SlideShare ist ein Scribd-Unternehmen logo
1 von 59
Multi-Dimensional Array Signal Processing
        Applied to MIMO Systems


      Prof. Dr.-Ing. João Paulo C. Lustosa da Costa
                  University of Brasília (UnB)
           Department of Electrical Engineering (ENE)
            Laboratory of Array Signal Processing
                         PO Box 4386
              Zip Code 70.919-970, Brasília - DF



               Universidade de Brasília
       Homepage: http://www.pgea.unb.br/~lasp                1
        Laboratório de Processamento de Sinais em Arranjos
Outline

   Universidade de Brasília: A Short Overview
   Research Areas: Laboratory of Array Signal Processing
   Multi-Dimensional Array Signal Processing
       Motivation
       Model Order Selection
                                                       UnB
       Prewhitening
   MIMO-OFDM System
   Cooperative MIMO for WSN
   Conclusions




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    2
Outline

   Universidade de Brasília: A Short Overview
   Research Areas: Laboratory of Array Signal Processing
   Multi-Dimensional Array Signal Processing
       Motivation
       Model Order Selection
                                                       UnB
       Prewhitening
   MIMO-OFDM System
   Cooperative MIMO for WSN
   Conclusions




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    3
Universidade de Brasília: A Short Overview (1)

   Universidade de Brasília (UNB)
       One of the best federal universities in Brazil
       The best university in the central-west region of Brazil
        • Region with 12 million inhabitants
       UNB is located in Brasília
        • capital of Brazil
             – political influence and cooperation with the Federal
               Government 
        • one of the most expensive cities in Brazil 
        • one of the safest cities in Brazil 
        • Great weather (avrg 22oC, min 17oC, max 28oC) 
        • Several amazing waterfalls around Brasília 
             – Itiquira, Pirinópolis, Chapada dos Veadeiros and others
        • Cheap tickets to Rio de Janeiro and to the Northeast of Brazil 
                             Universidade de Brasília
                Laboratório de Processamento de Sinais em Arranjos
                                                                             4
Universidade de Brasília: A Short Overview (2)




                   Universidade de Brasília
      Laboratório de Processamento de Sinais em Arranjos
                                                           5
Universidade de Brasília: A Short Overview (3)

       In 2010, around 21000 candidates for approximately 3000 places
   Universidade de Brasília (UNB)
       around 27000 students
       around 3300 professors
       (including all departments and all semesters)
   Department of Electrical Engineering
       composed of three bachelor courses
         • Communication Network Engineering
         • Mechatronics
         • Electrical Engineering (Electric Power Systems)
       around 1500 students
       around 70 professors



                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                        6
Outline

   Universidade de Brasília: A Short Overview
   Research Areas: Laboratory of Array Signal Processing
   Multi-Dimensional Array Signal Processing
       Motivation
       Model Order Selection
                                                       UnB
       Prewhitening
   MIMO-OFDM System
   Cooperative MIMO for WSN
   Conclusions




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    7
Research areas (1)
Laboratory of Array Signal Processing (LASP)
http://www.pgea.unb.br/~lasp
Research topics:
 • Telecommunications
     – Cooperation with CityU of Hong Kong, TU Ilmenau, DLR, and UFC
     – MIMO systems: Antenna array at TX and at RX
         • Spatial domain: increase the exploitation of the frequency
           spectrum
 • Audio
     – Cooperation with FAU in Nuernberg-Erlangen
       (2 exchange students from Brazil – Science without Borders)
     – Microphone array
 • Business Intelligence: Projects with the Federal Government
     • Ontology, Data Mining and Predictive Analytics
 • Antenna Array Applications for Unmanned Aerial Vehicles (UAVs)
     • Communications and Pose Estimation
                     Universidade de Brasília
        Laboratório de Processamento de Sinais em Arranjos
                                                                        8
Research areas (2)
  Laboratory of Array Signal Processing (LASP)
   • Side research topics applying antenna arrays or principal
     component analysis or tensor calculus
       •   Magnetic Resonance Imaging (MRI)
       •   EEG
       •   Blind Malicious Traffic Detection in Networks
       •   Cooperative MIMO in Sensor Networks
       •   …


More information
  • http://www.pgea.unb.br/~lasp

Exchange of Students
   • Internship via DAAD RISE: TU Munich, Deggendorf and Freie U Berlin
   • Internship via UnB scholarships: UPC
   • Without scholarships: City U of HK
                         Universidade de Brasília
            Laboratório de Processamento de Sinais em Arranjos
                                                                          9
Outline

   Universidade de Brasília: A Short Overview
   Research Areas: Laboratory of Array Signal Processing
   Multi-Dimensional Array Signal Processing
       Motivation
       Model Order Selection
                                                       UnB
       Prewhitening
   MIMO-OFDM System
   Cooperative MIMO for WSN
   Conclusions




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    10
Motivation (1)
   Malicious traffic detection




                                                  Amount of accesses
                                                                       Time slots (10 min)




        Detect if there is some malicious traffic
        How many attackers and how many ports being attacked
        Development of Intrusion Detection Systems (IDS)

                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos                       3
Motivation (2)
   Business Intelligence (BI)




       To support the decision making in the government and companies
       Examples of data marts: personal, sales and logistic
       Data mining: extract patterns from the data. For instance, increased
       sales if beers and disposable diapers are close
       Predictive analytics: predict the tendency and also support the decision
                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos       3
Motivation (3)
   Sound source localization



                                                Sound source 1




                                                Sound source 2
                   Microphone array

       Applications: phone conference devices, bioacustics, computational
                     forensics and hearing aids.




                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos       3
Motivation (4)
   Wind tunnel evaluation

                             Array




       Improvement of the aerodynamics of vehicles


                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos   4
Motivation (5)
   Channel model
     Direction of Departure (DOD)
     Transmit array: 1-D or 2-D

                                                              Direction of Arrival (DOA)
                                                              Receive array: 1-D or 2-D




                                    Frequency       Delay
                                    Time      Doppler shift

                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos                 5
Goal

                        Model order            Is the noise       No     Parameter
 Measurements
                         selection               colored?                Estimation
                                                      Yes
                                                Subspace
                                               Prewhitening

 Measurements or data from several applications, for instance,
      MIMO channels, EEG, stock markets, chemistry, pharmacology, medical imaging,
      radar, and sonar
 Model order selection
      estimation of the number of the main components (total number of parameters)
      often assumed known in the literature
 Parameter estimation techniques
      extraction of the parameters from the main components
 Subspace prewhitening schemes
      application of the noise statistics to improve the parameter estimation

                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos
                                                                                      16
Goal: Model Order Selection

                        Model order            Is the noise       No    Parameter
Measurements
                         selection               colored?               Estimation
                                                      Yes
                                                Subspace
                                               Prewhitening


   What is the best model order selection (MOS) scheme?
      several schemes in the literature
      Answer depends on data size and structure, and noise type
      Is the multi-dimensional structure of the data taken into account?

