SlideShare ist ein Scribd-Unternehmen logo
1 von 33
Leyes de Maxwell Ondas electromagnéticas Mg. Juan N. Mendoza Nolorbe
Temas ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
A nivel conceptual, Maxwell unificó los conceptos de luz y campos eléctrico y magnético, en lo que hoy conocemos como electromagnetismo, al desarrollar la idea de que la luz es una forma de radiación electromagnética. 1. Introducción El trabajo de Maxwell (1831-1879), al establecer las ecuaciones que gobiernan el comportamiento de los campos, hasta ese momento, inconexos: eléctrico y magnético, predice la existencia de ondas electromagnéticas que se propagan por el espacio a la rapidez de la luz. Lo cual fue confirmado en 1887 por Heinrich Hertz (1857-1894).
2. Ecuaciones de Maxwell Las ecuaciones de Maxwell en forma integral: Ley de Gauss. Ley de Gauss para el magnetismo. Ley de Lenz-Faraday Ley de Ampere-Maxwell
3. Ecuaciones de Maxwell Las ecuaciones de Maxwell en su forma diferencial: Ley de Gauss Ley de Gauss para el magnetismo Ley de Lenz-Faraday Ley de Ampere-Maxwell
4. Ondas electromagnéticas  Calculando el rotacional de la ley de Faraday: Usando la siguiente identidad vectorial: Y usando la propiedad conmutativa en el término de la derecha:
4. Ondas electromagnéticas  Reemplazando la ley de Gauss y la ley de Ampere-Maxwell: Operando de forma análoga para el campo magnético:
4. Ondas electromagnéticas  Esta s ecuaciones  obedece n  a una ecuación de ondas tridimensional para  los  campo s   y   con velocidad de fase c = 2,99·10 8  m/s Puesto que
4. Relación entre  Vamos a introducir la expresión de los campos en forma de ondas armónicas planas Donde  k   es el número de ondas y es un vector que apunta en la dirección de la onda. Así, podemos reescribir las ecuaciones de Maxwell, en forma de ecuaciones vectoriales
4. Relación entre  Las primeras dos ecuaciones  demuestran  que  los dos campos  y  son perpendiculares al vector de onda  , puesto que  apunta en la dirección de la onda, esto significa que las ondas electromagnéticas son ondas transversales. Como, en general un vector en 3D tiene tres grados de libertad, la condición de que  el campo eléctrico  debe ser perpendicular a  reduce entonces los grados de libertad a dos. Físicamente esto corresponde a los dos estados de polarización en los que la luz puede dividirse.
4. Relación entre  Las otras dos ecuaciones relacionan los campos  eléctrico y magnético . Es normal visualizar el campo eléctrico como el que define la onda, y  por ejemplo, la dirección en la que apunta define la polarización de la onda. Es conveniente usar  para obtener la intensidad de campo magnético. Esta ecuación demuestra que  es perpendicular a  ,   y por lo tanto hemos encontrado la propiedad fundamental de las ondas electromagnéticas, esto es que  ,  y  son mutuamente perpendiculares.
5. Generación de OEM Una onda electromagnética es generada por cargas eléctricas oscilantes, y está compuesta por campos eléctricos y magnéticos que oscilan en planos perpendiculares entre sí, y a su vez, ambos planos perpendiculares a la dirección de propagación, por lo que establecemos que las ondas electromagnéticas son de  carácter transversal .
6. Propiedades de las ondas EM ,[object Object],[object Object],[object Object],[object Object]
7. Energía transportada por OEM Las OEM, como todas las ondas, transporta energía y por lo tanto pueden transferir energía a objetos situados en su trayectoria. La rapidez de flujo de energía en una OEM se describe mediante el  vector de Poynting , dado por La magnitud del vector de Poynting, representa la potencia por unidad de área, de tal forma que sus unidades son W/m 2 . Para el caso de una onda plana, se tiene que:
