, by spawany materiał nie podgrzał się do temperatury wyższej niż 60÷70°C. Aby spawanie przyniosło oczekiwane rezultaty należy przed jego rozpoczęciem dokładnie określić rodzaj żeliwa, to znaczy, czy jest ono szare czy białe. Należy również ustalić rozmiar pęknięcia, na jego końcach trzeba wywiercić otwory (1/3 średnicy grubości metalu), które zapobiegną powiększeniu się pęknięcia. Brzegi należy oczyścić bardzo dokładnie oraz zukosować. Spawać należy krótkimi odcinkami, by nie spowodować nagrzania się żeliwa. Po zakończeniu spawania pęknięcia, trzeba zaspawać wcześniej wywiercone otwory. Żeby zapobiec powstawaniu pęknięć oraz zmniejszyć naprężenia skurczów należy zaraz po zakończeniu spawania to znaczy nim metal wystygnie, przemłotkować go. Do tego rodzaju spawania używa się prądu stałego.
  • 43. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 41 Spawanie żeliwa na gorąco – jest znacznie lepszym sposobem niż spawanie na zimno. Przed rozpoczęciem spawania przedmiot należy podgrzać do temperatury 700÷800°C, jednak trzeba pamiętać, że nie wolno nagrzewać zbyt szybko, najwyżej 100°C na godzinę. Nagrzewanie może się odbywać w piecu gazowym bądź elektrycznym. Do tego rodzaju spawania używa się elektrod otulonych lub pałeczek żeliwnych. Zawarty w nich krzem i węgiel wyrównują straty tych składników powstałe podczas spawania. Spawanie powinno być wykonywane w pozycji podolnej. Spawanie miedzi jest procesem bardzo trudnym ze względu na dużą przewodność cieplną tego materiału, oraz tworzenie się podczas spawania trudno topliwych tlenków miedzi. Do spawania miedzi stosuje się elektrody miedziane otulone oznaczone zwykle symbolem ECuS [2, s. 304]. Spawanie odbywa się w pozycji podolnej. Blachy powinny być podniesione pod kątem 6° do kierunku spawania. Blachy o grubości powyżej 4 mm ukosuje się na V, a grubsze na X. Do spawania powinien być stosowany prąd stały, do elektrody podłączony powinien być biegun dodatni. Natężenie powinno wynosić 80÷100 A na 1 mm grubości elektrody. Podczas spawania łuk powinien być krótki, gdyż w przeciwnym wypadku powstaną pory i pęcherze gazowe. Ponieważ elektrody stosowane do spawania miedzi są wyjątkowo wrażliwe na wilgoć, należy je przed spawaniem suszyć w temperaturze 350÷400°C przez dwie lub trzy godziny. Nie polecane jest wykonywanie spoin wielowarstwowych, gdyż przy spawaniu miedzi w ten sposób istnieje duża rozszerzalność oraz skurcze, które powodują naprężenia, a co za tym idzie pękanie spoin. Jeśli już decydujemy się na wykonywanie spoin wielowarstwowych to trzeba każdą spoinę wymłotkować na gorąco – takie działanie powoduje rozdrobnienie kryształów, czyli jednocześnie zwiększenie wytrzymałości spoiny. Spawanie aluminium jest także procesem trudnym ze względu na dużą przewodność ciepła aluminium oraz tworzenie się tlenków aluminium, które trudno się topią. Spawanie jest możliwe przy pomocy elektrod aluminiowych otulonych, gdzie w otulinie znajdują się chlorki oraz fluorki metali alkalicznych i kriolitu (taka otulina jest niehigroskopijna i trwała). Do spawania stosuje się prąd stały, a elektrodę przyłącza się do bieguna dodatniego. Średnica elektrody powinna być większa o 1mm od połowy grubości łączonych blach. Spoiny należy układać ściegami prostymi, a nie zakolowymi w położeniu podolnym lub pochyłym o 45° [2, s. 306]. Zanim rozpoczniemy spawanie blach aluminiowych, ich brzegi należy starannie oczyścić za pomocą płomienia z wszelkiego rodzaju zanieczyszczeń, tłuszczy, czy resztek wilgoci, następnie przetrzeć