   The right model order
       crucial for the parameter estimation and subspace prewhitening


                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos
                                                                                     17
Goal: Parameter Estimation

                        Model order             Is the noise       No     Parameter
Measurements
                         selection                colored?                Estimation
                                                       Yes
                                                 Subspace
                                                Prewhitening
   Parameter estimation
       mapping between the main components and the parameters

   In the literature, in case of arbitrary array geometries
         the solutions are iterative, e.g., SAGE and Alternating Least Squares (ALS)
         no guarantee of convergence

   The closed-form schemes in literature, e. g., R-D ESPRIT
       restricted to shift invariant arrays
       without robustness to arrays with positioning errors and to the violation of the
       narrow band assumption
                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos
                                                                                       18
Goal: Subspace Prewhitening

                        Model order            Is the noise       No    Parameter
Measurements
                         selection               colored?               Estimation
                                                      Yes
                                                Subspace
                                               Prewhitening

   Subspace prewhitening
       improve the parameter estimation in the presence of colored noise

   We consider the cases:
       structure of the noise statistics with respect to the correlation level
       multi-dimensional structure of the noise statistics, common for certain MIMO
       and EEG applications
       unavailability of samples without the presence signal components to obtain
       the noise statistics

                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos
                                                                                     19
Outline

   Universidade de Brasília: A Short Overview
   Research Areas: Laboratory of Array Signal Processing
   Multi-Dimensional Array Signal Processing
       Motivation
       Model Order Selection
                                                       UnB
       Prewhitening
   MIMO-OFDM System
   Cooperative MIMO for WSN
   Conclusions




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    20
Model Order Selection: State of the Art (1)
   A large number of model order selection (MOS) schemes have been proposed in the
    literature. However,
          most of the proposed MOS schemes are compared only to Akaike’s Information
          Criterion (AIC) and Minimum Description Length (MDL);
          the Probability of correct Detection (PoD) of these schemes is a function of the array
          size (number of snapshots and number of sensors).




                                    Universidade de Brasília
                       Laboratório de Processamento de Sinais em Arranjos
                                                                                                   21
Data model and Goal
   Noiseless case


                                               =            +             +




   Matrix data model




          Our objective is to estimate d from the noisy observations          .

                                  Universidade de Brasília
                     Laboratório de Processamento de Sinais em Arranjos
                                                                                  22
Analysis of the Noise Eigenvalues Profile
   The eigenvalues of the sample covariance matrix




                                               10
                                                        d = 2, M = 8, SNR = 0 dB, N = 10
   Finite SNR, Finite N
                                                8
       M - d noise eigenvalues follow a
       Wishart distribution.                    6


                                           i
       d signal plus noise eigenvalues          4


                                                2


                                                0
                                                    1    2   3      4    5    6     7   8
                                                                 Eigenvalue index i

                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos
                                                                                            23
Exponential Fitting Test (EFT)
   Observation is a superposition of noise and signal
       The noise eigenvalues still exhibit the exponential profile
       We can predict the profile
       of the noise eigenvalues
       to find the “breaking point”
       Let P denote the number
       of candidate noise eigenvalues.
         • choose the largest P
           such that the P noise
           eigenvalues can be fitted
           with a decaying exponential
        d = 3, M = 8, SNR = 20 dB, N = 10




                                  Universidade de Brasília
                     Laboratório de Processamento de Sinais em Arranjos
                                                                          24
Comparison of MOS Schemes (1)
   Case that M and N are close




                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos
                                                                         25
Comparison of MOS Schemes (2)
   Case that M >> N




                                    Universidade de Brasília
                       Laboratório de Processamento de Sinais em Arranjos
                                                                            26
Data Model and Goal
Noiseless data representation

                                                           =            +   +




Problem


  where        is the colored noise tensor.

          Our objective is to estimate d from the noisy observations        .

                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos
                                                                                27
R-D Exponential Fitting Test
   R-D exponential profile




       We can define global eigenvalues




                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos
                                                                         28
R-D Exponential Fitting Test
   R-D exponential profile
       Comparison between the global eigenvalues profile and the profile
       of the last unfolding




                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos
                                                                           29
Closed-form PARAFAC based
                    Model Order Selection
   For P = 2, i.e., P < d              For P = 4, i.e., P > d


             =        +                           =        +        +            +

            =         +                           =        +        +            +
 We assume d = 3 and we consider only solutions with the
  two smallest residuals of the SMD, i.e., b = 1 and 2.
 Due to the permutation ambiguities, the components of
  different tensors are ordered using the amplitude based
  approach.


                                                                         1   2   3       4   5
                                                                                     P



                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos
                                                                                                 30
Simulations
    Model Order Selection in Additive White Gaussian Noise Scenario
    Probability of correct Detection vs. SNR

   White Gaussian noise





                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos
                                                                         31
Simulations
    Model Order Selection in Additive Colored Gaussian Noise Scenario
    Probability of correct Detection vs. SNR

   Colored Gaussian noise





                                  Universidade de Brasília
                     Laboratório de Processamento de Sinais em Arranjos
                                                                          32
Outline

   Universidade de Brasília: A Short Overview
   Research Areas: Laboratory of Array Signal Processing
   Multi-Dimensional Array Signal Processing
       Motivation
       Model Order Selection
                                                       UnB
       Prewhitening
   MIMO-OFDM System
   Cooperative MIMO for WSN
   Conclusions




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    33
Motivation
   Colored noise is encountered in a variety of signal processing applications, e.g.,
    SONAR, communications, and speech processing.
   Without prewhitening the parameter estimation is severely degraded.