7. Energía transportada por OEM En ocasiones, mas que la potencia por unidad de área, dada por el vector de Poynting, adquiere interés el conocer la llamada intensidad de onda  I  (que es el promedio temporal de  S ). Esta intensidad de onda está dada por
8.  Momentum y presión de radiación Las ondas E-M transportan tanto energía como  momentum  lineal  p . Si suponemos una onda que incide perpendicularmente en una superficie, la magnitud del momentum transferido está dado por Se puede mostrar que la presión ejercida por la onda sobre la superficie (y conocida como  presión de radiación ) P, está dada por Absorción completa Reflexión completa Absorción completa Reflexión completa
Comparación entre el momentum de un objeto y el da la radiación electromagnética
Los diversos tipos de ondas electromagnéticas involucran un amplio intervalo de frecuencias y longitudes de onda, y no hay una división clara entre un tipo de onda y el siguiente.  Este amplio rango se conoce como  espectro electromagnético  e involucra a todas las ondas producidas como resultante de la presencia de cargas eléctricas aceleradas. Los nombres dados a los tipos de onda son sólo por conveniencia para describir la región del espectro en la cual se encuentran. Espectro electromagnético
Espectro electromagnético en función de su longitud de onda
Espectro electromagnético y sus fuentes
Espectro electromagnético según sus aplicaciones
[object Object]
[object Object],[object Object],[object Object],AM = Amplitud modulada FM = Frecuencia modulada Ondas de Radio
Microondas Foto del río Amazonas usando microondas.  Radiación cósmica de fondo  en la región de microondas , reflejada en la tierra Las microondas no son obstruidas por las nubes, la niebla u otra partícula más pequeña que las longitudes de onda de la microonda (~ 1 centímetro).
Radiación Infrarroja   ,[object Object],[object Object],Foto IR de una persona  Foto IR del polvo sistema Solar Longitud de onda: 1 um – 1000 um
Luz Visible  ,[object Object],[object Object],La luz blanca esta compuesta de luz de todos los  colores
Luz Ultravioleta La luz ultravioleta tiene justo la a energía para romper enlaces moleculares.  Es por esta razón que es perjudicial a la vida.  La tierra tiene un protector natural a la luz UV solar bajo la forma de capa de ozono (80 kilómetros sobre la superficie).  Algunos pájaros y abejas pueden ver tanto la luz  UV como  la luz  visible  El 10% de la luz solar es UV
Rayos X Los rayos X fueron descubiertas 1895 por el Roentgen de Wilhelm Conrado (científico alemán) por accidente.  Él tomó una semana después esta radiografía de su esposa.
[object Object],Rayos Gama Las armas nucleares son fuentes de rayos gama entre otros tipos de radiación (alfa, betas, gama y X)
Referencias ,[object Object],[object Object],[object Object],[object Object]
La  longitud de onda (l)  es la distancia mínima entre dos puntos idénticos de una onda, como pueden ser dos valles (o dos crestas) consecutivas. El  periodo (T)  es el tiempo requerido para que dos puntos idénticos (como pueden ser dos crestas o dos valles) pasen por un punto dado. La  frecuencia ( f )  es el número de puntos idénticos (como pueden ser las crestas) que pasan por un punto en una unidad de tiempo. La  amplitud (A)  es el máximo desplazamiento que se tiene a partir del eje de referencia (en la figura, el eje x). 5. Conceptos básicos de las ondas
[object Object],[object Object],5. Conceptos básicos de las ondas Fuente Frentes de onda Frente de onda
[object Object],[object Object],[object Object],[object Object],[object Object],Onda plana Onda esférica Onda cilíndrica