je szczotką stalową. Niezależnie od tego, czy blacha jest ukosowana (ukosuje się blachy powyżej 6 mm – na Y lub V, powyżej 15mm na X) czy nie, najlepiej jest spawać ją w pozycji podolnej. W blachach powyżej 2 mm, należy zostawić odstęp (2÷4mm), a blachy powyżej 4 mm powinny być podgrzane (200÷250°C) przed spawaniem. Tu również należy unikać wykonywania spoin wielowarstwowych. Po zakończeniu spawania i ostygnięciu spoiny, należy ją dokładnie oczyścić z żużlu przy pomocy szczotki stalowej i przemyć wodą. Jeśli natomiast chodzi o spawanie stopów aluminium, to możliwe jest to tylko przy stopach: PA1, PA2, PA4, PA11, PA20 i PA47, wówczas stosuje się elektrody o rdzeniu ze stopu aluminiowego. Przy czym stop PA4 przy większej grubości jest niemożliwy do spawania. 4.4.1.2. Spawanie w osłonie gazów Spawanie w osłonie gazów jest wariantem spawania łukiem elektrycznym, w tych metodach gaz chroni rozgrzany i płynny metal przed wpływem czynników atmosferycznych. W zależność od zastosowanej elektrody, łuku elektrycznego i gazu ochronnego mamy do wyboru kilka metod: − metoda TIG (WIG – Tungsten Inert Gas) – łuk jarzy się między nietopliwą elektrodą a materiałem w osłonie argonu lub helu,
  • 44. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 42 − metoda MIG (Metal Inert Gas) – elektroda metalowa topi się w osłonie argonu lub helu, − metoda MAG (Metal Active Gas) – elektroda metalowa topi się w osłonie CO2 (gaz aktywny) lub jego mieszankach z innymi gazami spawalniczymi, − spawanie plazmowe (zostanie opisane w następnym rozdziale) [3, s. 164]. Rys. 18. Metody spawania w osłonie gazów. [5] Metody te jak wszystkie inne mają swoje wady jaki i zalety. Wady to: − duży rozprysk metalu, − stosowanie drutów o małej średnicy, − niemożność wprowadzenia składników stopowych. Pomimo tych wyżej wymienionych wad, zalety mają istotne znaczenie dla stosowania tych metod. Do zalet należy: − duża wydajność, − łatwość obserwacji układania spoiny, − dobre własności mechaniczne połączeń, − możliwość spawania w różnych pozycjach, − możliwość mechanizacji i robotyzacji spawania. Każdy z zastosowanych gazów spełnia konkretne zadnie, ich użycie nie jest w żadnym wypadku przypadkowe. I tak argon z racji swojej dużej gęstości utrzymuje atmosferę z dala od jeziorka spawalniczego. Hel ma dużą wydajność ciepła, a to pomaga w odprowadzaniu ciepła z łuku spawalniczego od elementu spawanego co znacznie zwiększa wytopienie. Natomiast CO2 poprzez chemiczne reakcje z płynnym metalem wpływa na odprowadzanie ciepła, poprawia wytop, oraz wpływa na łagodny wygląd spoiny zmniejszając napięcie powierzchniowe. Metoda TIG – w tej metodzie łuk jarzy się między nietopliwa elektrodą wolframową a materiałem spawanym znajdującym się w osłonie gazów ochronnych. Urządzenia, które stosuje się do spawania tą metodą, mogą być zasilane zarówno prądem zmiennym jak i stałym. Ważne jest, iż do zajarzenia się łuku konieczne będą jonizatory wielkiej częstotliwości. Z metody tej korzysta się przy spawaniu aluminium i jej stopów (prąd przemienny), miedzi i jej stopów (prąd stały), oraz stali wysokostopowych. Można również spawać nią stale niskowęglowe i niskostopowe, ale nie stosuje się jej, gdyż jest ona zbyt kosztowana w przypadku wyżej wymienionych materiałów. Urządzenia do spawania metodą TIG budowane są w trzech wersjach, to znaczy może być urządzenie w jednej obudowie, w którym istnieje możliwość przełączenia z prądu przemiennego na prąd stały. Dokonuje się tego za pomocą przełącznika, takie urządzenie