   Traditionally, stochastic prewhitening schemes are applied.

   By prewhitening the subspace via our proposed deterministic prewhitening
    scheme, an improvement of the parameter estimation is obtained compared to the
    stochastic prewhitening schemes.




                                  Universidade de Brasília
                     Laboratório de Processamento de Sinais em Arranjos
                                                                                   34
Noise Analysis
   Analysis via SVD



                                                                   Stochastic
                                                              prewhitening schemes

                                                                         With colored
                                                                       noise the d main
                                                                       components are
                                                                        more affected.


                                                                 Deterministic
                                                              prewhitening scheme



                               Universidade de Brasília
                  Laboratório de Processamento de Sinais em Arranjos
                                                                                    35
Simulations
 Subspace Prewhitening for Colored Noise with Structure
 RMSE vs. Correlation Level




 The noise correlation
      is known.
SE – Standard ESPRIT




                               Universidade de Brasília
                  Laboratório de Processamento de Sinais em Arranjos
                                                                       36
Sequential GSVD
   These matrix based prewhitening schemes have a worse accuracy for
    multidimensional colored noise or interference with Kronecker correlation
    structure,
       when applied in conjunction with the subspace-based parameter estimation
       techniques, such as R-D Standard ESPRIT and R-D Standard Tensor-ESPRIT


   Therefore, we propose the Sequential Generalized Singular Value
    Decomposition (S-GSVD) of the measurement tensor and of the
    multidimensional noise samples
       enables us to improve the subspace estimation
       based on the prewhitening correlation factors estimation
       has a low complexity and a high accuracy version




                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos
                                                                                  37
Simulations

Subspace Prewhitening for Multi-dimensional Colored Noise
RMSE vs. Number of Samples without Signal Components (Nl)




STE – Standard
Tensor-ESPRIT




                              Universidade de Brasília
                 Laboratório de Processamento de Sinais em Arranjos
                                                                      38
Iterative S-GSVD
 In some multidimensional applications,
       the noise samples           without the presence of signal components are not
       available
 For these cases, we propose the Iterative Sequential GSVD (I-S-GSVD)
       jointly estimation of the signal data and of the noise statistics via a proposed
       iterative algorithm in conjunction with the S-GSVD
       low computational complexity of the S-GSVD
       for intermediate and high SNR regimes similar accuracy as the S-GSVD, where
               is required
       convergence with two or three iterations
       applied in conjunction with the subspace-based parameter estimation techniques,
       e.g., R-D Standard Tensor-ESPRIT (R-D STE)




                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos
                                                                                          39
Simulations
Subspace Prewhitening for Multi-dimensional Colored Noise
RMSE vs. Correlation Level




   STE – Standard
   Tensor-ESPRIT
                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    40
Simulations
Subspace Prewhitening for Multi-dimensional Colored Noise
RMSE vs. Number of Iterations




   STE – Standard
   Tensor-ESPRIT
                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    41
Outline

   Universidade de Brasília: A Short Overview
   Research Areas: Laboratory of Array Signal Processing
   Multi-Dimensional Array Signal Processing
       Motivation
       Model Order Selection
                                                       UnB
       Prewhitening
   MIMO-OFDM System
   Cooperative MIMO for WSN
   Conclusions




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    42
MIMO-OFDM System (1)




             Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
MIMO-OFDM System (2)



                        M: number of transmit antennas.
                        N: number of time-slots in the whole time frame.
                                    P: number of symbol periods in each time-slot.




                    Known.
                          K: number of receive antennas.
                                         Known.    F: number of subcarriers

Our objective is to estimate S and H from the noisy observations Y.
                                   .
                         Universidade de Brasília
            Laboratório de Processamento de Sinais em Arranjos
State-of-the-art MIMO-OFDM Schemes
   Existing Solution: Alternating Least Squares (ALS) Receiver
       Drawback: iterative, higher complexity, requires pilot symbols (loss
       in transmission efficiency)

   Proposed Solution I: Least Squares Khatri-Rao factorization (LS-KRF)
       Closed-form, lower complexity for medium-to-high SNRs, requires
       pilot symbols (loss in transmission efficiency)

   Proposed Solution II: Simplified Closed-form PARAFAC
       Avoid the knowledge on the first row in the symbol matrix
       Closed-form, lower complexity, same performance of the pilot
       symbols based schemes for intermediate and high SNR regimes
       (high transmission efficiency)


                              Universidade de Brasília
                 Laboratório de Processamento de Sinais em Arranjos
                                                                              45
MIMO-OFDM Simulations (1)
                 Bit Error Rate vs. SNR @ K=2, M=4, F=4, N=5, P=3



 -1
                                                        ALS ( 1= 2=0.0001)
                                                        (P-)LS-KRF
                                                                                               Parameter Settings:
10

                                                                                               K=2, M=4, F=4, N=5, P=3
 -2
10                                                                                              Channel estimate NMSE vs. SNR @ K=2, M=4, F=4, N=5, P=3

                                                                                                                                          ALS ( 1= 2=0.0001)
                                                                                          0                                               (P-)LS-KRF
                                                                                         10
 -3
10



                                                                                          -1
 -4                                                                                      10
10



     -15   -10      -5       0      5     10       15       20      25       30   NMSE    -2
                                    SNR (dB)                                             10




                                                                                          -3
                                                                                         10


                                                                                          -15    -10    -5      0      5     10      15       20     25        30
                                                                                                                       SNR (dB)

                                                   Universidade de Brasília
                                      Laboratório de Processamento de Sinais em Arranjos
                                                                                                                                                       46
MIMO-OFDM Simulations (2)

                                                     Mean Processing Time vs. SNR @ K=2, M=4, F=4, N=5, P=3

Mean Processing Time (s)
                                   0.06
                                                                                                 ALS ( 1= 2=0.0001)
                                   0.04                                                          LS-KRF
                                                                                                 P-LS-KRF

                                   0.02


                                             0
                                             -15     -10     -5      0         5      10     15     20      25          30
                                                                               SNR (dB)
                                                   Number of Iterations in ALS vs. SNR @ K=2, M=4, F=4, N=5, P=3
                     Number of Itertations




                                             20                                       No. of Iters. Outer ( 1=0.0001)

                                                                                      No. of Iters. Inner ( 2=0.0001)
                                             15

                                             10

                                             5
                                             -15     -10     -5      0       5     10       15       20      25         30
                                                                             SNR (dB)