Weitere ähnliche Inhalte

Was ist angesagt?

Tippens fisica 7e_diapositivas_22b
Tippens fisica 7e_diapositivas_22bTippens fisica 7e_diapositivas_22b
Tippens fisica 7e_diapositivas_22b
Robert
 
Ecuaciones de maxwell
Ecuaciones de maxwellEcuaciones de maxwell
Ecuaciones de maxwell
zemzamzem
 
1 2 preguntas cuerpo negro
1 2 preguntas cuerpo negro1 2 preguntas cuerpo negro
1 2 preguntas cuerpo negro
Diana Rueda
 

Was ist angesagt? (20)

Presentación Arreglo de Antenas
Presentación Arreglo de AntenasPresentación Arreglo de Antenas
Presentación Arreglo de Antenas
 
Tema 3: Campos eléctricos en el espacio material
Tema 3: Campos eléctricos en el espacio materialTema 3: Campos eléctricos en el espacio material
Tema 3: Campos eléctricos en el espacio material
 
Ondas mecanicas
Ondas mecanicasOndas mecanicas
Ondas mecanicas
 
1 s312 pvcf 12-18
1 s312 pvcf 12-181 s312 pvcf 12-18
1 s312 pvcf 12-18
 
Libro 1 antenas
Libro 1 antenasLibro 1 antenas
Libro 1 antenas
 
6.3 Propagacion de onda en el espacio libre
6.3 Propagacion de onda en el espacio libre6.3 Propagacion de onda en el espacio libre
6.3 Propagacion de onda en el espacio libre
 
Ecuaciones de maxwell y Ondas EM
Ecuaciones  de maxwell y Ondas EMEcuaciones  de maxwell y Ondas EM
Ecuaciones de maxwell y Ondas EM
 
Ondas electromagnéticas ii
Ondas electromagnéticas iiOndas electromagnéticas ii
Ondas electromagnéticas ii
 
Tippens fisica 7e_diapositivas_22b
Tippens fisica 7e_diapositivas_22bTippens fisica 7e_diapositivas_22b
Tippens fisica 7e_diapositivas_22b
 
Campo magnetico
Campo magneticoCampo magnetico
Campo magnetico
 
Ecuaciones de maxwell
Ecuaciones de maxwellEcuaciones de maxwell
Ecuaciones de maxwell
 
Induccion
InduccionInduccion
Induccion
 
Fisica ii guia EJERCICIOS RESUELTOS
Fisica ii guia EJERCICIOS RESUELTOSFisica ii guia EJERCICIOS RESUELTOS
Fisica ii guia EJERCICIOS RESUELTOS
 
Carga y Descarga de un Condensador
Carga y Descarga de un CondensadorCarga y Descarga de un Condensador
Carga y Descarga de un Condensador
 
1. Radiación y propagación electromagnética
1. Radiación y propagación electromagnética1. Radiación y propagación electromagnética
1. Radiación y propagación electromagnética
 
Guias de Ondas
Guias de OndasGuias de Ondas
Guias de Ondas
 
1 2 preguntas cuerpo negro
1 2 preguntas cuerpo negro1 2 preguntas cuerpo negro
1 2 preguntas cuerpo negro
 
Campo electrico informe
Campo electrico informeCampo electrico informe
Campo electrico informe
 
Clase 15 fuentes del campo magnetico
Clase 15 fuentes del campo magneticoClase 15 fuentes del campo magnetico
Clase 15 fuentes del campo magnetico
 
Informe de Laboratorio 1
Informe de Laboratorio 1Informe de Laboratorio 1
Informe de Laboratorio 1
 

Ähnlich wie Ondas electromagnéticas

Power fisica
Power fisicaPower fisica
Power fisica
pentrux
 
Espectroelectromagnetico(1)
Espectroelectromagnetico(1)Espectroelectromagnetico(1)
Espectroelectromagnetico(1)
dave-74
 
Curso rni-tel-unmsm-sept- 2010 - dia 1-sesion-2
Curso  rni-tel-unmsm-sept- 2010 - dia 1-sesion-2Curso  rni-tel-unmsm-sept- 2010 - dia 1-sesion-2
Curso rni-tel-unmsm-sept- 2010 - dia 1-sesion-2
ceiiee
 
El espectro electromagnético
El espectro electromagnéticoEl espectro electromagnético
El espectro electromagnético
zetolou
 