                                                           Universidade de Brasília
                                              Laboratório de Processamento de Sinais em Arranjos
                                                                                                                             47
MIMO-OFDM Simulations (3)
                 Bit Error Rate vs. SNR @ K=2, M=4, F=4, N=5, P=3

                                           (P-)LS-KRF (w/ Overhead)                             Parameter Settings I:
                                           S-CFP w/ Pairing (w/o Overhead)
 -1
10                                                                                              K=2, M=4, F=4, N=5, P=3
                                                                                                    Channel estimate NMSE vs. SNR @ K=2, M=4, F=4, N=5, P=3
                                                                                          1
                                                                                         10
 -2                                                                                                                              (P-)LS-KRF (w/ Overhead)
10
                                                                                                                                 S-CFP w/ Pairing (w/o Overhead)

                                                                                          0
                                                                                         10

 -3
10
                                                                                          -1
                                                                                         10




     -15   -10      -5       0      5     10       15      20       25       30   NMSE    -2
                                                                                         10
                                    SNR (dB)



                                                                                          -3
                                                                                         10


                                                                                              -15   -10     -5      0      5     10      15     20      25         30
                                                                                                                           SNR (dB)

                                                    Universidade de Brasília
                                       Laboratório de Processamento de Sinais em Arranjos
                                                                                                                                                           48
MIMO-OFDM Simulations (4)
                 Bit Error Rate vs. SNR @ K=2, M=4, F=3, N=3, P=5

                                                                                                 Parameter Settings II:
                                                                                                 K=2, M=4, F=3, N=3, P=5
 -1
10
                                                                                                  Channel estimate NMSE vs. SNR @ K=2, M=4, F=3, N=3, P=5

                                                                                                                               ALS (w/ Overhead)
                                                                                       1
                                                                                      10                                       S-CFP w/ Pairing (w/o Overhead)



                                                                                       0
 -2                                                                                   10
10




                                                                              NMDSE
                 ALS (w/ Overhead)
                                                                                       -1
                 S-CFP w/ Pairing (w/o Overhead)                                      10


     -15   -10       -5       0      5     10      15      20       25   30
                                     SNR (dB)                                          -2
                                                                                      10



                                                                                       -3
                                                                                      10

                                                                                           -15    -10     -5      0      5     10      15     20      25         30
                                                                                                                         SNR (dB)

                                                     Universidade de Brasília
                                        Laboratório de Processamento de Sinais em Arranjos
                                                                                                                                                           49
Outline

   Universidade de Brasília: A Short Overview
   Research Areas: Laboratory of Array Signal Processing
   Multi-Dimensional Array Signal Processing
       Motivation
       Model Order Selection
                                                       UnB
       Prewhitening
   MIMO-OFDM System
   Cooperative MIMO for WSN
   Conclusions




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    50
Cooperative MIMO Applied to WSN (1)
   Wireless Sensor Networks
       Several applications: agriculture, defense and environment
       Energy limitations: small batteries and no replacement of them
       Communication consumes most of the energy




                             Universidade de Brasília
                Laboratório de Processamento de Sinais em Arranjos
Cooperative MIMO Applied to WSN (2)
   Simulation scenario
       The cooperative MIMO channels generated using the IlmProp
       50 sensors placed in an area of 400 × 400 m2
       Sensors distributed following a random pattern following Poisson
       distribution in two dimensions
       Perfect synchronization among sensors assumed
       Pilots with 30 data symbols
       The transmitted data with 1000 data symbols
       Stationary channel
       The carrier frequency 2.4GHz
       Fat fading over the transmission bandwidth
       The simulation ranges from -10 to 10 dB SNR and 1000
       independent Monte Carlo runs for each SNR


                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
Cooperative MIMO Applied to WSN (3)
   Simulation scenario




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
Cooperative MIMO Applied to WSN (4)
   SNR vs BER




                          Universidade de Brasília
             Laboratório de Processamento de Sinais em Arranjos
Cooperative MIMO Applied to WSN (5)
   Normalized energy consumption
       5 hops for multi-hop scheme




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
Outline

   Universidade de Brasília: A Short Overview
   Research Areas: Laboratory of Array Signal Processing
   Multi-Dimensional Array Signal Processing
       Motivation
       Model Order Selection
                                                       UnB
       Prewhitening
   MIMO-OFDM System
   Cooperative MIMO for WSN
   Conclusions




                            Universidade de Brasília
               Laboratório de Processamento de Sinais em Arranjos
                                                                    56
Conclusions
 In this presentation, we have present our state-of-the-art proposed schemes for
       model order selection (MOS)
       subspace prewhitening
       joint symbol and channel estimation for MIMO-OFDM systems
       Cooperative MIMO for WSN
 Important contributions in the MOS field
       Modified Exponential Fitting Test (M-EFT): Matrix data contaminated by
       white noise
       R-D EFT: Tensor data contaminated by white noise
       Closed-Form PARAFAC based Model Order Selection (CFP-MOS)
       scheme: Tensor data contaminated by white and colored noise
 Important contributions in the subspace prewhitening field
       Deterministic prewhitening: Matrix data and noise with correlation structure
       Sequential GSVD: Tensor data and noise with tensor structure
       Iterative Sequential GSVD: Tensor data and noise with tensor structure
                                    No availability of noise samples
                                 Universidade de Brasília
                    Laboratório de Processamento de Sinais em Arranjos
                                                                                      57
Conclusions

   In the MIMO-OFDM field:
         Simplified closed-form PARAFAC based scheme: no overhead (w/o pilots)



   In the WSN field:
         Cooperative MIMO: instead of single and multi-hop




                                Universidade de Brasília
                   Laboratório de Processamento de Sinais em Arranjos
                                                                            58
Thank you for your attention!

  Gracias por su atención!

  Prof. Dr.-Ing. João Paulo C. Lustosa da Costa
              University of Brasília (UnB)
       Department of Electrical Engineering (ENE)
        Laboratory of Array Signal Processing
                     PO Box 4386
          Zip Code 70.919-970, Brasília - DF



           Universidade de Brasília
   Homepage: http://www.pgea.unb.br/~lasp                59
    Laboratório de Processamento de Sinais em Arranjos

Weitere ähnliche Inhalte

Ähnlich wie Presentacion us 2013_03_21

의료영역에서의3D 프린팅적용을위한의료영상모델링
의료영역에서의3D 프린팅적용을위한의료영상모델링의료영역에서의3D 프린팅적용을위한의료영상모델링
의료영역에서의3D 프린팅적용을위한의료영상모델링Namkug Kim
 
Energy Aware performance evaluation of WSNs.
Energy Aware performance evaluation of WSNs.Energy Aware performance evaluation of WSNs.
Energy Aware performance evaluation of WSNs.ikrrish
 
Presentation l`aquila new
Presentation l`aquila newPresentation l`aquila new
Presentation l`aquila newikrrish
 
Deep Learning-Based Universal Beamformer for Ultrasound Imaging
Deep Learning-Based Universal Beamformer for Ultrasound ImagingDeep Learning-Based Universal Beamformer for Ultrasound Imaging
Deep Learning-Based Universal Beamformer for Ultrasound ImagingShujaat Khan
 
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...CSCJournals
 
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeKengo Sato
 
Preliminary Study of Indoor Ultrawideband Localization for At-Home Patient Mo...
Preliminary Study of Indoor Ultrawideband Localization for At-Home Patient Mo...Preliminary Study of Indoor Ultrawideband Localization for At-Home Patient Mo...
Preliminary Study of Indoor Ultrawideband Localization for At-Home Patient Mo...specialbaek
 
Presentation for ama conf mod
Presentation for ama conf modPresentation for ama conf mod
Presentation for ama conf modspecialbaek
 
BITS: Basics of sequence databases
BITS: Basics of sequence databasesBITS: Basics of sequence databases
BITS: Basics of sequence databasesBITS
 
Howard University: Center for Computational Biology and Bioinformatics
Howard University: Center for Computational Biology and BioinformaticsHoward University: Center for Computational Biology and Bioinformatics
Howard University: Center for Computational Biology and Bioinformaticskarl.barnes
 
Open science resources for `Big Data' Analyses of the human connectome
Open science resources for `Big Data' Analyses of the human connectomeOpen science resources for `Big Data' Analyses of the human connectome
Open science resources for `Big Data' Analyses of the human connectomeCameron Craddock
 
Next generation sequencing methods (final edit)
Next generation sequencing methods (final edit)Next generation sequencing methods (final edit)
Next generation sequencing methods (final edit)Mrinal Vashisth
 

Ähnlich wie Presentacion us 2013_03_21 (20)

Defying Nyquist in Analog to Digital Conversion
Defying Nyquist in Analog to Digital ConversionDefying Nyquist in Analog to Digital Conversion
Defying Nyquist in Analog to Digital Conversion
 
의료영역에서의3D 프린팅적용을위한의료영상모델링
의료영역에서의3D 프린팅적용을위한의료영상모델링의료영역에서의3D 프린팅적용을위한의료영상모델링
의료영역에서의3D 프린팅적용을위한의료영상모델링
 
P1121106496
P1121106496P1121106496
P1121106496
 
Energy Aware performance evaluation of WSNs.
Energy Aware performance evaluation of WSNs.Energy Aware performance evaluation of WSNs.
Energy Aware performance evaluation of WSNs.
 
Presentation l`aquila new
Presentation l`aquila newPresentation l`aquila new
Presentation l`aquila new
 
RESUME
RESUMERESUME
RESUME
 
New
NewNew
New
 
SECURE: Semantics Empowered resCUe enviRonmEnt
SECURE: Semantics Empowered resCUe enviRonmEntSECURE: Semantics Empowered resCUe enviRonmEnt
SECURE: Semantics Empowered resCUe enviRonmEnt
 
Deep Learning-Based Universal Beamformer for Ultrasound Imaging
Deep Learning-Based Universal Beamformer for Ultrasound ImagingDeep Learning-Based Universal Beamformer for Ultrasound Imaging
Deep Learning-Based Universal Beamformer for Ultrasound Imaging
 
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
 
PROSAMBA
PROSAMBAPROSAMBA
PROSAMBA
 
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
 
Preliminary Study of Indoor Ultrawideband Localization for At-Home Patient Mo...
Preliminary Study of Indoor Ultrawideband Localization for At-Home Patient Mo...Preliminary Study of Indoor Ultrawideband Localization for At-Home Patient Mo...
Preliminary Study of Indoor Ultrawideband Localization for At-Home Patient Mo...
 
Presentation for ama conf mod
Presentation for ama conf modPresentation for ama conf mod
Presentation for ama conf mod
 
BITS: Basics of sequence databases
BITS: Basics of sequence databasesBITS: Basics of sequence databases
BITS: Basics of sequence databases
 
Data ming wsn
Data ming wsnData ming wsn
Data ming wsn
 
Howard University: Center for Computational Biology and Bioinformatics
Howard University: Center for Computational Biology and BioinformaticsHoward University: Center for Computational Biology and Bioinformatics
Howard University: Center for Computational Biology and Bioinformatics
 
Open science resources for `Big Data' Analyses of the human connectome
Open science resources for `Big Data' Analyses of the human connectomeOpen science resources for `Big Data' Analyses of the human connectome
Open science resources for `Big Data' Analyses of the human connectome
 
Next generation sequencing methods (final edit)
Next generation sequencing methods (final edit)Next generation sequencing methods (final edit)
Next generation sequencing methods (final edit)
 