Ondas ElectromagnéTicas
Ondas ElectromagnéTicasOndas ElectromagnéTicas
Ondas ElectromagnéTicas
diarmseven
 
presentacic3b3n-tema-9-naturaleza-y-propagacic3b3n-de-la-luz.ppt
presentacic3b3n-tema-9-naturaleza-y-propagacic3b3n-de-la-luz.pptpresentacic3b3n-tema-9-naturaleza-y-propagacic3b3n-de-la-luz.ppt
presentacic3b3n-tema-9-naturaleza-y-propagacic3b3n-de-la-luz.ppt
Ochoa5
 

Ähnlich wie Ondas electromagnéticas (20)

Power fisica
Power fisicaPower fisica
Power fisica
 
LAS ONDAS
LAS ONDASLAS ONDAS
LAS ONDAS
 
Espectro Electromagnetico
Espectro ElectromagneticoEspectro Electromagnetico
Espectro Electromagnetico
 
Radiacion electromagnetica
Radiacion electromagneticaRadiacion electromagnetica
Radiacion electromagnetica
 
Presentacion de Ondas electromagneticas
Presentacion de Ondas electromagneticasPresentacion de Ondas electromagneticas
Presentacion de Ondas electromagneticas
 
Fisica moderna
Fisica moderna Fisica moderna
Fisica moderna
 
Espectro Electromagnetico y experimento de electroscopio(Video)
Espectro Electromagnetico y experimento de electroscopio(Video)Espectro Electromagnetico y experimento de electroscopio(Video)
Espectro Electromagnetico y experimento de electroscopio(Video)
 
Espectroelectromagnetico(1)
Espectroelectromagnetico(1)Espectroelectromagnetico(1)
Espectroelectromagnetico(1)
 
Formas de ondas
Formas de ondasFormas de ondas
Formas de ondas
 
Ondas electromagneticas
Ondas electromagneticasOndas electromagneticas
Ondas electromagneticas
 
Curso rni-tel-unmsm-sept- 2010 - dia 1-sesion-2
Curso  rni-tel-unmsm-sept- 2010 - dia 1-sesion-2Curso  rni-tel-unmsm-sept- 2010 - dia 1-sesion-2
Curso rni-tel-unmsm-sept- 2010 - dia 1-sesion-2
 
ONDAS ELECTROMAGNETICAS
ONDAS ELECTROMAGNETICASONDAS ELECTROMAGNETICAS
ONDAS ELECTROMAGNETICAS
 
La energia (1)
La energia (1)La energia (1)
La energia (1)
 
El espectro electromagnético
El espectro electromagnéticoEl espectro electromagnético
El espectro electromagnético
 
Triptico ondaselectromagneticasii
Triptico ondaselectromagneticasiiTriptico ondaselectromagneticasii
Triptico ondaselectromagneticasii
 
Maxwell y electromagnetismo
Maxwell y electromagnetismoMaxwell y electromagnetismo
Maxwell y electromagnetismo
 
La luz
La luzLa luz
La luz
 
Clase_fisica_CCH.ppt
Clase_fisica_CCH.pptClase_fisica_CCH.ppt
Clase_fisica_CCH.ppt
 
Ondas ElectromagnéTicas
Ondas ElectromagnéTicasOndas ElectromagnéTicas
Ondas ElectromagnéTicas
 
presentacic3b3n-tema-9-naturaleza-y-propagacic3b3n-de-la-luz.ppt
presentacic3b3n-tema-9-naturaleza-y-propagacic3b3n-de-la-luz.pptpresentacic3b3n-tema-9-naturaleza-y-propagacic3b3n-de-la-luz.ppt
presentacic3b3n-tema-9-naturaleza-y-propagacic3b3n-de-la-luz.ppt
 

Mehr von juan nolorbe (6)

Sesion2: Componentes de una fuerza
Sesion2: Componentes de una fuerzaSesion2: Componentes de una fuerza
Sesion2: Componentes de una fuerza
 
Sesion1: Método del paralelogramo
Sesion1: Método del paralelogramoSesion1: Método del paralelogramo
Sesion1: Método del paralelogramo
 