G017513945
G017513945G017513945
G017513945
 

Presentacion us 2013_03_21

  • 1. Multi-Dimensional Array Signal Processing Applied to MIMO Systems Prof. Dr.-Ing. João Paulo C. Lustosa da Costa University of Brasília (UnB) Department of Electrical Engineering (ENE) Laboratory of Array Signal Processing PO Box 4386 Zip Code 70.919-970, Brasília - DF Universidade de Brasília Homepage: http://www.pgea.unb.br/~lasp 1 Laboratório de Processamento de Sinais em Arranjos
  • 2. Outline  Universidade de Brasília: A Short Overview  Research Areas: Laboratory of Array Signal Processing  Multi-Dimensional Array Signal Processing Motivation Model Order Selection UnB Prewhitening  MIMO-OFDM System  Cooperative MIMO for WSN  Conclusions Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 2
  • 3. Outline  Universidade de Brasília: A Short Overview  Research Areas: Laboratory of Array Signal Processing  Multi-Dimensional Array Signal Processing Motivation Model Order Selection UnB Prewhitening  MIMO-OFDM System  Cooperative MIMO for WSN  Conclusions Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 3
  • 4. Universidade de Brasília: A Short Overview (1)  Universidade de Brasília (UNB) One of the best federal universities in Brazil The best university in the central-west region of Brazil • Region with 12 million inhabitants UNB is located in Brasília • capital of Brazil – political influence and cooperation with the Federal Government  • one of the most expensive cities in Brazil  • one of the safest cities in Brazil  • Great weather (avrg 22oC, min 17oC, max 28oC)  • Several amazing waterfalls around Brasília  – Itiquira, Pirinópolis, Chapada dos Veadeiros and others • Cheap tickets to Rio de Janeiro and to the Northeast of Brazil  Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 4
  • 5. Universidade de Brasília: A Short Overview (2) Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 5
  • 6. Universidade de Brasília: A Short Overview (3) In 2010, around 21000 candidates for approximately 3000 places  Universidade de Brasília (UNB) around 27000 students around 3300 professors (including all departments and all semesters)  Department of Electrical Engineering composed of three bachelor courses • Communication Network Engineering • Mechatronics • Electrical Engineering (Electric Power Systems) around 1500 students around 70 professors Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 6
  • 7. Outline  Universidade de Brasília: A Short Overview  Research Areas: Laboratory of Array Signal Processing  Multi-Dimensional Array Signal Processing Motivation Model Order Selection UnB Prewhitening  MIMO-OFDM System  Cooperative MIMO for WSN  Conclusions Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 7
  • 8. Research areas (1) Laboratory of Array Signal Processing (LASP) http://www.pgea.unb.br/~lasp Research topics: • Telecommunications – Cooperation with CityU of Hong Kong, TU Ilmenau, DLR, and UFC – MIMO systems: Antenna array at TX and at RX • Spatial domain: increase the exploitation of the frequency spectrum • Audio – Cooperation with FAU in Nuernberg-Erlangen (2 exchange students from Brazil – Science without Borders) – Microphone array • Business Intelligence: Projects with the Federal Government • Ontology, Data Mining and Predictive Analytics • Antenna Array Applications for Unmanned Aerial Vehicles (UAVs) • Communications and Pose Estimation Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 8
  • 9. Research areas (2) Laboratory of Array Signal Processing (LASP) • Side research topics applying antenna arrays or principal component analysis or tensor calculus • Magnetic Resonance Imaging (MRI) • EEG • Blind Malicious Traffic Detection in Networks • Cooperative MIMO in Sensor Networks • … More information • http://www.pgea.unb.br/~lasp Exchange of Students • Internship via DAAD RISE: TU Munich, Deggendorf and Freie U Berlin • Internship via UnB scholarships: UPC • Without scholarships: City U of HK Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 9
  • 10. Outline  Universidade de Brasília: A Short Overview  Research Areas: Laboratory of Array Signal Processing  Multi-Dimensional Array Signal Processing Motivation Model Order Selection UnB Prewhitening  MIMO-OFDM System  Cooperative MIMO for WSN  Conclusions Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 10
  • 11. Motivation (1)  Malicious traffic detection Amount of accesses Time slots (10 min) Detect if there is some malicious traffic How many attackers and how many ports being attacked Development of Intrusion Detection Systems (IDS) Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 3
  • 12. Motivation (2)  Business Intelligence (BI) To support the decision making in the government and companies Examples of data marts: personal, sales and logistic Data mining: extract patterns from the data. For instance, increased sales if beers and disposable diapers are close Predictive analytics: predict the tendency and also support the decision Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 3
  • 13. Motivation (3)  Sound source localization Sound source 1 Sound source 2 Microphone array Applications: phone conference devices, bioacustics, computational forensics and hearing aids. Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 3
  • 14. Motivation (4)  Wind tunnel evaluation Array Improvement of the aerodynamics of vehicles Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 4
  • 15. Motivation (5)  Channel model Direction of Departure (DOD) Transmit array: 1-D or 2-D Direction of Arrival (DOA) Receive array: 1-D or 2-D Frequency Delay Time Doppler shift Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 5
  • 16. Goal Model order Is the noise No Parameter Measurements selection colored? Estimation Yes Subspace Prewhitening  Measurements or data from several applications, for instance, MIMO channels, EEG, stock markets, chemistry, pharmacology, medical imaging, radar, and sonar  Model order selection estimation of the number of the main components (total number of parameters) often assumed known in the literature  Parameter estimation techniques extraction of the parameters from the main components  Subspace prewhitening schemes application of the noise statistics to improve the parameter estimation Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 16
  • 17. Goal: Model Order Selection Model order Is the noise No Parameter Measurements selection colored? Estimation Yes Subspace Prewhitening  What is the best model order selection (MOS) scheme? several schemes in the literature Answer depends on data size and structure, and noise type Is the multi-dimensional structure of the data taken into account?  The right model order crucial for the parameter estimation and subspace prewhitening Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 17
  • 18. Goal: Parameter Estimation Model order Is the noise No Parameter Measurements selection colored? Estimation Yes Subspace Prewhitening  Parameter estimation mapping between the main components and the parameters  In the literature, in case of arbitrary array geometries the solutions are iterative, e.g., SAGE and Alternating Least Squares (ALS) no guarantee of convergence  The closed-form schemes in literature, e. g., R-D ESPRIT restricted to shift invariant arrays without robustness to arrays with positioning errors and to the violation of the narrow band assumption Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 18
  • 19. Goal: Subspace Prewhitening Model order Is the noise No Parameter Measurements selection colored? Estimation Yes Subspace Prewhitening  Subspace prewhitening improve the parameter estimation in the presence of colored noise  We consider the cases: structure of the noise statistics with respect to the correlation level multi-dimensional structure of the noise statistics, common for certain MIMO and EEG applications unavailability of samples without the presence signal components to obtain the noise statistics Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 19
  • 20. Outline  Universidade de Brasília: A Short Overview  Research Areas: Laboratory of Array Signal Processing  Multi-Dimensional Array Signal Processing Motivation Model Order Selection UnB Prewhitening  MIMO-OFDM System  Cooperative MIMO for WSN  Conclusions Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 20
  • 21. Model Order Selection: State of the Art (1)  A large number of model order selection (MOS) schemes have been proposed in the literature. However, most of the proposed MOS schemes are compared only to Akaike’s Information Criterion (AIC) and Minimum Description Length (MDL); the Probability of correct Detection (PoD) of these schemes is a function of the array size (number of snapshots and number of sensors). Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 21
  • 22. Data model and Goal  Noiseless case = + +  Matrix data model Our objective is to estimate d from the noisy observations . Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 22
  • 23. Analysis of the Noise Eigenvalues Profile  The eigenvalues of the sample covariance matrix 10 d = 2, M = 8, SNR = 0 dB, N = 10  Finite SNR, Finite N 8 M - d noise eigenvalues follow a Wishart distribution. 6 i d signal plus noise eigenvalues 4 2 0 1 2 3 4 5 6 7 8 Eigenvalue index i Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 23
  • 24. Exponential Fitting Test (EFT)  Observation is a superposition of noise and signal The noise eigenvalues still exhibit the exponential profile We can predict the profile of the noise eigenvalues to find the “breaking point” Let P denote the number of candidate noise eigenvalues. • choose the largest P such that the P noise eigenvalues can be fitted with a decaying exponential d = 3, M = 8, SNR = 20 dB, N = 10 Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 24
  • 25. Comparison of MOS Schemes (1)  Case that M and N are close Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 25
  • 26. Comparison of MOS Schemes (2)  Case that M >> N Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 26
  • 27. Data Model and Goal Noiseless data representation = + + Problem where is the colored noise tensor. Our objective is to estimate d from the noisy observations . Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 27
  • 28. R-D Exponential Fitting Test  R-D exponential profile We can define global eigenvalues Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 28
  • 29. R-D Exponential Fitting Test  R-D exponential profile Comparison between the global eigenvalues profile and the profile of the last unfolding Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 29
  • 30. Closed-form PARAFAC based Model Order Selection  For P = 2, i.e., P < d  For P = 4, i.e., P > d = + = + + + = + = + + +  We assume d = 3 and we consider only solutions with the two smallest residuals of the SMD, i.e., b = 1 and 2.  Due to the permutation ambiguities, the components of different tensors are ordered using the amplitude based approach. 1 2 3 4 5 P Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 30
  • 31. Simulations Model Order Selection in Additive White Gaussian Noise Scenario Probability of correct Detection vs. SNR   White Gaussian noise  Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 31
  • 32. Simulations Model Order Selection in Additive Colored Gaussian Noise Scenario Probability of correct Detection vs. SNR   Colored Gaussian noise  Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 32
  • 33. Outline  Universidade de Brasília: A Short Overview  Research Areas: Laboratory of Array Signal Processing  Multi-Dimensional Array Signal Processing Motivation Model Order Selection UnB Prewhitening  MIMO-OFDM System  Cooperative MIMO for WSN  Conclusions Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 33
  • 34. Motivation  Colored noise is encountered in a variety of signal processing applications, e.g., SONAR, communications, and speech processing.  Without prewhitening the parameter estimation is severely degraded.  Traditionally, stochastic prewhitening schemes are applied.  By prewhitening the subspace via our proposed deterministic prewhitening scheme, an improvement of the parameter estimation is obtained compared to the stochastic prewhitening schemes. Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 34
  • 35. Noise Analysis  Analysis via SVD Stochastic prewhitening schemes With colored noise the d main components are more affected. Deterministic prewhitening scheme Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 35
  • 36. Simulations Subspace Prewhitening for Colored Noise with Structure RMSE vs. Correlation Level The noise correlation is known. SE – Standard ESPRIT Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 36
  • 37. Sequential GSVD  These matrix based prewhitening schemes have a worse accuracy for multidimensional colored noise or interference with Kronecker correlation structure, when applied in conjunction with the subspace-based parameter estimation techniques, such as R-D Standard ESPRIT and R-D Standard Tensor-ESPRIT  Therefore, we propose the Sequential Generalized Singular Value Decomposition (S-GSVD) of the measurement tensor and of the multidimensional noise samples enables us to improve the subspace estimation based on the prewhitening correlation factors estimation has a low complexity and a high accuracy version Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 37
  • 38. Simulations Subspace Prewhitening for Multi-dimensional Colored Noise RMSE vs. Number of Samples without Signal Components (Nl) STE – Standard Tensor-ESPRIT Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 38
  • 39. Iterative S-GSVD  In some multidimensional applications, the noise samples without the presence of signal components are not available  For these cases, we propose the Iterative Sequential GSVD (I-S-GSVD) jointly estimation of the signal data and of the noise statistics via a proposed iterative algorithm in conjunction with the S-GSVD low computational complexity of the S-GSVD for intermediate and high SNR regimes similar accuracy as the S-GSVD, where is required convergence with two or three iterations applied in conjunction with the subspace-based parameter estimation techniques, e.g., R-D Standard Tensor-ESPRIT (R-D STE) Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 39