Curvas equipotenciales y li neas de campo
Curvas equipotenciales y li neas de campoCurvas equipotenciales y li neas de campo
Curvas equipotenciales y li neas de campo
 
La Funcion Exponencial
La Funcion ExponencialLa Funcion Exponencial
La Funcion Exponencial
 
La Feria Matemática
La Feria MatemáticaLa Feria Matemática
La Feria Matemática
 
Los Blog en el Aula
Los Blog en el AulaLos Blog en el Aula
Los Blog en el Aula
 

Kürzlich hochgeladen

FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
El Fortí
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
UPTAIDELTACHIRA
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxRESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
pvtablets2023
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 

Kürzlich hochgeladen (20)

Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADOTIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
Diapositivas de animales reptiles secundaria
Diapositivas de animales reptiles secundariaDiapositivas de animales reptiles secundaria
Diapositivas de animales reptiles secundaria
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptxRESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
RESULTADOS DE LA EVALUACIÓN DIAGNÓSTICA 2024 - ACTUALIZADA.pptx
 
EL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptx
EL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptxEL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptx
EL HABITO DEL AHORRO en tu idea emprendedora22-04-24.pptx
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 

Ondas electromagnéticas

  • 1. Leyes de Maxwell Ondas electromagnéticas Mg. Juan N. Mendoza Nolorbe
  • 2.
  • 3. A nivel conceptual, Maxwell unificó los conceptos de luz y campos eléctrico y magnético, en lo que hoy conocemos como electromagnetismo, al desarrollar la idea de que la luz es una forma de radiación electromagnética. 1. Introducción El trabajo de Maxwell (1831-1879), al establecer las ecuaciones que gobiernan el comportamiento de los campos, hasta ese momento, inconexos: eléctrico y magnético, predice la existencia de ondas electromagnéticas que se propagan por el espacio a la rapidez de la luz. Lo cual fue confirmado en 1887 por Heinrich Hertz (1857-1894).
  • 4. 2. Ecuaciones de Maxwell Las ecuaciones de Maxwell en forma integral: Ley de Gauss. Ley de Gauss para el magnetismo. Ley de Lenz-Faraday Ley de Ampere-Maxwell
  • 5. 3. Ecuaciones de Maxwell Las ecuaciones de Maxwell en su forma diferencial: Ley de Gauss Ley de Gauss para el magnetismo Ley de Lenz-Faraday Ley de Ampere-Maxwell
  • 6. 4. Ondas electromagnéticas Calculando el rotacional de la ley de Faraday: Usando la siguiente identidad vectorial: Y usando la propiedad conmutativa en el término de la derecha:
  • 7. 4. Ondas electromagnéticas Reemplazando la ley de Gauss y la ley de Ampere-Maxwell: Operando de forma análoga para el campo magnético:
  • 8. 4. Ondas electromagnéticas Esta s ecuaciones obedece n a una ecuación de ondas tridimensional para los campo s y con velocidad de fase c = 2,99·10 8 m/s Puesto que
  • 9. 4. Relación entre Vamos a introducir la expresión de los campos en forma de ondas armónicas planas Donde k es el número de ondas y es un vector que apunta en la dirección de la onda. Así, podemos reescribir las ecuaciones de Maxwell, en forma de ecuaciones vectoriales
  • 10. 4. Relación entre Las primeras dos ecuaciones demuestran que los dos campos y son perpendiculares al vector de onda , puesto que apunta en la dirección de la onda, esto significa que las ondas electromagnéticas son ondas transversales. Como, en general un vector en 3D tiene tres grados de libertad, la condición de que el campo eléctrico debe ser perpendicular a reduce entonces los grados de libertad a dos. Físicamente esto corresponde a los dos estados de polarización en los que la luz puede dividirse.