  • 40. Simulations Subspace Prewhitening for Multi-dimensional Colored Noise RMSE vs. Correlation Level STE – Standard Tensor-ESPRIT Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 40
  • 41. Simulations Subspace Prewhitening for Multi-dimensional Colored Noise RMSE vs. Number of Iterations STE – Standard Tensor-ESPRIT Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 41
  • 42. Outline  Universidade de Brasília: A Short Overview  Research Areas: Laboratory of Array Signal Processing  Multi-Dimensional Array Signal Processing Motivation Model Order Selection UnB Prewhitening  MIMO-OFDM System  Cooperative MIMO for WSN  Conclusions Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 42
  • 43. MIMO-OFDM System (1) Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos
  • 44. MIMO-OFDM System (2) M: number of transmit antennas. N: number of time-slots in the whole time frame. P: number of symbol periods in each time-slot. Known. K: number of receive antennas. Known. F: number of subcarriers Our objective is to estimate S and H from the noisy observations Y. . Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos
  • 45. State-of-the-art MIMO-OFDM Schemes  Existing Solution: Alternating Least Squares (ALS) Receiver Drawback: iterative, higher complexity, requires pilot symbols (loss in transmission efficiency)  Proposed Solution I: Least Squares Khatri-Rao factorization (LS-KRF) Closed-form, lower complexity for medium-to-high SNRs, requires pilot symbols (loss in transmission efficiency)  Proposed Solution II: Simplified Closed-form PARAFAC Avoid the knowledge on the first row in the symbol matrix Closed-form, lower complexity, same performance of the pilot symbols based schemes for intermediate and high SNR regimes (high transmission efficiency) Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 45
  • 46. MIMO-OFDM Simulations (1) Bit Error Rate vs. SNR @ K=2, M=4, F=4, N=5, P=3 -1 ALS ( 1= 2=0.0001) (P-)LS-KRF Parameter Settings: 10 K=2, M=4, F=4, N=5, P=3 -2 10 Channel estimate NMSE vs. SNR @ K=2, M=4, F=4, N=5, P=3 ALS ( 1= 2=0.0001) 0 (P-)LS-KRF 10 -3 10 -1 -4 10 10 -15 -10 -5 0 5 10 15 20 25 30 NMSE -2 SNR (dB) 10 -3 10 -15 -10 -5 0 5 10 15 20 25 30 SNR (dB) Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 46
  • 47. MIMO-OFDM Simulations (2) Mean Processing Time vs. SNR @ K=2, M=4, F=4, N=5, P=3 Mean Processing Time (s) 0.06 ALS ( 1= 2=0.0001) 0.04 LS-KRF P-LS-KRF 0.02 0 -15 -10 -5 0 5 10 15 20 25 30 SNR (dB) Number of Iterations in ALS vs. SNR @ K=2, M=4, F=4, N=5, P=3 Number of Itertations 20 No. of Iters. Outer ( 1=0.0001) No. of Iters. Inner ( 2=0.0001) 15 10 5 -15 -10 -5 0 5 10 15 20 25 30 SNR (dB) Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 47
  • 48. MIMO-OFDM Simulations (3) Bit Error Rate vs. SNR @ K=2, M=4, F=4, N=5, P=3 (P-)LS-KRF (w/ Overhead) Parameter Settings I: S-CFP w/ Pairing (w/o Overhead) -1 10 K=2, M=4, F=4, N=5, P=3 Channel estimate NMSE vs. SNR @ K=2, M=4, F=4, N=5, P=3 1 10 -2 (P-)LS-KRF (w/ Overhead) 10 S-CFP w/ Pairing (w/o Overhead) 0 10 -3 10 -1 10 -15 -10 -5 0 5 10 15 20 25 30 NMSE -2 10 SNR (dB) -3 10 -15 -10 -5 0 5 10 15 20 25 30 SNR (dB) Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 48
  • 49. MIMO-OFDM Simulations (4) Bit Error Rate vs. SNR @ K=2, M=4, F=3, N=3, P=5 Parameter Settings II: K=2, M=4, F=3, N=3, P=5 -1 10 Channel estimate NMSE vs. SNR @ K=2, M=4, F=3, N=3, P=5 ALS (w/ Overhead) 1 10 S-CFP w/ Pairing (w/o Overhead) 0 -2 10 10 NMDSE ALS (w/ Overhead) -1 S-CFP w/ Pairing (w/o Overhead) 10 -15 -10 -5 0 5 10 15 20 25 30 SNR (dB) -2 10 -3 10 -15 -10 -5 0 5 10 15 20 25 30 SNR (dB) Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 49
  • 50. Outline  Universidade de Brasília: A Short Overview  Research Areas: Laboratory of Array Signal Processing  Multi-Dimensional Array Signal Processing Motivation Model Order Selection UnB Prewhitening  MIMO-OFDM System  Cooperative MIMO for WSN  Conclusions Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 50
  • 51. Cooperative MIMO Applied to WSN (1)  Wireless Sensor Networks Several applications: agriculture, defense and environment Energy limitations: small batteries and no replacement of them Communication consumes most of the energy Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos
  • 52. Cooperative MIMO Applied to WSN (2)  Simulation scenario The cooperative MIMO channels generated using the IlmProp 50 sensors placed in an area of 400 × 400 m2 Sensors distributed following a random pattern following Poisson distribution in two dimensions Perfect synchronization among sensors assumed Pilots with 30 data symbols The transmitted data with 1000 data symbols Stationary channel The carrier frequency 2.4GHz Fat fading over the transmission bandwidth The simulation ranges from -10 to 10 dB SNR and 1000 independent Monte Carlo runs for each SNR Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos
  • 53. Cooperative MIMO Applied to WSN (3)  Simulation scenario Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos
  • 54. Cooperative MIMO Applied to WSN (4)  SNR vs BER Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos
  • 55. Cooperative MIMO Applied to WSN (5)  Normalized energy consumption 5 hops for multi-hop scheme Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos
  • 56. Outline  Universidade de Brasília: A Short Overview  Research Areas: Laboratory of Array Signal Processing  Multi-Dimensional Array Signal Processing Motivation Model Order Selection UnB Prewhitening  MIMO-OFDM System  Cooperative MIMO for WSN  Conclusions Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 56
  • 57. Conclusions  In this presentation, we have present our state-of-the-art proposed schemes for model order selection (MOS) subspace prewhitening joint symbol and channel estimation for MIMO-OFDM systems Cooperative MIMO for WSN  Important contributions in the MOS field Modified Exponential Fitting Test (M-EFT): Matrix data contaminated by white noise R-D EFT: Tensor data contaminated by white noise Closed-Form PARAFAC based Model Order Selection (CFP-MOS) scheme: Tensor data contaminated by white and colored noise  Important contributions in the subspace prewhitening field Deterministic prewhitening: Matrix data and noise with correlation structure Sequential GSVD: Tensor data and noise with tensor structure Iterative Sequential GSVD: Tensor data and noise with tensor structure No availability of noise samples Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 57
  • 58. Conclusions  In the MIMO-OFDM field: Simplified closed-form PARAFAC based scheme: no overhead (w/o pilots)  In the WSN field: Cooperative MIMO: instead of single and multi-hop Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 58
  • 59. Thank you for your attention! Gracias por su atención! Prof. Dr.-Ing. João Paulo C. Lustosa da Costa University of Brasília (UnB) Department of Electrical Engineering (ENE) Laboratory of Array Signal Processing PO Box 4386 Zip Code 70.919-970, Brasília - DF Universidade de Brasília Homepage: http://www.pgea.unb.br/~lasp 59 Laboratório de Processamento de Sinais em Arranjos