  • 11. 4. Relación entre Las otras dos ecuaciones relacionan los campos eléctrico y magnético . Es normal visualizar el campo eléctrico como el que define la onda, y por ejemplo, la dirección en la que apunta define la polarización de la onda. Es conveniente usar para obtener la intensidad de campo magnético. Esta ecuación demuestra que es perpendicular a , y por lo tanto hemos encontrado la propiedad fundamental de las ondas electromagnéticas, esto es que , y son mutuamente perpendiculares.
  • 12. 5. Generación de OEM Una onda electromagnética es generada por cargas eléctricas oscilantes, y está compuesta por campos eléctricos y magnéticos que oscilan en planos perpendiculares entre sí, y a su vez, ambos planos perpendiculares a la dirección de propagación, por lo que establecemos que las ondas electromagnéticas son de carácter transversal .
  • 13.
  • 14. 7. Energía transportada por OEM Las OEM, como todas las ondas, transporta energía y por lo tanto pueden transferir energía a objetos situados en su trayectoria. La rapidez de flujo de energía en una OEM se describe mediante el vector de Poynting , dado por La magnitud del vector de Poynting, representa la potencia por unidad de área, de tal forma que sus unidades son W/m 2 . Para el caso de una onda plana, se tiene que:
  • 15. 7. Energía transportada por OEM En ocasiones, mas que la potencia por unidad de área, dada por el vector de Poynting, adquiere interés el conocer la llamada intensidad de onda I (que es el promedio temporal de S ). Esta intensidad de onda está dada por
  • 16. 8. Momentum y presión de radiación Las ondas E-M transportan tanto energía como momentum lineal p . Si suponemos una onda que incide perpendicularmente en una superficie, la magnitud del momentum transferido está dado por Se puede mostrar que la presión ejercida por la onda sobre la superficie (y conocida como presión de radiación ) P, está dada por Absorción completa Reflexión completa Absorción completa Reflexión completa
  • 17. Comparación entre el momentum de un objeto y el da la radiación electromagnética
  • 18. Los diversos tipos de ondas electromagnéticas involucran un amplio intervalo de frecuencias y longitudes de onda, y no hay una división clara entre un tipo de onda y el siguiente. Este amplio rango se conoce como espectro electromagnético e involucra a todas las ondas producidas como resultante de la presencia de cargas eléctricas aceleradas. Los nombres dados a los tipos de onda son sólo por conveniencia para describir la región del espectro en la cual se encuentran. Espectro electromagnético
  • 19. Espectro electromagnético en función de su longitud de onda
  • 22.
  • 23.
  • 24. Microondas Foto del río Amazonas usando microondas. Radiación cósmica de fondo en la región de microondas , reflejada en la tierra Las microondas no son obstruidas por las nubes, la niebla u otra partícula más pequeña que las longitudes de onda de la microonda (~ 1 centímetro).
  • 25.
  • 26.
  • 27. Luz Ultravioleta La luz ultravioleta tiene justo la a energía para romper enlaces moleculares. Es por esta razón que es perjudicial a la vida. La tierra tiene un protector natural a la luz UV solar bajo la forma de capa de ozono (80 kilómetros sobre la superficie). Algunos pájaros y abejas pueden ver tanto la luz UV como la luz visible El 10% de la luz solar es UV
  • 28. Rayos X Los rayos X fueron descubiertas 1895 por el Roentgen de Wilhelm Conrado (científico alemán) por accidente. Él tomó una semana después esta radiografía de su esposa.
  • 29.
  • 30.
  • 31. La longitud de onda (l) es la distancia mínima entre dos puntos idénticos de una onda, como pueden ser dos valles (o dos crestas) consecutivas. El periodo (T) es el tiempo requerido para que dos puntos idénticos (como pueden ser dos crestas o dos valles) pasen por un punto dado. La frecuencia ( f ) es el número de puntos idénticos (como pueden ser las crestas) que pasan por un punto en una unidad de tiempo. La amplitud (A) es el máximo desplazamiento que se tiene a partir del eje de referencia (en la figura, el eje x). 5. Conceptos básicos de las ondas
  • 32.
  • 33.